ETH Hönggerberg , Zürich, June 17th 2016 IVT - Seminar

Speed or spacing? Cumulative variables, and convolution of model errors and time in traffic flow models validation and calibration

Vincenzo Punzo

University of Naples Federico II Department of Civil, Building and Environmental Engineering

Outlines

- Background and motivations
 - 1. Inadequacy of error statistics to measure the discrepancy between a model and the reality
 - 2. What measure of performance to adopt in calibration/validation
- Definitions
- Error propagation from a variable to its cumulative sum through SAE and SSE
- Physical interpretation
- Implications on model calibration and validation
- Case study on car-following model calibration
- Conclusions

Vincenzo Punzo, UNINA

IVT Seminar

Motivation (1)

- The measures of **discrepancy** between a simulation and the real world are at the basis of scientific modelling:
 - \checkmark model calibration and validation
- As for dynamic models, discrepancy is mainly measured on the interest variables time-series.
- Usual global error statistics: MAE, RMSE, RMSPE, Theil's U, etc.
 ✓ Hollander and Liu, 2008; Brackstone and Punzo, 2014; Buisson et al., 2014
- Common assumption: the temporal evolution of model residuals and their features (e.g. autocorrelation) do not affect the error statistics

Motivation (1)

- Expectations about the ranking?
- Ranking according to any global error statistic (e.g. RMSE):
 - 1. Simulation A

Vincenzo Punzo, UNINA

2. Simulation $B \equiv$ Simulation C

RMSE(A)=33.7 RMSE(B)=RMSE(C)=47.6

IVT Seminar

Motivation (1) in the TFT literature

- Model residuals autocorrelation affects microscopic traffic flow model calibration (Hoogendoorn and Hoogendoorn, 2010)
- Frequency-domain statistics make the most of the information about residuals autocorrelation in time-series data (Montanino et al., 2012)

Motivation (2)

Methodology: MOP choice (1)

- MOP must capture dynamics of phenomenon → time series of:
 - Speeds
 - Inter-vehicle spacings
 - Time headways

 MOP choice affects calibration results -> optimal values can be different for different MOPs

Transportation Research Board 84th Annual Meeting – 9-15/01/2005 Washington DC

• Punzo and Simonelli, 2005, TRR

Vincenzo Punzo, UNINA

IVT Seminar

Motivation (2)

• Punzo and Simonelli, 2005, TRR

Vincenzo Punzo, UNINA

IVT Seminar

Motivation (2)

• Punzo and Simonelli, 2005, TRR

Vincenzo Punzo, UNINA

IVT Seminar

Motivation (2) in the TFT literature

- Speed or spacing? (or acceleration...)
- Many studies making use of one variable or the other, and some even of their combination (see e.g. Ossen and Hoogendoorn, 2008; Kim and Mahmassani, 2011).
- ✓ No sound mathematical explanation of results
- Ranjiktar et al. observed that calibration on speed provides values of error statistics after calibration lower than those from spacing
- Punzo and Simonelli (2005) claimed that spacing is preferable to speed and provided an intuitive explanation
- Ossen and Hoogendoorn (2007), showed that calibrating against speed some of the Gipps' model parameters cannot be estimated
- ✓ Kesting and Treiber (2008) also suggest the use of spacing and compare error measures (see also Hamdar et al., 2015).
- ✓ in the exploratory study of Punzo et al. (2012), the preference for spacing was confirmed through substantial empirical evidence.

Rationale (1)

- Model residuals autocorrelation affects microscopic traffic flow model calibration (Hoogendoorn and Hoogendoorn, 2010)
- Frequency-domain statistics make the most of the information about residuals autocorrelation in time-series data (*Montanino et al.*, 2012)
- ✓ Feasible approach in the time-domain: assigning weights to the residuals depending on their occurrence time → convolution of residuals and time

$$(f * g)(t) = \int_{-\infty}^{+\infty} f(\tau) g(t - \tau) d\tau = \int_{-\infty}^{+\infty} f(t - \tau) g(\tau) d\tau$$
$$(f * g)[h] = \sum_{k=1}^{N} [h - k] g[k] \qquad (f * g)[N] = \sum_{k=1}^{N} [N - k] g[k]$$

Vincenzo Punzo, UNINA

IVT Seminar

Rationale (2)

if we calculate discrepancy measures of the cumulative speed profiles
 A, B and C we obtain the 'right' ranking!

Vincenzo Punzo, UNINA

IVT Seminar

Definitions (1)

✓ Given a time-discrete representation of a variable z(t):

$$z[k]^{def.} = z(k \cdot \Delta t) \quad \forall k \in \{0, \dots, N\}$$

✓ we define a time-discrete variable y[k] as the **cumulative sum** of **z** until **k**:

$$y[k] = \sum_{i=0}^{k} z[i]$$

- ✓ z_k^{obs} and z_k^{sim} are, respectively, the real world observation and the simulated value of the variable z in k;
- ✓ We define the model error or residual on the variables z_k and y_k as:

$$\varepsilon_k^Z = z_k^{sim} - z_k^{obs} \qquad \varepsilon_k^Y = y_k^{sim} - y_k^{obs}$$

Vincenzo Punzo, UNINA

Definitions (2)

✓ Assuming that a simulation starts at time k=0, with $\varepsilon_0^z = \varepsilon_0^y = 0$ the model error evolution for the variables z_k and y_k can be derived recursively as follows:

Vincenzo Punzo, UNINA

IVT Seminar

Objective

✓ As a discrepancy measure, let's first assume the Sum of the Absolute Errors, SAE, that for our variables is expressed as:

$$SAE^{Z} = \sum_{k=1}^{N} |\epsilon_{k}^{Z}|$$
 $SAE^{Y} = \sum_{k=1}^{N} |\epsilon_{k}^{Y}|$

✓ We aim to derive a general **model for the propagation of model errors** from a variable z_k to its cumulative y_k , through the *Sum of the Absolute Errors*.

Error propagation through SAE (1)

✓ To this aim, the SAE^{Y} can be expressed as a function of z_{k} through a recursive application of: $arepsilon_k^Y = \sum_{i=1}^{\kappa} arepsilon_i^Z$ That is: $\left|\varepsilon_{1}^{Y}\right| = \left|\varepsilon_{1}^{Z}\right|$ $\left|\varepsilon_{1}^{Y}\right| \leq \left|\varepsilon_{1}^{Z}\right|$ $\left|\varepsilon_{2}^{Y}\right| \leq \left|\varepsilon_{1}^{Z}\right| + \left|\varepsilon_{2}^{Z}\right|$ $\left|\varepsilon_{2}^{Y}\right| = \left|\varepsilon_{1}^{Z} + \varepsilon_{2}^{Z}\right|$ As: $\left|\sum_{i=1}^{k} \varepsilon_{i}^{Z}\right| \leq \sum_{i=1}^{k} \left|\varepsilon_{i}^{Z}\right|$ $\left|\varepsilon_{3}^{Y}\right| = \left|\varepsilon_{1}^{Z} + \varepsilon_{2}^{Z} + \varepsilon_{3}^{Z}\right|$ $\left|\mathcal{E}_{3}^{Y}\right| \leq \left|\mathcal{E}_{1}^{Z}\right| + \left|\mathcal{E}_{2}^{Z}\right| + \left|\mathcal{E}_{3}^{Z}\right|$... $\left| \mathcal{E}_{k}^{Y} \right| \leq \sum_{i}^{k} \left| \mathcal{E}_{i}^{Z} \right|$ $\left| \varepsilon_{k}^{Y} \right| = \left| \sum_{i=1}^{k} \varepsilon_{i}^{Z} \right|$

Summing up the left- and the right-hand-side terms and rearranging:

$$SAE^{Y} \leq \sum_{k=1}^{N} (N-k+1) \cdot \left| \varepsilon_{k}^{Z} \right| = \sum_{k=1}^{N} \left| \varepsilon_{k}^{Z} \right| + \sum_{k=1}^{N} (N-k) \cdot \left| \varepsilon_{k}^{Z} \right|$$

Vincenzo Punzo, UNINA

IVT Seminar

Error propagation through SAE (2)

$$SAE^{Y} \leq \sum_{k=1}^{N} \left(N-k+1\right) \cdot \left|\varepsilon_{k}^{Z}\right| = \sum_{k=1}^{N} \left|\varepsilon_{k}^{Z}\right| + \sum_{k=1}^{N} \left(N-k\right) \cdot \left|\varepsilon_{k}^{Z}\right|$$

Recalling the definition of SAE^Z and the one of convolution:

$$SAE^{Y} \leq SAE^{Z} + (k * |\varepsilon_{k}^{Z}|)[N]$$

✓ is the sought relationship between the error statistic calculated on the variable z, SAE^{Z} , and the same statistic calculated on its cumulative variable y, SAE^{Y}

IVT Seminar

Error propagation through SSE (1)

✓ Let's assume the *Sum of the Squared Errors*, *SSE*, *instead*:

$$SSE^{Z} = \sum_{k=1}^{N} (\epsilon_{k}^{Z})^{2}$$
 $SSE^{Y} = \sum_{k=1}^{N} (\epsilon_{k}^{Y})^{2}$

✓ Following the same steps as before:

Summing up the terms on the two sides and rearranging:

$$SSE^{Y} = \sum_{k=1}^{N} (N - k + 1) \cdot (\varepsilon_{k}^{Z})^{2} + 2\sum_{k=1}^{N-1} \sum_{i=k+1}^{N} (N - i + 1) \cdot (\varepsilon_{k}^{Z} \cdot \varepsilon_{i}^{Z})$$
$$= \sum_{k=1}^{N} (\varepsilon_{k}^{Z})^{2} + \sum_{k=1}^{N} (N - k) \cdot (\varepsilon_{k}^{Z})^{2} + 2\sum_{k=1}^{N-1} \varepsilon_{k}^{Z} \cdot \sum_{i=k+1}^{N} (N - i + 1) \cdot \varepsilon_{i}^{Z}$$

Vincenzo Punzo, UNINA

IVT Seminar

Error propagation through SSE (2)

$$SSE^{Y} = \sum_{k=1}^{N} (N - k + 1) \cdot (\varepsilon_{k}^{Z})^{2} + 2\sum_{k=1}^{N-1} \sum_{i=k+1}^{N} (N - i + 1) \cdot (\varepsilon_{k}^{Z} \cdot \varepsilon_{i}^{Z})$$
$$= \sum_{k=1}^{N} (\varepsilon_{k}^{Z})^{2} + \sum_{k=1}^{N} (N - k) \cdot (\varepsilon_{k}^{Z})^{2} + 2\sum_{k=1}^{N-1} \varepsilon_{k}^{Z} \cdot \sum_{i=k+1}^{N} (N - i + 1) \cdot \varepsilon_{i}^{Z}$$

✓ Then, recalling the definition of the SSE^{Z} and the one of convolution, we can express the SSE^{Y} as a function of ε_{k}^{Z} and k:

$$SSE^{Y} = SSE^{Z} + \left(k * \left(\varepsilon_{k}^{Z}\right)^{2}\right) \left[N\right] + 2\sum_{k=1}^{N-1} \varepsilon_{k}^{Z} \cdot \sum_{i=k+1}^{N} \left(N-i+1\right) \cdot \varepsilon_{i}^{Z}$$

Vincenzo Punzo, UNINA

IVT Seminar

Physical interpretation (1)

simulated profiles (dashed/dotted lines) that present an error that is the same as for magnitude but shifted in time;

 b) shows the four corresponding integral functions that is the travelled spaces

Physical interpretation (2) 'compensatory errors'

- Speed profiles and space travelled with positive and negative residuals of equal magnitude.
- a) shows three
 simulated speed
 profiles with different lag
 widths between the two
 compensatory errors
 (dashed/dotted lines) and
 the actual speed profile
 (black solid line);
- b) shows the corresponding travelled spaces.

Vincenzo Punzo, UNINA

IVT Seminar

Physical interpretation (3)

 Negative residual drifting apart from the positive one

 SSE^{Z} is insensitive to the lag width

 $(N - \kappa) * (\varepsilon^{Z} [\kappa])^{2}$ weights more the early errors than the late ones (i.e. convolution term)

$$2\sum_{k=1}^{N-1} \varepsilon_k^Z \cdot \sum_{i=k+1}^N (N-i+1) \cdot \varepsilon_i^Z$$
 sharply

increases with lag

Vincenzo Punzo, UNINA

IVT Seminar

Specification for car-following models (1)

- ✓ Let's assume:
- $\mathbf{z}_{k} = \mathbf{v}_{k} = \mathbf{speed}$ of the follower vehicle at time k
- $y_k = x_k$ = follower vehicle **trajectory** i.e. **space travelled** at time k
- ✓ Given a general CF model (Wilson, 2008):

$$a_k = f(s_k, v_k, \Delta v_k, \beta)$$

✓ CF model are usually solved with simple integration schemes (*Treiber* and Kanagaraj, 2015):

$$\begin{cases} v_{k+1} = v_k + a_k \cdot \Delta t & \text{(a)} \\ x_{k+1} = x_k + v_{k+1} \cdot \Delta t & \text{Eulerian} & \text{(b)} \\ or & & \\ x_{k+1} = x_k + \frac{v_{k+1} + v_k}{2} \cdot \Delta t & \text{Ballistic} & \text{(c)} \end{cases}$$

Vincenzo Punzo, UNINA

IVT Seminar

Specification for car-following models (2)

- ✓ Following the same steps as before we obtain:
- Forward Euler →

Ballistic update →

$$\varepsilon_k^X = \Delta t \cdot \sum_{i=1}^{N} \varepsilon_i^V$$
$$\varepsilon_k^X = \Delta t \cdot \left(\sum_{i=1}^{k-1} \varepsilon_i^V + \frac{\varepsilon_k^V}{2}\right)$$

<u>k</u>

✓ That yield similar relationships as before:

• Euler
$$\rightarrow$$
 $SSE^X = \Delta t^2 \cdot \left[SSE^V + \left(k * \left(\varepsilon_k^Z\right)^2\right) \left[N\right] + 2\sum_{k=1}^{N-1} \varepsilon_k^V \cdot \sum_{i=k+1}^N \left(N-i+1\right) \cdot \varepsilon_i^V\right]$

• Ballistic
$$\Rightarrow$$
 $SSE^X = \Delta t^2 \cdot \left[\frac{SSE^V}{4} + \left(k * \left(\varepsilon_k^Z\right)^2\right)\left[N\right] + 2\sum_{k=1}^{N-1} \varepsilon_k^V \cdot \sum_{i=k+1}^N \left(N-i+\frac{1}{2}\right) \cdot \varepsilon_i^V\right]$

Vincenzo Punzo, UNINA

IVT Seminar

Specification for macroscopic traffic flow models

- ✓ Let's assume:
- $z_k = flow_k = flow rate$ in interval k
- y_k = cum_k = cumulative number of vehicles arrived until k
- ✓ We have:

$$Y = cum = \sum_{i=1}^{k} (flow_i \cdot \Delta t)$$

- \checkmark Same as the forward Euler integration scheme
- ✓ The relationship between SSE^{cum} and SSE^{flow} is the same as the one between SSE^X and SSE^V
- In a single link, at each instant, the sum of cumulative inflows and outflows gives the number of vehicles accumulated in the link at that instant, i.e. the link density

Implications on model validation

- If a dynamic model is to be validated against a specific variable, it is preferable to calculate the statistic on the cumulative of the variable itself
- ✓ In this way model residuals dynamics are taken into account
- In case of car-following, validating models on the errors made on the space travelled implicitly takes into account the speed errors too, while the opposite is not true
- Density is more meaningful then flows (note: if a direct measurement of density is not available, as usual, cumulative flows may suffer from accumulation of measurement errors)
- ✓ two simulated flow profiles returning the same value for an error statistic might depict completely different evolutions of the traffic density on a link.

Vincenzo Punzo, UNINA

IVT Seminar

Implications on model calibration

 Calibrating a car-following model against **speed** or **spacing**, using the *Sum of Squared Errors* as measure of discrepancy, means minimizing the following objective functions, respectively:

$$\min\left\{SSE^{V}\right\}$$

$$\min\left\{SSE^{X}\right\} = \min\left\{SSE^{V} + \left(k * \left(\varepsilon_{k}^{Z}\right)^{2}\right)\left[N\right] + 2\sum_{k=1}^{N-1} \varepsilon_{k}^{V} \cdot \sum_{i=k+1}^{N} \left(N-i+1\right) \cdot \varepsilon_{i}^{V}\right\}\right\}$$

- Calibration on speed: optimal for speed and indeterminate for spacing
- Calibration on spacing: optimal for spacing and suboptimal for spacing
 <u>speed</u>

Vincenzo Punzo, UNINA

IVT Seminar

Case study: car-following calibration (1)

 Cross-validation (Punzo and Simonelli, 2005): As either optimality is reached on speed or on space we can (only) evaluate the robustness of calibration results on one variable with respect to the other variable:

$$\frac{RMSE(s,\beta_V) - RMSE(s,\beta_S)}{RMSE(s,\beta_S)}$$
(a)
$$\frac{RMSE(v,\beta_S) - RMSE(v,\beta_V)}{RMSE(v,\beta_V)}$$
(b)

where $RMSE(i, \beta_j)$, with $i, j \in \{s, v\}$, is the Root Mean Square Error of the variable *i* obtained by running the model with the optimal parameters calibrated against the variable *j*.

Vincenzo Punzo, UNINA

Case study: car-following calibration (2)

 Calibration of the Intelligent Driver Model (IDM) (Treiber et al., 2000) against both speed and inter-vehicle spacing for all the 2037 trajectories in the I80-1 'reconstructed' NGSIM dataset (Montanino and Punzo, 2015):

Vincenzo Punzo, UNINA

IVT Seminar

Conclusions

- Global error statistics keep no memory of the occurrence times of model errors, or of their order
- this weakness may be solved by considering the convolution of model errors and time
- a convolution of this kind can be achieved by replacing a timediscrete variable by its cumulative in statistics as the SAE or the SSE
- ✓ a general model for the propagation of model residuals in the above error statistics from a variable to its cumulative has been developed
- The model yields mathematical relationships between the above error statistics applied to a variable and the same statistics applied to the cumulative of the variable itself
- ✓ the obtained relationships are model-independent
- ✓ If direct measurements of a cumulative variable are available (i.e. no measurement errors accumulation), in general, it is more meaningful to validate and calibrate against this variable than on its derivative

Main references

- V. Punzo, M. Montanino, 2016. Speed or spacing? Cumulative variables, and convolution of model errors and time in traffic flow models validation and calibration. *Transportation Research Part B 91, 21-33*.
- M. Montanino, V. Punzo, 2015. Trajectory data reconstruction and simulationbased validation against macroscopic traffic patterns. *Transportation Research Part B 80, 82-106*.
- Punzo V., M. Montanino and Ciuffo B., 2015. Do we really need to calibrate all the parameters? Variance-based sensitivity analysis to simplify microscopic traffic flow models. *IEEE Transactions on Intelligent Transportation Systems, 16 (1), 184-193*.
- MULTITUDE. COST Action TU0903 Methods and tools for supporting the Use caLibration and validaTIon of Traffic simUlation moDEls. <u>www.multitude-project.eu</u>.

Contacts:

Vincenzo Punzo University of Naples Federico II, Italy vinpunzo@unina.it

Vincenzo Punzo, UNINA

IVT Seminar