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1. Introduction

Traffic analysis and forecasting is crucial in the development and improve-

ment of the transport network of cities and countries. Nowadays this is often

done using computer simulations of traffic flow. There are many techniques

that aim to describe the traffic with some formal processes or equations for

example probabilistic simulation using statistical data, partial differential

equations similar to fluid dynamics, and one of currently most used tech-

nique microscopic simulation that are based on the interactions between the

individuals. The chair of Transport Systems Planning and Transport Telem-

atics at the Institute for Land and Sea Transport Systems of the Technische

Universität Berlin, led by Prof. Dr. Kai Nagel, and the chair of Trans-

port Planning at the Institute for Transport Planning and Systems (IVT)

of the Swiss Federal Institute of Technology Zurich, led by Prof. Dr. Kay

W. Axhausen, developed a toolbox which simulates large-scale agent-based

transportation problems and is constructed in a modular way such that is

it easily adaptable to many scenarios. This toolbox, named MATSim, is an

open-source project in active development and its modular structure per-

mits the implementation of new modules for improving the simulation, or

modelling an agent-behaviour with a different algorithm.

Normally MATSim can run on any modern laptop for small scenarios, but

for large scenarios the simulation outputs a huge amount of data and requires

more powerful computers. Some well-investigated scenarios concern the cities

of Zürich and Berlin and due to the size of these cities, the computations

need several hours or days. MATSim’s core is a randomized algorithm that

converges to an equilibrium between all agents such that each agent ends with

a good time schedule and a routing plan for the day. The time needed for

the computations depends largely on the convergence speed of this algorithm,

the optimization of the convergence rate is therefore an important task in

the development of MATSim. This project will focus on the mathematical

development of a new strategy module which improves the convergence and
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not on a better implementation of the algorithms already used.

The new modules will be based on the idea that the strategies for each

agent don’t have to be fixed with some probabilities: the module relaxed the

fact that the probabilities are constant during the whole iteration process,

the probabilities will depend linearly of the number of iterations with some

parameters that will need to be determined. The optimization problem will

lead to an analysis of the importance of the SelectExpBeta module for the

evolutionary algorithm.
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2. MATSim

The toolbox MATSim was designed in order to offer a very flexible tool for

the simulation of agent-based systems. Is is currently used mainly on the

traffic network of Zurich and its surrounding environment, also on the traffic

network of Berlin and Brandenburg state, the city of Toronto (Canada), the

province of Gauteng (South Africa) and even in an emergency scenario of

the evacuation of Padang (Indonesia) caused by a tsunami. Zurich was the

most interesting scenario from the start since precise statistical data for the

network and the population were already available, and since MATSim is

developed jointly by the Swiss Federal Institute of Technology of Zurich and

the Technische Universität Berlin.

This term projects aims to optimize the convergence speed of MATSim’s

evolutionary algorithm by implementing a new strategy module. The sce-

nario of Zurich is far too complex to run many tests, therefore it was more

simple to begin with an artificial scenario (Equinet) and later with the Berlin

scenario. This scenario will be described in the section 2.1.1.

Generally, a MATSim simulation will need some input files (network,

plans for the agents, objective function for the agents) which will be used to

simulate the behaviour of agents on a network. This behaviour is represented

as a list of events for each agents consisting of time departure and arrival,

routes that the agents will use, mode choice, and other data that depend

on the scenario. The aim of the simulation is to output plans and schedules

for each agents such that no agents would like to change his mind and find

another schedule or route. This equilibrium is nearly related to the Nash

Equilibrium: in a Nash Equilibrium, each agent cannot improve his objec-

tive function by changing his choices independently of the other agents. In

MATSim each agents is supposed to have a perfect knowledge of the other

agents plans and of all details of the network. This assumption is highly

non-realistic and can be changed by creating a mental map of the knowledge

that each agent has, as described in [Bal07].

3



Optimization of the convergence of an agent-based simulation

January 2011

MATSim is written in Java and is distributed under the Gnu Public

License, therefore it is capable of running on the main existing operating

systems (Windows, Linux, Mac OS). Besides this convenient portability, it is

also open source and allows to implement new modules to run more specific

scenarios or to improve the performance of MATSim.

2.1 Input

The input files are written in xml format and permits a modularity in the

tools used: it is easy to define new functionalities or to change the existing

parameters without modifying any code of MATSim. Usually the input files

consists of a network description file, a list of plans of activities for each

agents with an initial schedule for the day, and a configuration file which

gathers all links to the file and all important values for the simulation.

2.1.1 Network

A description of the Berlin scenario is presented in [Bal07], we will only

present the main ideas of the encoding of a network for MATSim. The

network file contains two different important entities: there are nodes and

links. The network is hence a special directed graph with many attributes

for each edge: each edge correspond to a link between two nodes, it has

a length, a free speed limitation, a flow capacity (how many vehicles can

pass through a link in a defined interval), and some additional parameters

for the number of lanes and if it is a oneway road or not. The scenario of

Berlin was preferred over the simple Equinet scenario, but due to its size the

scenario was reduced to one percent of its population and to keep a realistic

network, the flow capacities were also reduced to two percent. The "one-

percent" reduction of the population is set by deleting agents in the initial

plans file. For all links the flow capacity factor and storage capacity factor

for such scaling are defined in the configuration file by

4



Optimization of the convergence of an agent-based simulation

January 2011

<param name = " flowCapacityFactor" value="0.02" />

<param name = " storageCapacityFactor" value="0.05" />

It is easy to transform this scenario into a congested case by decreasing both

values. For an extreme case of congestion, the parameters were divided by

ten.

2.1.2 Plans

The plans consists of a list of agents with their corresponding activities for a

day. These plans are generated randomly prior to the use of the simulation

with MATSim since a synthetic population can be generated once and used

many times. The data comes usually from national institute of statistics or

from more local censuses. A typical description of an individual is as follows:
<person id=" 66128" sex ="m" age ="20" license =" yes" car_avail ="always " employed ="yes ">

<plan age ="0" selected ="yes ">

<act type ="home " link ="1921 " x="459.71 " y=" 582.10" start_time ="00 :00 "

dur="08 :00 " end_time ="08 :00 " ref_id ="6" />

<leg num ="0" mode ="car " dep_time ="08 :00 " trav_time ="00 :33 " arr_time ="08 :33 ">

<route trav_time ="00 :33 ">

1880 1881 1884 9322 1887 1886 1968 1966 9333 630053 630153

</ route >

</leg >

<act type ="work " link ="13816" x=" 456.93 " y="58.11" start_time ="08 :00 "

dur="08 :00 " end_time ="24 :00 " ref_id ="917 " />

<leg num ="1" mode ="car " dep_time ="16 :33 " trav_time ="00 :33 " arr_time ="17 :07 ">

<route trav_time ="00 :33 ">

630053 630054 630055 1881 1880 1879

</ route >

</leg >

<act type ="home " link ="1921 " x="459.71 " y=" 582.10" start_time ="11 :33 "

dur="08 :00 " end_time ="24 :00 " ref_id ="6" />

</ plan >

</person >

As one can see, an agent is described by some personal attributes such as

the gender, the age, the employment status and if this person has the possi-

bility to use a car (licence and car available). Moreover one plan for the day

is assigned to this person, each activity is defined as "home", "work", "school",

"leisure" or "shopping" at a certain location and with a given timespan cor-

responding to the opening and closing hours of each facilities. Between each

activity there is a travel defined by a mode (car, walk, public transports...),

a departure and arrival time and an initial route.
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The routes and the time schedule of each agent will be modified through-

out the iterations of MATSim’s evolutionary algorithm.

2.1.3 Configuration file

• Utility function: Each agent is now basically described, but how does

these agents choose between their plans? How to quantify each plans

with a score that represent truthfully the objectives of an agent? The

choice and scores in MATSim are based on Discrete Choice Theory, that

is there is a set of alternatives 1, . . . , n for each agent and they have to

choose the best alternative. Each alternative i has a corresponding utility

function Ui, and an agent select alternative i if for all j: Ui ≥ Uj . The

utility function is usually defined by a linear combination of parameters

and a random term: Ui = βTi + εi, where εi can be chosen as a normal

distribution (Probit model), an extreme value distribution (Logit model)

or other distributions. The variables β are estimated by census data of a

given population, and the used values are defined as follows:

<param name=" lateArrival" value=" -18" />

<param name=" earlyDeparture" value=" -0" />

<param name=" performing" value="+6" />

<param name=" traveling" value=" -6" />

<param name=" waiting" value=" -0" />

Therefore an early departure does not cost anything for the agent but

prevents him from increasing his utility by the performing of an activity.

• Memory: each agent keeps a pool of plans of a certain size so that there is

a smaller risk to lose a "good" plan by creating a new one (and forget the

previous one). The memory has a fixed size N and each agent can either

create a new plan or select an existing plan at each iteration. If an agent

creates a new plan, there will be N + 1 plans, hence the worst plan will be

deleted. A value N = 5 is usually taken as a good compromise between a

large enough memory for the agent and a reasonable consumption of disk

storage:
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<param name=" maxAgentPlanMemorySize" value="5" />

• Learning: at each iteration, the selected plan of an agent will be evalu-

ated and obtain a score Snew. The effective score will be calculated by

S = αSnew + (1 − α)Sold where α is a learning parameter. A value of

0 would mean that the score will remain unchanged during the process,

a value of 1.0 would mean that the agent does not care about the pre-

vious score. For this project the following value will be used: <param

name="learningRate" value="1.0" />.

• Module: the strategies that will be used in the iteration process can be

initialized in the configuration file. This is very useful since one needs only

to change the config.xml file in order to change the parameter that will be

used:

<module name=" changeStrategyProbabilitiesOverTime ">

<param name="routing0" value="0.23" />

<param name="routing1" value="0.05" />

<param name="routing2" value="0.05" />

<param name=" timeMutator0" value="0.77" />

<param name=" timeMutator1" value="0.95" />

<param name=" timeMutator2" value="0.95" />

<param name=" firstStrategyChangeAtIteration " value="30" />

<param name=" secondStrategyChangeAtIteration " value="100" />

</module >

The above depicted parameters are for the newly implemented module

that will be described in the next chapter.
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2.1.4 Strategy modules

TimeMutator

This strategy module is very simple and just shift the activities end time

randomly by some value taken uniformly in the interval [−30, +30] minutes.

Because of the randomness of this procedure there is no certainty that this

module will increase the score of an individual, it could even drive the score

from its equilibrium to a chaotic state. The main interest in this module

is its simplicity which implies that it is very fast to compute and does not

increase much of the time needed to perform one iteration of MATSim-EA.

ReRouting

There are several modules implemented that modifies the routes taken by

some agents based on different techniques to compute the routes: Dijkstra

algorithm and A∗-algorithm. These modules are very important since an

agent will not have the same travel time on a empty network and on an

congested network, therefore after this agents knows also the route of the

other agents he can decrease his travel time by choosing another route which

is less congested. Obviously if a majority of agents performs a re-routing

there will be oscillations in the search of good routes since the congested

area will vary much. Hence one can expect that a too large fraction of re-

routing is useless in order to decrease the number of iterations. There exists

several ways to compute a shortest route on a weighted graph, but all these

algorithms takes much more time than the previous module since the number

of calculation required will strongly depend on the size of the network.
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SelectExpBeta

This module chooses randomly a plan among the already existing plans

with a probability depending on the score of each plan, that is the higher the

score the higher the probability to be selected.

BestSelect

Similarly to SelectExpBeta this module selects a plan in the already ex-

isting plans of an agent, but contrary to the previous module it will always

select the plan with the best score.

Planomat

Due to the inefficiency of the TimeMutator module caused by its random-

ness, a new module has been implemented: Planomat employs a Genetic

Algorithm that computes better time schedule for an agent and runs also

some rerouting procedure. This module decreases the number of iteration

of MATSim-E, but does not improve much of the computation time needed

since one needs to perform a genetic algorithm-based optimization for each

agents.

2.2 Ouput

The output is composed of general files about the run of MATSim and some

files for each iteration of the simulation. There is a log file that saves all

the tasks performed and all the main results, there are some data files that

save the average, worst, best and executed score and that save the average,

best and worst travel distances for each agent. These values can also be seen

directly on a graph in the pictures of the output. At each iteration, all the
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plans with the chosen routes and schedule are saved so that the simulation of

the behaviour of the agents can be analysed and observed at each iteration.

2.3 Procedure

The core of MATSim is the MATSim-Evolutionary Algorithm (MATSim-

EA) which is similar to a genetic algorithms by its iterative procedure and

its randomness, but with some additional features and not exactly the same

iterative way to improve the objective function. In MATSim, each agent has

its own plan and will not share them with other agents but at each iteration

the environment for each agent is updated according to the choices of the

agents in the previous step and the agent will create, or select among his

pool of plans, a new plan in order to improve his score.

First of all, the agents defined by the input files have all a schedule for

their activities of the day and an initial guess for the plan (which represent

how each agent will accomplish his travels). These plan will be evaluated

by the simulation in MATSim-EA. The simulation is based on a stochastic

queue-based approach: each link works as a queue, the first coming in is the

first going out. Each link has a fixed storage capacity based on its length,

so a queue can create congestion if the traffic is to high on a single link.

After the simulation, each agent’s plan gets scored according to the utility

function defined in the configuration file. At the next iteration, agents will

select randomly a plan in their memory or create a new plan using one of

the strategy module. The network load is updated with the data of the last

iteration, and therefore the re-routing will avoid the congested areas and

improve the time needed for the travels. If an agent has more plans than the

allowed size of the memory, the worst plan (in terms of score) is deleted. At

the end of each iteration, the events (routes taken and timetables) are saved

in an output file.

The general procedure can be seen in the following graph. Each arrow

represent the order of execution. For more details on the structure of MATsim
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see [Bal07] and [Mei10].

Figure 1: Diagram of the structure of MATSim

Traffic Simulation

Route,

Schedule

Network

Load

Population

Activities

Generation Network

Synthetic

Population

Generation

Census

Facility locations,

Opening hours

Plan

Scoring

Utility

Function

EA

Input

EventsPlansScorestats

Output

11





Optimization of the convergence of an agent-based simulation

January 2011

3. Iteration-dependent probabilities

One of the first idea for a new strategy module is to remove the constraint that

the probabilities for the strategy choice are fixed during the whole process:

it could be useful to have large probabilities at the beginning since we are

far from the equilibrium and a lot of agents have to change their strategies,

we also would like to have small probabilities at the end because we want to

obtain a stationary state (equilibrium) which cannot be true if we ask too

many of the agents to change their plans.

The aim is to simulate the Berlin scenario with the same strategies mod-

ules as in [Apt10] but with some probabilities that will depend of the itera-

tion number.

3.1 Configuration

At the beginning of the work, it was planned to simulate the Equinet scenario

which is a very basic network. The principal interests in this scenario is its

small size which implies short simulations and the symmetric construction of

the network which makes this scenario very precisely controllable.

After some test on the cluster of computers of the ETHZ, Brutus, the

simulation of a more realistic scenario was selected: for all tests the Berlin

scenario reduced to 1% of its population and 2% of its flow capacity is used

(except for the analysis of congested scenario where the flow capacity is

decreased).

3.1.1 New module

The module changeStrategyProbabilitiesOverTime is the main focus in

the next chapter and corresponds to a distribution of probabilities for a

selection of strategy modules. Each module is selected randomly according
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to a linear spline function. The module has 8 parameters: each probability

fraction is represented as a spline of 3 lines, the first line is drawn between 0

and C1, the second line between C1 and C2, the third one between C2 and the

last iteration number. The spline is defined by its values at iteration number

0, C1, C2 with respectively the numbers T0, T1, T2 for the TimeMutator

module, or R0, R1, R2 for the ReRouting module. There is no need to

specify the probabilities for the SelectExpBeta module since the sum of the

probabilities should always be one.

Figure 2: Parameters for the new module
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For example the probability pT of the TimeMutator strategy is given by

pT (n) =























T0 ·
(

1 − n
C1

)

+ T1 · n
C1

n < C1,

T1 ·
(

1 − n−C1

C2−C1

)

+ T2 · n−C1

C2−C1

C1 ≤ n < C2,

T2 n ≥ C2,

where T0 corresponds to the value timeMutator0, T1 to the value timeMutator1,
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T2 to the value timeMutator2, C1 is the number corresponding to the iter-

ation number of the first spline change firstStrategyChangeAtIteration

and C2 to the value secondStrategyChangeAtIteration.

3.1.2 Main settings

Usually, the values for the probabilities are 0.1 for the ReRouting module,

0.1 for the TimeMutator module and 0.8 for a selection module like Select-

ExpBeta or BestScore.

Figure 3: Usual settings
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In [Apt10] there is an experimental proof that a value pβ = 0 leads to

a faster convergence. After his analysis for the module SelectExpBeta, he

showed that the probability for the rerouting should be small (approxima-

tively pR = 0.1) and that the TimeMutator module can have a probability

pT = 0.9.
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Figure 4: Optimal constant settings from [Apt10]
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The idea for the new strategy module is that perhaps the agents need

some module more than the other at the beginning whereas at the end the

other modules increase better the score. The first tested configuration is a

guess that the module SelectExpBeta is more useful at the end of the run of

MATSim than at the beginning.
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Figure 5: First idea for iteration-dependent probabilities
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The output of the Berlin scenario with this configuration did result in a

lower score in comparison with the one obtained previously but converged

much faster than the usual settings. As mentioned in [Apt10], the Select-

ExpBeta module is almost useless in order to increase the convergence speed

and the TimeMutator module should have the largest share. In order to

estimate how the average score varies with the different probabilities, an ex-

perimental design will be tested and will lead to a regression model for the

value of the average score.

3.2 Experimental design

The simulation are based on the Berlin scenario reduced to 1% if its pop-

ulation and 2% of its flow capacities. It needs approximately 4 hours on a

private computer1 for 100 iterations. Therefore heuristics such as genetic

algorithms are a bad choice for the optimization of a parameter since these

1Dual-core processor T4200 2.0 GHz, 4GB RAM
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algorithms need a large sample size and number of iterations to produce a

satisfactory result. Experimental designs are very well adapted for the prob-

lems which cost much in time and computation power. The technique of the

experimental design was originally used in agriculture since it takes some-

times one year before an experiment gives the results (plants breeding). The

history and analysis of experimental design can be seen in [GG76].

3.2.1 Configuration

• Ri for i = 0, 1, 2 represent the probability that the strategy module choose

the ReRouting strategy at iteration Ci, for the other iterations we just

use a linear interpolation between those strategies. We have the bounds

0 ≤ Ri ≤ 1.

• Mi for i = 0, 1, 2 represent the probability that the strategy module choose

the TimeMutator strategy at iteration Ci, for the other iterations we just

use a linear interpolation between those strategies. We have the bounds

0 ≤ Mi ≤ 1 − Ri.

• C0 = 0 is defined implicitly, C1 and C2 are the number of iterations for

the first and second changes in the strategy module. We have the bounds

C0 = 0 ≤ C1 ≤ C2 ≤ 100 if the maximum number of iterations is fixed to

100.

The experimental design was set so that it fulfils the conditions C1 < C2,

and Ri + Mi ≤ 1 for i = 0, 1, 2. As a first guess to optimize the speed

of convergence, the range of values are near the usually taken values, i.e.

pT = 0.1 and pR = 0.1.

As an estimate for the convergence speed, we will define f30 to be the

average of the average value of the plans of all agents at iteration 30. This can

be seen as a good reference for a compromise between convergence speed and

the maximum score obtained at equilibrium, since the aim of the optimization
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is to have a faster convergence but without a significant decrease in the

maximum score, otherwise the optimized parameters would not be helpful.

3.2.2 Results

The 41 configurations of the orthogonal experiment were constructed so that

the values respect the bounds given above. The same table 1 contains the

values of f30 of the output of MATSim, and the error of the first linear

regression.

3.2.3 Regression and Maxima

Linear Model

The first investigated model for a regression assumes that all parameters

are independent, i.e. there is no interaction terms, and the model should be

simple. Therefore we want to find a function f which approximates f30 using

a linear model:

f = a0 +a1 ·R0 +a2 ·R1 +a3 ·R2 +a4 ·M0 +a5 ·M1 +a6 ·M2 +a7 ·C1 +a8 ·C2.

For further convenience we will write

~x = (1, R0, R1, R2, M0, M1, M2, C1, C2),

and

~a = (a0, a1, a2, a3, a4, a5, a6, a7, a8).

Therefore our model becomes

f = ~a~xT .
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Table 1: Configuration and results of the experimental design

R0 R1 R2 M0 M1 M2 C1 C2 f30 linear error
0.01 0.01 0.01 0.01 0.01 0.01 10 30 94.1729 -14.098
0.01 0.01 0.10 0.05 0.01 0.05 10 50 107.9107 -2.151
0.01 0.01 0.10 0.05 0.05 0.05 20 30 117.6497 4.307
0.01 0.01 0.01 0.10 0.05 0.01 10 70 118.6562 6.043
0.01 0.05 0.10 0.30 0.05 0.20 20 90 125.8488 -0.440
0.01 0.05 0.20 0.05 0.10 0.01 30 70 121.1412 6.556
0.01 0.05 0.05 0.01 0.01 0.05 30 90 100.4642 -8.917
0.01 0.10 0.10 0.20 0.20 0.20 10 50 128.0114 -1.847
0.01 0.10 0.05 0.05 0.10 0.10 50 70 119.8302 0.423
0.01 0.20 0.05 0.01 0.30 0.10 20 50 127.7462 1.467
0.01 0.20 0.01 0.01 0.20 0.10 20 70 126.5260 5.250
0.01 0.30 0.20 0.10 0.30 0.05 30 50 127.4280 -3.884
0.05 0.01 0.01 0.01 0.05 0.10 30 50 112.1929 -1.604
0.05 0.01 0.10 0.05 0.30 0.10 30 90 126.1508 1.148
0.05 0.01 0.05 0.05 0.20 0.05 20 30 124.8817 4.087
0.05 0.05 0.05 0.01 0.01 0.05 10 70 106.7470 -2.395
0.05 0.05 0.10 0.10 0.10 0.10 10 50 125.2134 6.459
0.05 0.05 0.20 0.30 0.20 0.10 10 30 127.7564 -4.658
0.05 0.10 0.01 0.10 0.05 0.05 20 70 122.9677 6.368
0.05 0.10 0.20 0.01 0.01 0.01 20 90 105.2245 -3.712
0.05 0.20 0.10 0.30 0.05 0.01 30 70 127.5707 0.769
0.05 0.30 0.05 0.05 0.01 0.20 10 70 115.9650 -2.451
0.05 0.30 0.05 0.20 0.05 0.01 20 50 126.4087 2.388
0.10 0.01 0.05 0.30 0.30 0.01 10 70 127.3280 -6.675
0.10 0.05 0.01 0.05 0.01 0.01 20 50 113.8343 1.288
0.10 0.05 0.10 0.10 0.01 0.10 20 30 121.4590 4.197
0.10 0.20 0.01 0.20 0.10 0.05 10 90 127.0290 2.758
0.10 0.30 0.10 0.01 0.20 0.05 30 70 124.2512 0.073
0.20 0.01 0.05 0.30 0.10 0.05 20 50 128.0398 -1.473
0.20 0.01 0.20 0.20 0.01 0.10 20 70 125.3030 3.995
0.20 0.05 0.01 0.05 0.20 0.01 30 50 126.7749 3.146
0.20 0.05 0.10 0.01 0.05 0.05 50 70 111.8906 -5.099
0.20 0.10 0.10 0.01 0.30 0.01 10 30 127.6955 1.764
0.20 0.30 0.01 0.05 0.05 0.10 10 90 119.7026 -0.459
0.30 0.01 0.05 0.10 0.20 0.01 50 90 127.4458 0.169
0.30 0.01 0.10 0.20 0.01 0.10 30 70 126.7333 2.501
0.30 0.05 0.05 0.01 0.05 0.10 10 50 120.3244 2.900
0.30 0.05 0.01 0.05 0.30 0.20 20 70 128.9096 -3.74
0.30 0.10 0.01 0.30 0.01 0.05 30 50 128.3012 -1.555
0.30 0.20 0.20 0.05 0.05 0.05 10 30 120.4604 -0.480
0.30 0.30 0.10 0.01 0.10 0.01 20 30 120.7744 -2.413
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Let Y be the vector of all the experimental results for the average of the

average plan value for all users, and let X be the matrices which contains all

configurations, that is each line correspond to one vector ~x. A least-square

regression gives us

â = (XT X)−1 · XT Y.

We obtain the following values for â:

â =
(

107.02 18.88 16.63 −1.97 43.88 43.98 22.412 0.08 −0.03
)

,

with R2 = 0.73315, and the following t-stats

p̂ =
(

33.13 2.58 2.17 −0.16 5.66 5.80 1.58 1.11 −0.81
)

.

With a confidence interval of 95% the estimated parameters for a3, a6, a7 and

a8 are not significantly different from 0. By removing these parameters the es-

timated parameters are (a0, a1, a2, a4, a5) = (107.89, 19.99, 15.73, 43.71, 45.98)

and R2 = 0.71, since R2 is not near 1 we will investigate another model.

Quadratic model

Our new model for f is:

f = a + b0R0 + b1R1 + b2R2 + c0M0 + c1M1 + c2M2 + d1C1 + d2C2

e0R2

0
+ e1R

2

1
+ e2R2

2
+ f0M2

0
+ f1M2

1
+ f2M2

2
+ g1C

2

1
+ g2C

2

2

+h0R0C1 + h1R1C1 + h2R2C1 + i0M0C1 + i1M1C1 + i2M2C1

+j0R0C2 + j1R1C2 + j2R2C2 + k0M0C2 + k1M1C2 + k2M2C2.
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We want to express f = 1

2
xT Hx + cT x + α. we have α = a and

H =
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.

One obtains a = 82.209, b0 = 59.75, b1 = 57.85, b2 = 57.68, c0 = 62.24,

c1 = 153.74, c2 = 33.39, d1 = 0.31, d2 = 0.46, e0 = −115.93, e1 = −89.13,

e2 = −149.67, f0 = −278.71, f1 = −311.50, f2 = −218.14, g1 = −0.008,

g2 = −0.003, h0 = 0.23, h1 = −1.26, h2 = 0.16, i0 = 2.18, i1 = −0.42,

i2 = 1.30, j0 = −0.26, j1 = 0.037, j2 = −0.32, k0 = 0.24, k1 = 0.035,

k2 = 0.024, with R2 = 0.936.

Using t-stats, all parameters that depends on C1 or C2 are not significantly

different from 0. By removing these variables one obtain the following values:

a = 98.16, b0 = 30.94, b1 = 57.43, b2 = 35.37, c0 = 130.87, c1 = 100.73,

c2 = 63.63, e0 = −31.56, e1 = −142.30, e2 = −183.84, f0 = −294.93,

f1 = −181.06, f2 = −261.70 and R2 = 0.854.

Using ∇f = 0 we obtain the optimal parameters: R0 = 0.49, R1 = 0.20,

R2 = 0.096, T0 = 0.22, T1 = 0.28, T2 = 0.12. Since C1 and C2 were not

estimated by this technique, they will not interact much with the average

of the average score at iteration 30. For the plot the values C1 = 20 and

C2 = 50 are used.
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Figure 6: Optimal results
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3.2.4 Discussion of the regression

Since the regression concerns only the value f30, i.e. the value of the average

score at iteration 30, this value should not depend on the probability of each

strategy module after that iteration, therefore is it clear that there are too

many explanatory variables in the model. Hence the new model that will be

investigated should only depend on 4 parameters: R0, R30, T0 and T30 such

that

pT (n) =











T0 ·
(

1 − n
30

)

+ T30 · n
30

n < 30,

T30 n ≥ 30,

and

pR(n) =











R0 ·
(

1 − n
30

)

+ R30 · n
30

n < 30,

R30 n ≥ 30.

Moreover there was a statistical problem in the previous approach: the

regression’s aim was to determine 29 parameters out of only 41 observations.
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Such a regression cannot be very representative of the real parameters. After

the removal of the non significant parameters, there is still 13 parameters to

be estimated with 41 observations.

Another technique was used instead of a multi-linear regression, which is

described in [JSW98], but this technique has the same statistical problem

as the linear regression (too small sample for a large number of parameters).

3.3 Final model

3.3.1 Normal scenario

Since the linear regression did not provide significant results, it would be

interesting to have a better view on how f30 varies with the parameters.

Therefore some configurations are made using a grid of value for the param-

eters.

• The first grid is for (R0, R30) ∈ {0.1, 0.2, 0.3, 0.4} × {0.1, 0.2, 0.3, 0.4}, and

T0 = T30 = 0.1 fixed. Each combination of these parameters is evaluated

by MATSim, the average score at iteration 30 is plotted in the next figure.
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Figure 7: f30 for T0 = T30 = 0.1 fixed
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First of all it is reassuring that the function seems to be smooth enough and

not a random function. The picture shows that f30 is the larger when R30

becomes small, but R0 can be non-zero, in fact the maximum in the graph

is attained for R0 = 0.3. It is important to notice that the simulation with

MATSim relies on randomness and each run with the same parameters

should output a different results, but in MATSim the random number are

generated thanks to a random seed set in the configuration file, therefore

the same sequence of random numbers will be created for every simulation.

The surface composed of the different values of f30 is similar to a parabolic

surface in the direction of R30, which indicates that the linear regression

with some squared variables might output a good estimation.

• Sample for (R0, R30) ∈ {0.1, 0.2, 0.3, 0.4} × {0.1, 0.2, 0.3, 0.4}, and T0 =

T30 = 0.2 fixed. It is hard to plot a graph depending on more than 2
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parameters and each run requires 8 hours of simulation on a computer,

therefore a sampling grid on more than 2 parameters at a time is not

convenient.

Figure 8: f30 for T0 = T30 = 0.2 fixed
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The results for this configurations corroborates the fact that f30 can be

described by a quadratic function since the shape of the graph for T0 =

T30 = 0.1 and for T0 = T30 = 0.2 have the same aspect, except a little shift

up of the score for the second graph.
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• Sample for (T0, T30) ∈ {0.1, 0.2, 0.3, 0.4} × {0.1, 0.2, 0.3, 0.4}, and R0 =

R30 = 0.1 fixed. The opposite configurations are also simulated with MAT-

Sim, this time the ReRouting has a fix probability and the TimeMutator

probabilities are sampled on a grid. The values of the probabilities for

the SelectExpBeta module are always expressed implicitly as the comple-

mentary of the sum of the two other probabilities so that the total sum is

always equal to one.

Figure 9: f30 for R0 = R30 = 0.1 fixed
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The orientation of the graph for this new sampling looks also like a quadratic

function, but the general direction is in diagonal, hence both values for T0

and T30 needs to be large.
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• Sample for (T0, T30) ∈ {0.1, 0.2, 0.3, 0.4} × {0.1, 0.2, 0.3, 0.4}, and R0 =

R30 = 0.2 fixed.

Figure 10: f30 for R0 = R30 = 0.2 fixed
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The same conclusion as for the previous sampling holds here: the proba-

bilities for the TimeMutator strategy needs to be large in all iterations.

Since the curves seems smooth enough, a new attempt is made for the

regression. There is only 4 variables, but we add quadratic terms since the

curves do not resemble a plane. The model is then given by:

f30 = a1 +a2 ·R0 +a3 ·R30 +a4 ·T0 +a5 ·T30 +a6 ·R2

0
+a7 ·R2

30
+a8 ·T 2

0
+a9 ·T 2

30
.
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The least-square regression gives the following estimated parameters:

a = (122.63, 2.92, 5.51, 22.82, 14.94, −5.29, −33.28, −34.86, −16.61) ,

with R2 = 0.9709 which indicates that these parameters fits well the data.

As one can see the parameters corresponding to the quadratic terms are all

negative, therefore we can find a maximum by setting the gradient to 0:

∇f30 = 0, then

R0 = 0.2757

R30 = 0.0827

T0 = 0.3273

T30 = 0.4498

Since the optimal variables satisfy the bounds, one can calculate the theoret-

ical optimal value f30 = 130.3560, and run a simulation in order to obtain the

practical value, which is f30 = 130.00113. The model predicts well enough

the optimal value. It is interesting to see how the score function would de-

pend on the congestion of the scenario and if the optimal variables are the

same in all cases.

3.3.2 Congested Scenario

The same 4 samples are run on a more congested scenario where the flow

capacity of each link capacity is divided by 4.

• The first grid is for (R0, R30) ∈ {0.1, 0.2, 0.3, 0.4} × {0.1, 0.2, 0.3, 0.4}, and

T0 = T30 = 0.1 fixed.
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Figure 11: f30 for T0 = T30 = 0.1 fixed
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• Sample for (R0, R30) ∈ {0.1, 0.2, 0.3, 0.4} × {0.1, 0.2, 0.3, 0.4}, and T0 =

T30 = 0.2 fixed.

Figure 12: f30 for T0 = T30 = 0.2 fixed
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• Sample for (T0, T30) ∈ {0.1, 0.2, 0.3, 0.4} × {0.1, 0.2, 0.3, 0.4}, and R0 =

R30 = 0.1 fixed.

Figure 13: f30 for R0 = R30 = 0.1 fixed
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• Sample for (T0, T30) ∈ {0.1, 0.2, 0.3, 0.4} × {0.1, 0.2, 0.3, 0.4}, and R0 =

R30 = 0.2 fixed.

Figure 14: f30 for R0 = R30 = 0.2 fixed
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As in the normal scenario, the curves for each sample are quite smooth.

The same model is used for the regression:

f30 = a1 +a2 ·R0 +a3 ·R30 +a4 ·T0 +a5 ·T30 +a6 ·R2

0
+a7 ·R2

30
+a8 ·T 2

0
+a9 ·T 2

30
.

The least-square regression gives the following estimated parameters:

a = (55.63, 13.75, 10.67, 71.97, 46.70, −35.45, −46.56, −85.87, −52.63) .

with R2 = 0.9701 which indicates that these parameters also fits well the

data. As one can see the parameters corresponding to the quadratic terms
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are all negative, therefore we can find a maximum by setting the gradient to

0: ∇f30 = 0, then

R0 = 0.1940

R30 = 0.1146

T0 = 0.4190

T30 = 0.4437

Since the optimal variables satisfy the bounds, one can calculate the theoret-

ical optimal value f30 = 83.0118, and run a simulation in order to obtain the

practical value, which is f30 = 83.4162. The model predicted well enough the

optimal value. The biggest difference for the estimated parameters between

the normal and the congested scenario are for the values of the probabili-

ties at iteration 0: in the first case R0 = 0.2757, and in the congested case

R0 = 0.1940, the optimal value for R0 should probably lie between those two

values. T0 has also two different values, 0.3273 in the first case and 0.4190

in the second case. This could be explained by the fact that in a congested

scenario the time of the departure plays a big role in the congestion of the

network, therefore the algorithm needs more run of TimeMutator to obtain

a better results. The values at the iteration 30 are very similar in both

scenarios.

3.3.3 Global optimum

The obtained parameters could be satisfactory but the analysis of [Apt10]

shows that the optimal constant parameters are pT = 0.9 and pR = 0.1 for the

probabilities of selecting either the TimeMutator module or the ReRouting

module. The estimated probabilities from the previous model did not reach

higher value than 0.5, therefore it is necessary to simulate the same scenario

over a sample which deals with higher probabilities for pT .

• Sample for (T0, T30) ∈ {0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1.0}×{0.8, 0.85, 0.9, 0.95, 1},
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and R0 = 1 − T0, R30 = 1 − T30.

Figure 15: f30 for R0 = 1 − T0 and R30 = 1 − T30
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The graph in the plot looks like a concave function with some random noise,

which seems also to contain the maximum. It should be in the interval

(T0, T30) ∈ [0.75, 0.85] × [0.9, 1.0], then a sample around these values is

created.
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• A refinement grid is made for (T0, T30) ∈ {0.75, 0.775, 0.8, 0.825, 0.85} ×

{0.9, 0.925, 0.95, 0.975, 1.0}, and R0 = 1 − T0, R30 = 1 − T30.

Figure 16: f30 for R0 = 1 − T0 and R30 = 1 − T30

0.7
0.75

0.8
0.85

0.90.85

0.9

0.95

1

131

131.5

132

T0

T30

f
3
0

Because of the randomness of the noise it is hard to determine a single

values for the optimum. The optimal parameters should be in the interval

(R0, R30, T0, T30) ∈ [0.2, 0.25] × [0, 0.05] × [0.75, 0.8] × [0.95, 1.0]. The same

setting were done on a more congested scenario and the interval for the

optimal parameters is approximatively the same.

36



Optimization of the convergence of an agent-based simulation

January 2011

3.4 Final results

The sampling approach provides an interval for the optimal values of the

parameters between the iterations 0 and 30. As we saw, the probability for

SelectExpBeta can be very low and even zero in order to increase the speed

of convergence. As a small conclusion one will see some simulations of the

Berlin scenario with the optimal settings (iteration-dependent probabilities)

and some variants, and compare the results with those from the standard

settings.

In order to have a good overview of the probabilities which change with

the iterations and the corresponding score at each iteration, the scores of

each simulation is included in the graph: The axis on the left will describe

the scale of the score whereas the axis on the right is simply the repartition

of the probability.

3.4.1 Non-congested scenario

We found a range of optimal values for the distribution of probabilities be-

tween the iterations 0 and 30, but the probabilities were not studied after

the iteration 30, but one can expect that in order to optimize the speed of

convergence the probabilities won’t change much when we reach the equilib-

rium.

• The first simulation concerns the scenario with the settings that have al-

ways been used in MATSim. These settings assume the need of a great

share of probability for the SelectExpBeta. The previous analysis shows

that this parameter decreases the speed of convergence, but might have an

importance for the stability of the iterative procedure.
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Figure 17: Non-congested scenario: commonly used settings
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The average of the best scores after 200 iterations reaches 135.13 and the

average of the average scores reaches 131. The average of the average

scores exceeds the value of 130 after 84 iterations.

• The first different configuration is simply the calculated optimal settings

between the iterations 0 and 30 and the probabilities remains constant

after the iteration 30. During all the process, the module SelectExpBeta

is never executed.
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Figure 18: Non-congested scenario: iteration-dependent settings, first variant
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In this case, the maximum value for the average of the best scores is

135.74, the average of the average scores is 133.1 and it exceeds the value

of 130 after 14 iterations. In comparison to the constant usual settings the

convergence is really faster in this case.

• In order to observe what happens if the module SelectExpBeta is executed

with a certain probability after iteration 30, a new configuration for the

parameters is set as seen in the following picture. This is done since it

could be expected that the module SelectExpBeta helps the convergence
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to an equilibrium.

Figure 19: Non-congested scenario: iteration-dependent settings, second
variant
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Here the average of the best scores is 135.5, the average of the average

scores is 128.9. The average of the average scores still exceeds the value

of 130 after 14 iterations, but at the moment that the module SelectExp-

Beta has a non-zero probability, the score drops out proportionally to the

probability for this module. In this case the module SelectExpBeta shifts

the average of the average score down by more than a value of 1. More-
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over after the add of SelectExpBeta strategy, the average executed score is

almost always the same as the average of the worst score, therefore almost

each executed plan becomes the worst plan of the agent’s memory.

• Instead of doing a progressive introduction of the SelectExpBeta, this con-

figuration shows the results for a sudden shift from the optimal iteration-

dependent settings to the constant usual settings.

Figure 20: Non-congested scenario: iteration-dependent settings, third vari-
ant
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The sudden change of the probabilities causes also a sudden change in
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the score. The average and worst score are shifted down: the average of

the worst score is 119.34 at iteration 30 and 94.74 at iteration 31 after

the change of the distribution of probabilities. The average of the average

score is 132 at iteration 30 and 127.9 at iteration 31. The final average

score reaches 130.2 and the best score 135.4.

3.4.2 Congested

The same tests are run on a very congested scenario in order to see if the

iterative-dependent probabilities really improves much the speed of conver-

gence in this case.

• The first configuration is simply the usual settings for MATSim.
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Figure 21: Congested scenario: commonly used settings (Congested case)
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The figure shows that 200 iterations is not sufficiently at all in order to

reach the equilibrium in a very congested scenario. At iteration 200, the

average of the average scores is 23.12, the average of the best scores 84.96,

and the average of the average scores exceeds 0 after 90 iterations.

• This configuration consists of the optimal iteration-dependent settings that

were found previously, hence there is a probability of zero that the module

SelectExpBeta is executed throughout the whole simulation.
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Figure 22: Congested scenario: iteration-dependent settings, first variant
(Congested case)
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At iteration 200, the average of the average scores is 44.65, the average

of the best scores 100.27, and the average of the average scores exceeds 0

after 50 iterations.

• This configuration is composed of the optimal settings between the itera-

tion 0 and 30, and a fraction of probability for SelectExpBeta is progres-

sively introduced.
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Figure 23: Congested scenario: iteration-dependent settings, second variant
(Congested case)
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At iteration 200, the average of the average scores is 36.52, the average of

the best scores 93.65, and the average of the average scores exceeds 0 after

51 iterations.

The congested case does not provide much more information than on

the normal scenario, which is on one hand unhelpful but on the other hand

very convenient since the proposed optimal settings would not depend on the

congestion of a scenario.
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3.4.3 Discussion

If the settings that are commonly used in MATSim do not increase the score

rapidly, how come that nobody ever changed these values? It could be the

case that it belongs to a theoretical part of MATSim which has not been

much investigated yet.

By simply analysing the score statistics of each simulation, the highest

scores is achieved when there is no probability for the SelectExpBeta module,

and it converges also faster. There are also no large oscillations when there

is no execution of the SelectExpBeta, therefore this module is not necessary

to reach a steady-state. The strangest observation is that if the simulation is

done without SelectExpBeta and after some number of iterations the module

SelectExpBeta is executed, then the average score decreases a lot. The mod-

ule SelectExpBeta only selects an existing plan in the memory of an agent

with a probability according to the value of the score: the higher the score

the higher the probability that this plan is selected. This module reevaluates

the best plan with high probability, and the value of the score is not the

same after the reevaluation even if the probabilities did not change: it can

be the case that an agent generates randomly a very good plan at iteration

10, since it gets a high score it will remain in the memory of the agent until

it is deleted from the memory (which happens only if this plan has the worst

score among all scores in the memory). Nevertheless if a plan is not reeval-

uated after a number of iterations, the score that this plan keeps does not

correspond to the actual load of the network. In order to be up to date, the

plans of the memory needs to be evaluated regularly since the other agents

also change their plans at each iteration and the network load consequently

changes much.

On figure 20 we see that it is once the plans are re-evaluated that the

average score is shifted down. Between all iteration between 0 and 30 there

was never a re-evaluation, therefore at each iteration an agent would have

only generated a plan, evaluate it and then delete the plan with the worst
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score. But the plans in the memory will only keep the score evaluated the

first time. The module SelectExpBeta aims to re-evaluate the best plans as

often as possible so that the memory of an agent corresponds to the current

load of the network.

Hence it is clear that without re-evaluation, each agent can produce more

plans and find faster good solutions, so the iterative process will converge

much faster. Nevertheless this approach creates a set of plans for each agents

that will not be as good as expected since the score corresponds to another

hypothetical network load (corresponding to a previous iteration). Every

analytical procedure that wants to optimize the speed of convergence should

consider the need of keeping the scores of each plan updated: a simulation

which begins without SelectExpBeta (19) cannot re-evaluate its score at the

end since it would have set aside many solutions, and running the Select-

ExpBeta at the end will not help to find these solutions. The average of the

average of all plans in 19 is smaller than in 17 because of that problem.

There is then a need to perform a lot of re-evaluation at each iteration

which is why the strategy SelectExpBeta is selected with a probability of

0.8 most of the time. An important thing to notice is that this probability

should depend on the size of the memory. If an agents can keep in memory

many plans there will be much more combinations with the plans of the other

agents, and it will be therefore harder to have all plans updated often.

If we consider that 80% of the agents need to perform a re-evaluation

of their plans at each iteration, we could search for the optimal distribu-

tion of TimeMutator and ReRouting probabilities among the 20% with the

same techniques used in this project. The average of the average score at

iteration 30 are plotted in 24. The higher value for the score depends on

high share of the TimeMutator strategy. Moreover the score reaches its

maximum 127.02 at (T0, T30) = (0.15, 0.15). The commonly used settings

(T0, T30) = (0.1, 0.1) outputs a score of 125.37 which is smaller than the

score without the ReRouting module: the average of the average score for

(T0, T30) = (0.2, 0.2) is 126.24. This could be explained by the fact that the
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Figure 24: f30 for R0 = 0.2 − T0 and R30 = 0.2 − T30
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initial guessed routes are already very good and there is not a large need in

re-routing. In order to increase the speed of convergence, the share of the

ReRouting module should not exceed 10% across all iterations. Since it is

also the strategy module (in the used strategies of this project) that requires

the longest computation time, a share of less than 10% will also decrease the

computation time.

It is harder to tell the optimal proportion of SelectExpBeta during each

iteration since it is unknown yet how to specify mathematically the needs

of re-evaluation for the algorithm. Moreover this proportion should surely

depend on the size of the memory of each agent: if the memory size is only 2,

each plan will be evaluated often, whereas if the memory contains 10 plans

the re-evaluation of each plan by combination of the 10 plans of each other

agent would create a huge set of possible combinations.

48



Optimization of the convergence of an agent-based simulation

January 2011

4. Conclusion

After testing different method to compute an optimum, it has been shown

that a set of precise values for the probabilities of each strategy module does

not exist, or is possibly hidden by the intensity of the noise due to randomness

during the iterative procedure. A set of intervals for the probabilities were

computed and improved the convergence speed a lot and also the maximum

values for the score. Nevertheless these probabilities would create plans and

routes that are overrated, that is the expected score would be much larger

than the actual score if the final set of routes and plans are given in the input

of MATSim. In fact during the iterations, the plans of each agents needs to

be re-evaluated to match the current state of the traffic in the network. The

module SelectExpBeta tends to re-evaluate with high probability the plans

which have a high score in the memory, hence the best plans will almost

always been selected and updated.

In order to improve the convergence speed without losing the consistency

of the plans with the network, other strategies could be employed: a pseudo-

intelligent strategy could compare the results obtained by the previously

used strategies and decide which strategy to apply during the next round.

The TimeMutator module is shifting the time in the schedules by a random

number taken from a uniform distribution in the interval [−30; +30] minutes,

but perhaps after many iterations the schedule would need only refinement

and no large changes. Therefore the random number for the shift could

be taken from another probability distribution like a Gaussian Distribution

whose variance could decrease when the iteration number increase.
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