Fleet Sizing for Fractional Ownership of Autonomous Vehicles

Mahdieh Allahviranloo

Department of Civil Engineering, The City College of New York, New York, USA

Joseph Chow

Department of Civil & Urban Engineering, New York University, New York, USA

Emerging trends:

- Collaborative consumption
- Autonomous vehicles (AVs)

Shared Ownership of Vehicles

Problem Statement:

Chains of activities:

Chains of activities:

- Converting PDPTW to VRPTW:
 - Assumptions: Users don't share rides
 P1D1-P10D10-P5D5-...- PnDn
 - Serive time at every dummy node of VRP = travel time between pickup and drop off locations of PDP
 - Travel time to dummy node in VRP = travel time to pickup node in PDP
 - Travel time from dummy node in VRP = travel time from drop off node in PDP

- Converting PDPTW to VRPTW:
 - Assumptions: Users don't share rides
 P1D1-P10D10-P5D5-....- PnDn
 - Example:
 - pickup node: 2, drop off node: 5

Travel time		Destination Node									
ITave	rume	1	2	3	4	5	6				
a)	1		0.5	0.1	0.8	0.8	0.3				
lode	2	1.0		0.3	1.1	0.8	0.2				
in	3	1.2	1.2		0.5	1.0	0.6				
Origin Node	4	0.8	1.5	0.7		1.4	1.1				
	5	0.8	0.6	1.2	0.9		0.6				

Travel		Destination Node									
tir	ne	1	2	3	4	5	6	2-5			
	1		0.5	0.1	0.8	8.0	0.3	0.5			
de	2	1.0		0.3	1.1	0.8	0.2				
Origin Node	3	1.2	1.2		0.5	1.0	0.6	1.2			
igin	4	0.8	1.5	0.7		1.4	1.1	1.5			
ŏ	5	0.8	0.6	1.2	0.9		0.6	0.6			
	2-5	0.8	0.6	1.2	0.9		0.6				

Modeling Approach:

- Core model:
 - Household activity pattern generator (Recker, 1995)
- Upper Level Model:
 - Fleet Sizing-Routing-Scheduling Model
- Solution Approach:
 - Benders' Decomposition (Sexton et al, 1985, 1986, Saharidis and Ierapetritou 2009)

Objective function:

$$Min Z = \alpha_{1} \sum_{v \in V} f_{v} \sum_{j \in N} X_{0j}^{v} + \alpha_{2} \sum_{v \in V} \sum_{i \in N} \sum_{j \in N} c_{ij} X_{ij}^{v} + \alpha_{3} \sum_{v \in V} \sum_{i \in N} \left(T_{j}^{v} - T_{i}^{v} - t_{ij} \right) X_{ij}^{v}$$

Terms:

- Vehicle acquisition cost
- Total travel cost
- Total idle time of vehicles

Constraints:

$$\sum_{v \in V} \sum_{j \in N} X_{ij}^v = Y_i, \ \forall i = 1, \dots, n$$
 Node will be visited if a request submitted on it
$$\sum_{j \in N} X_{0j}^v - \sum_{j \in N} X_{j,n+1}^v = 0, \ \forall v \in V$$
 Vehicles should return to depot at the end of the service
$$\sum_{j \in N} X_{ji}^v - \sum_{j \in N} X_{ij}^v = 0, \ \forall i = 1, \dots, n; v \in V$$
 Network connectivity
$$T_j^v - T_i^v - t_{ij} \ge \left(1 - X_{ij}^v\right) M, \ \forall i, j \in N, v \in V$$
 Time of the visit is adjusted based on tour information
$$X_{ij}^v \in \left\{0,1\right\}; Y_i \text{ int } eger; T_i^v, TD_i \ge 0$$

$$\left\{Y_i, TD_i, L_i, P_i\right\} : argmin\left\{HAPP\left(p; T\right)\right\}, \ \forall i = 1, \dots, n$$

Househod Activity Pattern generator :

Objective function:

o Minimize the disutility of travel

Constraints:

- Activity time windows
- Network Constraints

Output:

Space-time distribution of demand

Fleet sizing-Routing-Scheduling Problem

Clustering nodes

Moving nodes across the vehicles to minimize fleet size

Household Activity Pattern Generator

$$Min Z = \sum_{v \in V} \sum_{u \in N} \sum_{w \in N} t_{uw}^{v} X_{uw}^{v}$$

$$\sum_{v} \sum_{w} (X_{uw}^{v}) = 1 , \forall u \in P^{+}, v \in V, w \in P^{-}$$

$$\sum_{w} X_{uw}^{v} - \sum_{w} X_{wu}^{v} = 0, \forall u \in P, v \in V, w \in P$$

$$\sum_{w} X_{0w}^{v} = 1 , \forall v \in V, w \in P^{+}$$

$$\sum_{v} \sum_{w} X_{0w}^{v} > 0 , \forall v \in V, w \in P^{+}$$

$$\sum_{v} X_{u,2n+1}^{v} - \sum_{w} X_{0w}^{v} = 0, , \forall v \in V, w \in P^{+}, u \in P^{-}$$

$$\sum_{u} X_{uw}^{v} - \sum_{w} X_{w,n+u}^{v} = 0, \forall u \in P^{+}, v \in V, w \in P$$

$$\sum_{u} X_{0,w}^{v} = 0, \forall v \in V, w \in P^{-}, \sum_{u} X_{u,0}^{v} = 0, \forall v \in V, u \in P$$

$$\sum_{u} X_{u,2n+1}^{v} = 0, \forall v \in V, w \in P^{-}, \sum_{u} X_{u,0}^{v} = 0, \forall v \in V, u \in P$$

$$\sum_{u} X_{u,2n+1}^{v} = 0, \forall v \in V, u \in P^{+}, \sum_{w} X_{2n+1,w}^{v} = 0, \forall v \in V, w \in P^{-}$$

$$\begin{split} &T_{u} + S_{u} + t_{u,n+u} - T_{w} \leq T_{n+u}, \ \forall u \in P^{+} \\ &T_{u} + S_{u} + t_{uw} - T_{w} \leq \left(1 - X_{uw}^{v}\right) M, \quad \forall u, w \in P, \forall v \in V \\ &T_{0}^{v} + t_{0w} - T_{w} \leq \left(1 - X_{0w}^{v}\right) M, \forall w \in P^{+}, \forall v \in V \\ &T_{u} + S_{u} + t_{u,2n+1} - T_{2n+1}^{v} \leq \left(1 - X_{u,2n+1}^{v}\right) M, \forall v \in V, u \in P^{-} \\ &T_{u} + S_{u} + t_{u,2n+1} - T_{2n+1}^{v} \leq \left(1 - X_{u,2n+1}^{v}\right) M, \forall v \in V, u \in P^{-} \\ &a_{u} \leq T_{u} \leq b_{u} \\ &T_{u \in N} \geq 0, \ X \ is \ binary. \end{split}$$

- Clustering Nodes:
 - Spatial considerations
 - Requested service time constraints

Step 0: Initial Routing

<u>Step 1:</u> Solving sub-problem (scheduling problem) given routes

<u>Step 2:</u> Solving Master Problem (Routing Problem) given KKT conditions of subproblem

<u>Step3:</u> Iterate step 1 and 2 until convergence is occurred

<u>Step 4:</u> Move nodes visited in short tours across to other vehicles to reduce fleet size

<u>Step5:</u> Change the schedule of some activities of HHLDs and compute the corresponding disutility caused for the households and its impact on reducing fleet size.

Step 0: Initial Routing

<u>Step 1:</u> Solving sub-problem (scheduling problem) given routes

<u>Step 2:</u> Solving Master Problem (Routing Problem) given KKT conditions of subproblem

<u>Step3:</u> Iterate step 1 and 2 until convergence is occurred

<u>Step 4:</u> Move nodes visited in short tours across to other vehicles to reduce fleet size

<u>Step5:</u> Change the schedule of some activities of HHLDs and compute the corresponding disutility caused for the households and its impact on reducing fleet size.

Step 0: Initial Routing

For every node, find all the feasible proceeding nodes based on request time:

```
\forall j \in Nodes:

\forall i \in Nodes, i \neq j:

ifT_i \geq T_j: add i to the \{Proced_i\}
```

Generate set of feasible routes:

```
route_m = \{j, i \in Proced_j, k \in Proced_i, ...\}
```

Every node should be visited at least once.

Step 0: Initial Routing

<u>Step 1:</u> Solving sub-problem (scheduling problem) given routes

<u>Step 2:</u> Solving Master Problem (Routing Problem) given KKT conditions of subproblem

<u>Step3:</u> Iterate step 1 and 2 until convergence is occurred

<u>Step 4:</u> Move nodes visited in short tours across to other vehicles to reduce fleet size

<u>Step5:</u> Change the schedule of some activities of HHLDs and compute the corresponding disutility caused for the households and its impact on reducing fleet size.

<u>Step 1:</u> Solving sub-problem (scheduling problem) given routes

$$\begin{aligned} \mathit{Min}\,S &= \sum_{v \in V} \sum_{i \in N} \sum_{j \in N} \left(T_j^v - T_i^v - t_{ij} \right) X_{ij}^v + \sum_{v \in V} \sum_{i \in N} d_i^{+,v} + \sum_{v \in V} \sum_{i \in N} d_i^{-,v} \\ & \text{Output of routing model} \\ d_i^{+,v} &\geq \left(T_i^v - TD_i \right), \forall i \in N, v \in V \\ d_i^{-,v} &\geq \left(TD_i \right) - T_i^v \right), \forall i \in N, v \in V \\ T_j^v &\geq T_i^v + t_{ij} - \left(1 - X_{ij}^{v} \right)^{Tit}, \quad \forall i, j \in I^v, v \in V \\ T_i^v, d_i^{-,v}, d_i^{+,v} &\geq 0, \quad \forall i \in N, v \in V \end{aligned}$$

Step 0: Initial Routing

<u>Step 1:</u> Solving sub-problem (scheduling problem) given routes

<u>Step 2:</u> Solving Master Problem (Routing Problem) given KKT conditions of subproblem

<u>Step3:</u> Iterate step 1 and 2 until convergence is occurred

<u>Step 4:</u> Move nodes visited in short tours across to other vehicles to reduce fleet size

<u>Step5:</u> Change the schedule of some activities of HHLDs and compute the corresponding disutility caused for the households and its impact on reducing fleet size.

<u>Step 2:</u> Solving Master Problem (Routing Problem) given KKT conditions of subproblem

$$\begin{aligned} & \textit{Min}\,Z = \alpha_1 \sum f_{v} \sum X_{0j}^{v} + \alpha_2 \sum \sum c_{ij} X_{ij}^{v} + \alpha_3 \sum \sum \gamma_{ij}^{v} X_{ij}^{v} + \alpha_4 \sum \sum \sum c_{ij} X_{ij}^{v} - X_{(iter-1),ij}^{v} \\ & \sum_{j \in N} X_{0j}^{v} - \sum_{j \in N} X_{j,n+1}^{v} = 0, \ \forall v \in V \\ & \sum_{v \in V} \sum_{j \in N} X_{ij}^{v} - \sum_{v \in V} \sum_{j \in N} X_{ij}^{v} = 0, \ \forall i = 1, \dots, n, \ v \in V \\ & \sum_{v \in V} \sum_{j \in N} X_{ij}^{v} = Y_{i}, \ \forall i \in N \\ & \sum_{v \in V} \sum_{j \in N} X_{ij}^{v} = 0, \ \forall j \in N, \ X_{n+1,j}^{v} = 0, \ \forall j \in N, X_{ij}^{v} \in \{0,1\}; \end{aligned}$$

Step 0: Initial Routing

<u>Step 1:</u> Solving sub-problem (scheduling problem) given routes

<u>Step 2:</u> Solving Master Problem (Routing Problem) given KKT conditions of subproblem

<u>Step3:</u> Iterate step 1 and 2 until convergence is occurred

<u>Step 4:</u> Move nodes visited in short tours across to other vehicles to reduce fleet size

<u>Step5:</u> Change the schedule of some activities of HHLDs and compute the corresponding disutility caused for the households and its impact on reducing fleet size.

Step 0: Initial Routing

<u>Step 1:</u> Solving sub-problem (scheduling problem) given routes

<u>Step 2:</u> Solving Master Problem (Routing Problem) given KKT conditions of subproblem

<u>Step3:</u> Iterate step 1 and 2 until convergence is occurred

<u>Step 4:</u> Move nodes visited in short tours across to other vehicles to reduce fleet size

<u>Step5:</u> Change the schedule of some activities of HHLDs and compute the corresponding disutility caused for the households and its impact on reducing fleet size.

<u>Step 4:</u> Move nodes visited in short tours across to other vehicles to reduce fleet size

```
\label{eq:tours:} \begin{split} \forall \ length(tour_j < minsize): \\ \forall \ node'k' \in tour_j, t = T_k: \\ Check \ the \ time \ windows \ constraints \ in \ other \ tours: \\ Adding \ node \ in \ tour_i, i \neq j, violates \ the \ time \ windows \ constraint: \\ move \ to \ the \ other \ tour \\ Adding \ node \ in \ tour_i, i \neq j, does \ not \ violates \ the \ TW \ constraint: \\ add \ node'k' \ to \ tour_i \end{split}
```

<u>Step 4:</u> Move nodes visited in short tours across to other vehicles to reduce fleet size

Step 0: Initial Routing

<u>Step 1:</u> Solving sub-problem (scheduling problem) given routes

<u>Step 2:</u> Solving Master Problem (Routing Problem) given KKT conditions of subproblem

<u>Step3:</u> Iterate step 1 and 2 until convergence is occurred

<u>Step 4:</u> Move nodes visited in short tours across to other vehicles to reduce fleet size

<u>Step5:</u> Change the schedule of some activities of HHLDs and compute the corresponding disutility caused for the households and its impact on reducing fleet size.

Household Activity Pattern Generator

$$Min Z = \sum_{v \in V} \sum_{u \in N} \sum_{w \in N} t_{uw}^{v} X_{uw}^{v} + \sum_{u \in P^{+}} |T_{u} - T_{D}|$$

$$\sum_{v} \sum_{w} (X_{uw}^{v}) = 1 , \forall u \in P^{+}, v \in V, w \in P^{-}$$

$$T_{u} + S_{u}$$

$$\sum_{w} X_{uw}^{v} - \sum_{w} X_{wu}^{v} = 0, \forall u \in P, v \in V, w \in P$$

$$T_{u} + S_{u}$$

$$T_{u} + S_{u$$

$$\begin{split} T_{u} + S_{u} + t_{u,n+u} - T_{w} &\leq T_{n+u}, \ \forall u \in P^{+} \\ T_{u} + S_{u} + t_{uw} - T_{w} &\leq \left(1 - X_{uw}^{v}\right) M, \quad \forall u, w \in P, \forall v \in V \\ T_{0}^{v} + t_{0w} - T_{w} &\leq \left(1 - X_{0w}^{v}\right) M, \forall w \in P^{+}, \forall v \in V \\ T_{u} + S_{u} + t_{u,2n+1} - T_{2n+1}^{v} &\leq \left(1 - X_{u,2n+1}^{v}\right) M, \forall v \in V, u \in P^{-} \\ T_{u} + S_{u} + t_{u,2n+1} - T_{2n+1}^{v} &\leq \left(1 - X_{u,2n+1}^{v}\right) M, \forall v \in V, u \in P^{-} \\ T_{u} &= T_{adj}, \quad u \in conflicting \ node \\ a_{u} &\leq T_{u} \leq b_{u} \\ T_{u \in N} &\geq 0, \ X \ is \ binary. \end{split}$$

• Case 1: 4 individuals, 20 activities

Individual ID	Home_ID	Visited Nodes ID	Time Windows	Duration (hours)
Ind 1	1	2	[6:00,24:00]	0.5
		3	[8:00,9:00]	7
		4	[6:00,24:00]	2
		5	[16:00,17:00]	0.5
Ind 2	6	7	[12:00,13:00]	1.5
		8	[6:00,24:00]	2
		9	[6:00,24:00]	1
		10	[6:00,24:00]	2
Ind 3	11	12	[08:00, 10:00]	6
		13	[6:00,24:00]	2
		14	[18:00,19:00]	1
		15	[6:00,20:00]	1
Ind 4	16	17	[6:00,20:00]	0.5
		18	[7:00, 9:00]	2
		19	[10:00,12:00]	6
		20	[12:00, 24:00]	1

Travel																				
time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1		0.54	0.11	0.84	0.78	0.30	0.76	0.64	0.93	0.64	0.98	0.50	0.44	0.57	0.34	1.01	0.55	0.34	0.51	0.79
2	1.01		0.31	1.01	0.83	0.21	1.09	0.70	0.73	0.80	0.95	1.04	0.57	0.27	0.92	0.52	1.03	0.56	1.02	0.37
3	1.19	1.19		0.48	1.01	0.60	1.15	0.96	0.67	1.34	1.18	1.31	0.49	0.60	1.16	1.12	1.20	0.92	0.85	1.03
4	0.82	1.57	0.73		1.42	1.12	1.07	1.67	1.09	1.13	0.84	1.01	1.00	1.58	0.93	1.00	1.10	1.39	0.83	1.56
5	0.78	0.56	1.23	0.96		0.60	0.59	0.90	0.81	1.11	0.44	1.22	1.05	0.51	1.23	0.57	0.98	0.92	0.54	0.38
6	1.06	0.44	0.48	1.00	0.48		0.65	0.99	0.52	0.83	0.77	0.59	0.61	1.09	0.22	0.42	0.59	0.73	1.02	0.61
7	1.40	0.73	1.47	0.68	0.94	1.18		1.25	1.23	1.02	0.72	1.34	0.83	1.24	1.44	0.67	1.56	0.62	1.42	1.42
8	1.74	1.56	1.41	1.19	1.59	1.27	1.46		1.73	1.79	1.83	1.70	0.89	0.89	0.98	1.15	0.91	1.31	1.23	1.43
9	0.52	0.83	0.55	0.95	0.55	0.58	0.57	0.32		0.15	0.97	0.32	0.95	0.80	0.96	1.02	0.23	0.48	1.07	0.73
10	1.33	0.92	0.45	1.06	0.66	0.96	1.16	1.04	1.02		0.68	0.86	0.44	1.04	1.39	0.53	0.47	1.32	0.68	0.44
11	0.13	0.89	0.06	0.93	0.93	0.56	0.16	0.21	0.74	0.87		0.79	0.99	0.38	0.67	0.38	0.25	0.82	0.76	0.31
12	0.79	0.62	0.30	0.23	0.69	0.48	0.54	0.49	0.37	0.60	0.90		0.87	0.65	0.64	0.38	0.40	0.82	0.47	0.76
13	1.80	1.38	1.67	1.23	1.29	1.65	1.82	1.35	1.75	1.56	1.39	1.79		1.78	1.47	1.20	1.30	1.74	0.84	0.98
14	0.80	1.29	1.69	1.07	1.55	1.35	1.54	1.55	0.80	1.03	1.40	1.24	1.72		1.32	1.05	1.00	1.64	1.20	1.56
15	1.32	1.09	1.06	1.34	1.16	0.99	1.33	0.44	0.65	1.37	1.15	0.86	1.06	0.80		0.59	0.76	0.41	0.85	0.71
16	0.91	0.96	0.28	0.14	0.53	0.89	0.53	0.47	0.56	0.18	0.19	0.93	0.66	0.32	0.92		0.52	0.78	0.40	0.46
17	1.43	1.79	1.68	0.97	1.18	1.28	1.76	1.32	1.14	1.50	1.38	1.80	1.83	1.72	1.61	1.64		0.96	1.24	0.90
18	1.18	0.86	0.71	0.58	0.88	0.64	0.42	0.43	0.42	0.76	0.47	0.79	1.25	0.70	0.47	0.92	1.22		0.39	0.49
19	0.79	1.46	1.17	1.38	1.41	1.29	1.34	1.59	1.38	1.59	1.18	0.86	0.78	1.43	1.02	1.39	1.37	1.25		1.22
20	0.59	0.66	0.18	0.78	1.01	0.23	0.56	0.40	1.11	0.73	0.37	0.25	0.67	0.95	0.96	0.95	0.32	0.67	1.00	

Requested service time: output of pattern generator

Node ID	Time requested	Node ID	Time requested
16	6:50	13	16:20
11	7:57	10	16:57
1	8:24	19	17:25
17	8:35	15	17:29
18	10:55	9	17:49
6	13:00	4	18:35
12	14:03	20	19:10
7	15:00	14	19:17
3	15:37	2	20:10
5	16:14	8	20:33

• Vehicle allocation without feedback to pattern generator:

Vehicle 1			
Node ID	Service time		
16	6:50		
17	8:35		
18	10:55		
6	13:00		
12	14:03		
7	15:00		
12 7 5	16:14		
19	17:25		
20 2	19:10		
2	20:10		

Vehicle 2			
Node ID	Service time		
11	7:57		
3	15:37		
10	16:57		
4	18:35		
8	20:33		

Vehicle 3				
Node ID	Service time			
1	8:24			
15	17:29			
14	19:17			

Vehicle 4			
Node	ID Service time		
13	16:20		
9	17:49		

• Vehicle allocation with feedback to pattern generator:

Vehicle 1				
Node ID	Service time			
16	6:48			
1	8:17			
17	8:35			
18	10:56			
6	13:00			
12	14:03			
7	15:00			
5	16:14			
19	17:25			
20	19:10			
14	19:33			
2	20:10			

Vehicle 2				
Node ID	Service time			
11	7:57			
3	15:38			
13	16:54			
10	16:58			
15	18:03			
9	18:24			
4	18:35			
8	20:33			

• Comparison:

Vehicle 1			
Node II	Service time		
16	6:48		
1	8:17		
17	8:35		
18	10:56		
6	13:00		
12	14:03		
7	15:00		
5	16:14		
19	17:25		
20	19:10		
14	19:33		
2	20:10		

Vehicle 2	
Node ID	Service time
11	7:57
3	15:38
13	16:54
10	16:58
15	18:03
9	18:24
4	18:35
8	20:33

Vehicle 1		
Node ID	Service time	
<mark>16</mark>	6:50	
<mark>17</mark>	8:35	
<mark>18</mark>	10:55	
<mark>6</mark>	13:00	
12	14:03	
7	15:00	
5	16:14	
<mark>19</mark>	17:25	
<mark>20</mark>	19:10	
2	20:10	

Vehicle 2		
Node I	D Service time	
<mark>11</mark>	7:57	
3	15:37	
<mark>10</mark>	16:57	
4	18:35	
8	20:33	

Vehicle 3		
Node ID	Service time	
1	8:24	
15	17:29	
14	19:17	

Vehicle 4		
Node ID Service time		
13 9	16:20	
9	17:49	

- Case 2: (A test on scalability)
 - Data:
 - MTA travel survey data, 2008

• # of individuals: 12158

• # of trips: 36921

Average number of trips/person: 3.04

Average trip duration: 23.91 min

• Highest % of age group surveyed: 30-36

Highest average income group surveyed: 42-52K

• Females: 60%

Average HHLD size: 2.52

• Average Vehicle in HHLD: 0.67

NYMTC household travel survey data, 2010-2011.

• # of individuals: 8904

• # of trips: 31305

Average number of trips/person 3.52

• Average trip duration: 32.26 min

Highest % of age group surveyed : 26-31

• Highest average income group surveyed: 38-52k

• Females: 55%

Average HHLD size: 2.11

• Average Vehicle in HHLD: 0.73

- Case 2: (A test on Scalability Test)
 - For this analysis:
 - Number of observation:
 - 25543 daily trip observations
 - Study region: Manhattan Borough
 - Fleet size: 2092 (12.67 trips/vehicle)

- Case 2: (A test on Scalability Test)
 - For this analysis:
 - Number of observation:
 - 25543 daily trip observations
 - Study region: Manhattan Borough
 - Fleet size: 2092 (12.67 trips/vehicle)
 - Computation details:
 - Software: Matlab
 - Number of codes: 12 cores
 - CPU: 2.66 GHZ
 - 86 minutes

Future Extensions:

- Incorporate adjustments to the itineraries for large scale and improve computation efficiency;
- Extension to a more general case: models with ride-sharing or paratransit modes;
- Incorporate household preferences over different types of vehicles.

Thank you ©

Questions?

mallahviranloo@ccny.cuny.edu