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Motivation (1) 

• The measures of discrepancy between a simulation and the real 

world are at the basis of scientific modelling:  

Vmodel calibration and validation  

 

• As for dynamic models, discrepancy is mainly measured on the 

interest variables time-series.  

 

• Usual global error statistics: MAE, RMSE, RMSPE, Theilôs U, etc.  

VHollander and Liu, 2008; Brackstone and Punzo, 2014; Buisson et al., 2014  

  

• Common assumption: the temporal evolution of model residuals and 

their features (e.g. autocorrelation) do not affect the error statistics  
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Motivation (1) 

• Expectations about the ranking?  

• Ranking according to any global error statistic (e.g. RMSE) :  

1.  Simulation A    RMSE(A)=33.7  

2.  Simulation B ¹ Simulation C  RMSE(B)=RMSE(C)=47.6  
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Motivation (1) in the TFT literature 

V Model residuals autocorrelation affects microscopic traffic flow 

model calibration (Hoogendoorn and Hoogendoorn, 2010 )  

 

V Frequency -domain statistics make the most of the information 

about residuals autocorrelation in time -series data (Montanino et al., 

2012)  
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• Punzo and Simonelli, 2005, TRR  

Motivation (2) 
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• Punzo and Simonelli, 2005, TRR  

Motivation (2) 
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Motivation (2) in the TFT literature 

V Speed or spacing? (or acceleration…) 

V Many studies making use of one variable or the other, and some 

even of their combination (see e.g. Ossen and Hoogendoorn, 

2008; Kim and Mahmassani, 2011).  

V No sound mathematical explanation of results  

V Ranjiktar  et al. observed that calibration on speed provides values 

of error statistics after calibration lower than those from spacing  

V Punzo and Simonelli (2005) claimed that spacing is preferable to 

speed and provided an intuitive explanation  

V Ossen and Hoogendoorn (2007), showed that calibrating against 

speed some of the Gipps’ model parameters cannot be estimated  

V Kesting and Treiber (2008) also suggest the use of spacing and 

compare error measures (see also Hamdar  et al., 2015).  

V in the exploratory study of Punzo et al. (2012), the preference for 

spacing was confirmed through substantial empirical evidence.  
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Rationale (1) 

V Model residuals autocorrelation affects microscopic traffic flow 

model calibration (Hoogendoorn and Hoogendoorn, 2010 )  

 

V Frequency -domain statistics make the most of the information 

about residuals autocorrelation in time -series data (Montanino et al., 

2012)  

 

V Feasible approach in the time -domain: assigning weights to the 

residuals depending on their occurrence time → convolution of 

residuals and time 
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Rationale (2) 

• if we calculate discrepancy measures of the cumulative speed profiles 

A, B and C we obtain the ‘right’ ranking! 

• Ranking according to e.g. RMSE:  

1.  Simulation B RMSE(B)=907  

2.  Simulation C RMSE(C)=1387  

3.  Simulation A RMSE(A)=1673  
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Definitions (1) 

V Given a time -discrete representation of a variable ᾀὸ:  

 

 

 

V we define a time -discrete variable ὁ▓ as the cumulative sum of ὂ 
until ▓:  

 

 

 

Vᾀ  and   ᾀ  are, respectively, the real world observation and the 

simulated value of the variable ᾀ in Ὧ;  

 

V We define the model error or residual on the variables ᾀ and ώ as:  
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Definitions (2) 
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V Assuming that a simulation starts at time Ὧ= 0, with ‐ ‐ π the 

model error evolution for the variables ᾀ and  ώ can be derived 

recursively as follows :  
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Objective 

V As a discrepancy measure, let’s first assume the Sum of the Absolute 

Errors , SAE, that for our variables is expressed as:  

 

 

 

 

 

 

 
V We aim to derive a general model for the propagation of 

model errors from a variable ᾀ to its cumulative ώ, through 

the Sum of the Absolute Errors.  
 

ὛὃὉ   ὛὃὉ    
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Error propagation through SAE (1) 
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V To this aim, the  ὛὃὉ can be expressed as a function of ᾀ through a 

recursive application of:  

V That is:  

 

 

 

         As: 

 
 

 

 

 

VSumming up the left -  and the right -hand -side terms and rearranging:  
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Error propagation through SAE (2) 
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V Recalling the definition of ὛὃὉ and the one of convolution:  

 

 

 

 

 

 

V is the sought relationship between the error statistic calculated on 

the variable z, ὛὃὉ, and the same statistic calculated on its 

cumulative variable y , ὛὃὉ 
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Error propagation through SSE (1) 

ὛὛὉ   ὛὛὉ   

V Let’s assume the Sum of the Squared Errors , SSE, instead :  

 

 

 

V Following the same steps as before:  

 

 

 

 

 

V Summing up the terms on the two sides and rearranging:  
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Error propagation through SSE (2) 
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V Then , recalling the definition of the ὛὛὉ and the one of 

convolution, we can express the ὛὛὉ as a function of ‐ and Ὧ:  
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Physical interpretation (1) 
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speed profile (black 

solid line ) and three 
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(dashed/dotted lines ) 
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magnitude but shifted 

in time;  

 

V b) shows the four 

corresponding integral 

functions that is the 

travelled spaces  
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Physical interpretation (2) 

‘compensatory errors’ 
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a) 
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negative residuals of 

equal magnitude.  
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compensatory errors 

(dashed/dotted lines) and 

the actual speed profile 

(black solid line );  

V b) shows the 

corresponding travelled 

spaces.  
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Physical interpretation (3) 
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Specification for car-following models (1) 

V Let’s assume:  

• ◑▓ = ○▓ = speed of the follower vehicle at time Ὧ 

• ◐▓ = ●▓ = follower vehicle trajectory i.e . space travelled at time Ὧ  

V Given a general CF model (Wilson, 2008 ) :  

 

 

V CF model are usually solved with simple integration schemes (Treiber 

and Kanagaraj, 2015) :  
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Specification for car-following models (2) 
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V Following the same steps as before we obtain:  

• Forward Euler Č  

 

• Ballistic update  Č  

 

V That yield similar relationships as before:  

 

• Euler Č  

 

• Ballistic Č  
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Specification for macroscopic traffic 
flow models 

V Let’s assume: 

• ◑▓ = █■▫◌▓ = flow rate in interval Ὧ 

• ◐▓ = ╬◊□▓ = cumulative number of vehicles arrived until Ὧ  

V We have:  

 

 

 

V Same as the forward Euler integration scheme  

V The relationship between ὛὛὉ  and ὛὛὉ  is the same as the one 

between ὛὛὉ and ὛὛὉ 

V In a single link, at each instant, the sum of cumulative inflows 

and outflows gives the number of vehicles accumulated in the link 

at that instant, i.e. the link density 
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Implications on model validation 

 

  

V If a dynamic model is to be validated against a specific variable, it is 

preferable to calculate the statistic on the cumulative of the 

variable itself  

V In this way model residuals dynamics are taken into account  

V In case of car - following, validating models on the errors made on the 

space travelled implicitly takes into account the speed errors too, 

while the opposite is not true  

V Density is more meaningful then flows (note: if a direct 

measurement of density is not available, as usual, cumulative flows 

may suffer from accumulation of measurement errors)  

V two simulated flow profiles returning the same value for an error 

statistic might depict completely different evolutions of the traffic 

density on a link.  
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Implications on model calibration 

  

 { }VSSE min

V Calibrating a car - following model against speed or spacing, using 

the Sum of Squared Errors as measure of discrepancy, means 

minimizing the following objective functions, respectively:  

 

 

 

 

V Calibration on speed: optimal for speed and indeterminate for 

spacing 

V Calibration on spacing: optimal for spacing and suboptimal for 

speed 

V   
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Case study: car-following calibration (1) 
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V Cross-validation (Punzo and Simonelli, 2005):              

As either optimality is reached on speed or on space we can (only) 

evaluate the robustness of calibration results on one variable with 

respect to the other variable:  

 

 

 

where ὙὓὛὉὭȟ , with i, j  Í { s,  v}, is the Root Mean Square Error of 

the variable i obtained by running the model with the optimal 

parameters calibrated against the variable j .  
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Case study: car-following calibration (2) 

0 20% 40% 60% 80% 100% 120% 140% 160% 180% >=200%
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Percentage error (see legend)

F
re

q
u
e
n
c
y

Cross-validation after parameter calibration

 

 

[RMSE(s,b
v
) - RMSE(s,b

s
)] / RMSE(s,b

s
)  (mean=63%, std=60%, min=0%, max=502%)

[RMSE(v,b
s
) - RMSE(v,b

v
)] / RMSE(v,b

v
)  (mean=9%, std=12%, min=0%, max=131%) 

V Calibration of the Intelligent Driver Model (IDM) (Treiber et al., 2000 ) 

against both speed and inter -vehicle spacing for all the 2037 

trajectories in the I80 -1 ‘reconstructed’ NGSIM dataset (Montanino 

and Punzo, 2015):  
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Conclusions 

V Global error statistics keep no memory of the occurrence times of 

model errors, or of their order  

V this weakness may be solved by considering the convolution of model 

errors and time  

V a convolution of this kind can be achieved by replacing a time -

discrete variable by its cumulative in statistics as the SAE or the SSE 

V a general model for the propagation of model residuals in the above 

error statistics from a variable to its cumulative has been developed  

V The model yields mathematical relationships between the above error 

statistics applied to a variable and the same statistics applied to the 

cumulative of the variable itself  

V the obtained relationships are model - independent  

V If direct measurements of a cumulative variable are available (i.e. no 

measurement errors accumulation), in general, it is more meaningful 

to validate and calibrate against this variable than on its derivative  
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