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Abstract 

With emergence of digital fare payment systems, the resolution of problems such as 

growing amount of air pollution or concentration of congestion around peak hour be-

comes feasible by the implementation of dynamic pricing schemes. But, because of 

the complexity and the difficult acceptance of these strategies by the populations, re-

search need to be accomplished beforehand in order to show clearly the benefits 

brought. In this thesis, the agent based simulator MATSim is used to study effects of 

First-Best pricing strategy and to develop feasible Second-Best scheme in the case 

of a rather simple corridor scenario. In addition to that, effects of crowdedness in 

public transport vehicles and friction effects at boarding are implemented in MATSim 

and their consequences on the trip distribution of evaluated. 

Firstly, the implementation of the new dwell time model shows that the dwell time 

may be strongly increased and the trip distribution spread if boarding occurs in a ra-

ther to high filled bus. Secondly, the addition of crowding effects leads up to results 

such as peak spreading, diminution of the travel times at peak and increasing of the 

percentage of PT users. The last point even suggests that the implementation of a 

crowding effect may ameliorate the congestion state of the roads. Thirdly, the imple-

mentation of externalities increases the benefits cited above and reproduces real be-

haviors: PT users with higher flexibility make changes in their plans in order to avoid 

the periods where the fares are higher. Finally, a Second-Best pricing strategy using 

the opportunities given by Smart-Card based fare payment systems has been de-

signed. These results confirm that MATSim may be appropriate in order to develop 

pricing strategies.  

In further steps, tests of the new implementations in more realistic networks and 

comparison with real situations shall be done. 



Evaluation of Dynamic Public Transport Pricing with MATSim___________________________________ January 2014 

1 

1 Introduction 

ETH and NRF furthered their collaboration by establishing the Singapore-ETH Cen-

tre for Global Environmental Sustainability (SEC) in Singapore. One aim of the col-

laboration is to advance research into the complexity of land transport, which derives 

from the demands of managing, planning and optimizing the flow of people and 

goods at different time scales and in its interaction with all elements of the future city. 

At the core of the research module on Mobility and Transportation Planning is the 

implementation of a MATSim Singapore and expansion of MATSim’s scope and 

functionalities in order to allow transport policy evaluation in Singaporean context. 

Most notably in the context of this thesis, MATSim will be used to study and evaluate 

dynamic pricing schemes for public transportation. As Singapore’s public transport 

operators already introduced discounted public transport journeys during off-peak 

hours, development of tools for simulation and evaluation of such policies is of major 

relevance for policy makers and represent a challenge for transportation research-

ers. With emergence of digital, often smart-card based fare payment systems, im-

plementation of dynamic pricing schemes became feasible and affordable. What are 

the effects of such schemes and how to design them in an efficient manner in order 

to achieve the desired changes in travel behavior and associated socioeconomic 

benefit are questions, which have still to be answered.  

In this thesis, effects such as friction effects when boarding (L. Sun, 2013) or crowd-

edness effects (A. Tirachini, 2013) will be implemented and simulated using an 

agent-based simulation approach. Then, the consequences of first-best pricing strat-

egies, where prices are set to be equal to marginal cost, will be estimated by inter-

nalizing in each agent externalities of crowdedness and delays imposed to other 

travelers (A. Tirachin, 2013, I. Kaddoura, 2013). Finally, a more realistic Second-Best 

pricing strategy will be designed, evaluated and compared with First-Best pricing 

schemes. Furthermore, additional constraints such as maximum vehicle occupancy 

will allow for realistic modelling of public transport, with ability to simulate dynamic 

phenomena as e.g. bus bunching. 
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2 Literature Review 

This project is based on two important concepts that divide this chapter into two sec-

tions: the concepts of “crowding” and “pricing”. In the first section (chapter 2.1), the 

different kinds of crowding, their effects on passengers and some methods to esti-

mate their impact are described. In the second section, the concepts of pricing are 

explained and overviewed. 

2.1 Crowding effect 

The notion of crowding in public transportation is connected with the density of pas-

sengers standing or sitting on vehicles, accessways and stations. If the density (or 

occupancy) is a physical phenomenon that can be easily calculated (number of pas-

sengers standing pro m2, proportion of occupied seats …), crowdedness is rather a 

subjective interpretation that depends on many parameters (the kind of vehicle, the 

distance of the trip …).  

Together with travel time, cost, trip time reliability and service frequency, the effects 

of crowding are now considered as having a significant influence on modal choice 

(Tirachini, Henser, & Rose, 2013). If some studies have already estimated the effects 

of crowding on public transportation, there are actually no values that can perfectly 

describe the consequences on the demand. In the first part of his research, 

A.Tirachini (2013) listed the different effects of crowding in several groups. 

2.1.1 Effect on in-vehicle time 

As the number of passengers in a public transport increase, a threshold where no 

more seats are available is reached: from this point on, the new passengers board-

ing have to stand, that mean that they travel with a higher discomfort like the sitters. 

Moreover, the standing passengers slow the movements of the passengers boarding 

or alighting and thus it increase the time needed by the PT vehicle to stop at a sta-

tion (dwell time): this phenomenon is called the “friction” effect.   

Using a smart card data set from buses traveling in the city of Singapore, L. Sun 

(2013) proposed a new dwell time model which incorporates the friction effect. More-

over, he showed that the type of vehicle, in particular the standee capacity, the num-

ber of doors and the presence of steps play an important role for both boarding and 
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alighting and that the variability of dwell time increases with the number of board-

ing/alighting passengers.  

Furthermore, the design of the bus (Katz & Garrow, 2012) and the platform conges-

tion at stations with many bus services are other elements that can increase the 

dwell time (TRB, 2003) (Jaiswal, Bunker, & Ferreira, 2010).  

2.1.2 Effects on waiting time 

High demand along a public transport line may provide some capacity constraint 

problems and may increase waiting time: if a bus is full, some passengers cannot 

board and may have to stay at the bus station until the next bus comes, increasing 

waiting time and discomfort of travel.  

Moreover, another effect of high occupancy, the bus bunching, may rise waiting 

times (Abkowitz & Tozzi, 1987). When a full bus doesn’t pick up all the passengers at 

a station because of capacity constraint, a larger number of passengers as expected 

will try to board the next bus. If this bus has the boarding capacity, it will have to stop 

longer to pick up all the passengers and thus will be delayed. Its headway between 

the bus ahead will be increased and it will be decreased between the bus behind. 

This phenomenon is amplified as bus move forward along the route. In short, bus 

bunching leads to headways variability, which increases average waiting time 

(Welding, 1957). 

2.1.3 Effects on travel time reliability 

When the occupancy rate is high, public transport users waiting at stations cannot be 

certain that the capacity of the next train/bus will be sufficient to allow them to board 

(see above). Moreover, the bus bunching effect can strongly change the arrival times 

written in a bus line schedule. These effects are sources of unpredictability, which 

are negatively valued by the users.  

Secondly, there is a likely relation between high occupancy level and the occurrence 

of incidents (e.g. at station), which is a source of unexpected delays affecting the 

service performance and reliability. 
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2.1.4 Effect on wellbeing 

There are multiple physical and psychological factors that can affect the passenger 

health and wellbeing. The list below makes a summary of the main effects studied 

(Tirachini, Henser, & Rose, 2013) : 

• Anxiety 

• Stress and feeling of exhaustion 

• Perception of risk to personal safety 

and security 

• Feelings of invasion of privacy 

• Propensity to arrival late at work 

• Possible loss in productivity for 

passengers that work while sitting 

These effects depend mainly on the own perception of each passenger during a pe-

riod of crowdedness. A few studies search for instruments able to make use of the 

different psychological components of crowding.  

For example, N. D. Mohd Mahudin (2012) collected data from a sample of 525 com-

muters on rail lines serving Kuala Lumpur, Malaysia. A self-rating questionnaire 

asked the users about their measurement of three psychological effects of the 

crowded situation: (i) the psychological aspects of the crowding situation (dense, 

disorderly, confining…); (ii) the ambient environment of the crowded situation (stuffy, 

smelly, noisy or hot); (iii) the affective reactions to the crowded situation (stressful, ir-

ritable, uncomfortable…). The results demonstrated that neither the psychological 

aspects (i) nor the ambient environment (ii) nor the rated passenger density were di-

rectly related to the experience of stress and feelings of exhaustion, but they showed 

that the affective reactions (iii) were related. This suggests that the more unpleasant-

ly crowded the commuters feel, the more stress and feeling of exhaustion they expe-

rience. However, passengers could still experience stress and exhaustion even un-

der what appears to be a low-density condition.  

Another survey was conducted by B. Theler and K. W. Axhausen (2013) in the city of 

Zürich. Using a sample of 215 returned questionnaires, they demonstrated that the 

perception of crowding, in particular the perception of the words “full”, “crowded” or 

“overcrowded”, changes according to the type of user: frequent and experienced us-

ers develop a higher tolerance to the conditions of their journey than the older and 

younger passengers, even if frequent users.  
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2.1.5 Effect on the valuation of travel time savings 

The valuation of travel time savings (VTTS) can be described as the traveler’s will-

ingness to pay for change his traveling conditions, in particular to decrease his travel 

time. This value is often used as quantifiable factor in economic analysis of transport 

schemes.  

In the second part of his research, A. Tirachini (2013) used agent-based simulations 

applying multinomial logit models to estimate VTTS.  Then, he compared the VTTS 

given by a model without crowdedness effect with models comprising different kinds 

of crowdedness (depending on the proportion of standees and sitters, on the load 

factor, etc.) He showed that the model without crowdedness overestimates VTTS for 

low load factors (below a threshold that is between 1.0 and 1.25, depending on the 

model) and underestimates VTTS for high load factors (over 1.25). That means that 

the willingness to pay varies according to the crowdedness condition in the public 

transport: the willingness to save time is higher for a passenger in a crowded state 

than for someone who can seats in an almost empty bus. Moreover, A. Tirachini cal-

culated in his research a “crowding multiplier”, a factor that multiplies the value of in-

vehicle time savings found in uncrowded conditions. A part of his results is showed 

below:  

Figure 1: Value of in-vehicle time savings, MNL Model, A.Tirachini, 2013 
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Figure 2: Crowding multiplier, MNL Model, A. Tirachini, 2013 

As a supplementary result, A. Tirachini found that a model that is insensitive to 

crowding levels underestimates demand if vehicles are uncrowded and overesti-

mates demand if vehicles are crowded (the generalizability of these findings is not 

proven). I.e., a bus that is not crowded should have more passengers as calculated 

with a model that doesn’t take crowdedness into account and the higher demand (at 

peak hour) should be smaller as estimated because of crowdedness effect. 

Moreover, it has been showed in other studies that some effects such as the differ-

ence between stand or seat in vehicles or the accessways, transfer areas or plat-

forms crowdedness may also have an effect on the VTTS. 

2.1.6 Effect on bus and route choice 

As explained by A. Tirachini (2013), recent studies showed that the disutility of stand-

ing in public transport vehicles may influence bus and route choice when passengers 

have multiple alternatives to complete a trip. Thus, the probability of getting a seat is 

a key attribute: some passengers would better wait or travel longer to have an (ex-

pected) higher chance of getting a seat on a less crowded bus. 

2.2 Marginal cost pricing 

Over the next decades, pricing is going to be a well discussed topic, for two reasons 

in particular: firstly, pricing theories have evolved from some theoretical or analytical 
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models to some realistic options that are already used in real cities (Singapore, Lon-

don…). This is due to two main reasons: the possibilities given by new technologies 

to charge automatically the users and, more importantly the willingness to resolve 

the problem of growing amount of air pollution or congestion all around the world. 

Moreover, pricing is a sensitive political topic because such proposal rarely receives 

a great approval from the public.  

The concept of pricing is explained in this divided into two parts section. In the first 

part, the external effects and the method to take them into consideration are ex-

plained and illustrated. The second part is based on the difference between First-

Best and Second-Best pricing strategies and on their applications. 

2.2.1 External effects 

Like other economic matters, public transport system can be described as a system 

of supply and demand trying to reach an equilibrium: the operator’s costs (supplier) 

have to be compensated by the fares paid by the users (demanders) to reach a 

monetary equilibrium. But to maximize the social welfare of both the operator and the 

users, money cannot be only parameter that must be taken into account.  

Indeed, when a good or service is produced or consumed, “external costs” may oc-

cur. For example, people driving their car produce “private cost” that they have to 

face by themselves (cost of petrol, tax or buying car) and external costs that may be 

monetary (health related costs due to pollution, decrease of house price due to 

noise) or temporal (congestion delays). The sum of these external effects and the 

private costs leads up to the “social cost” of car driving.  

Normally, the external costs are not faced by the user who produce them, but by so-

ciety in general. The meaning of pricing strategies is thus to add, or “internalize”, 

these supplementary costs to the private costs that each people has to pay when he 

travels. In other words, each user should pay for the external costs he causes. The 

new equilibrium reached is called the “social equilibrium”. According to I. Kaddoura 

(2013), reaching this equilibrium may archive market efficiency and may maximize 

the social welfare of the whole community. 

In order to consider the effects of a new user, a new trip or a new PT vehicle on the 

system, “marginal” costs are used. By definition, the marginal cost of an additional 

unit of output is the derivative of total production costs with respect to the level of 

output (Small, 2007). In other words, the marginal cost of a new unit of output is the 
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cost needed to produce only that supplementary input. Marginal cost can be greatly 

different from the average cost: e.g., if it costs at an operator $300 to offer a bus trip 

to 30 users and $305 to 31 users, the average cost is $10 per user but the marginal 

cost of the last one is only $5!  

According to I. Kaddoura (2013), the external effects arise if marginal private user 

costs deviate from marginal social costs. Marginal social cost pricing means setting 

generalized prices equal to the sum of marginal producer costs, marginal private us-

er costs and marginal external costs. For the public transport market, the marginal 

social cost equilibrium will be found if the fares that have to be paid by the users are 

equivalent to their marginal private and marginal external costs or, in other words, 

the user is confronted with both his private costs and (a tax equal to) the external 

costs of his decision. In this way, the external effects are internalized by the users 

who produce them. 

2.2.2 First-best pricing strategies 

As said above, the internalization of the externalities caused by each user of a 

transport system allows charging each of these users by the exact amount he 

caused. If applied, this pricing strategy is known as first-best pricing strategy. In his 

research, E. T. Verhoef (2002) summarizes the principal motivations of using this 

kind of strategy: 

- When individuals are confronted with prices that reflect the marginal social 

cost of their choice, they may exhibit behaviors that maximize their own bene-

fit. At the same time, the resulting social equilibrium may be the one that max-

imize the social objective.  

- Marginal cost pricing may not only make sure that the short run optimum for 

market (with given demand and cost functions) is archived, but in addition, in 

the long run (long term), these functions themselves may be automatically 

pushed to their optimal “shape and position”, each user making a socially op-

timal trade-off between his available possibilities. 

- The variable costs of a public transport system cannot often be covered by the 

revenues generated by the users alone. That is why a part of these costs 

must be covered by the associated government (state, town). Therefore, pric-

ing can be chosen because of a need of revenues for the financing of infra-

structures capacity that falls only on the concerned part of the population. 
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A good illustration of First-Best pricing strategy is given by the research accom-

plished by I. Kaddoura (2013). Using an agent-based approach, he internalized the 

delays imposed by public transport users to each other, such as boarding/alighting 

effects on the inside passengers, boarding/alighting effects on the waiting time at 

station or delays of passengers denied to board a full bus. In the simulations, the 

agents were able to switch their transportation mode (between public transport and 

car) and their departure time. 

The results showed that the social welfare (here: the sum of operator profit and user 

benefits) was always higher if a kind of pricing was used. In addition to that, an anal-

ysis of the distribution of bus trips over time revealed that peaks was flattened in the 

pricing schemes compared to the other schemes: since user-specific fares were 

higher during peak periods, some agents switched their departure times or change 

their transportation mode in order to avoid these periods. Therefore, the in-vehicle 

and waiting times were shorter and the social welfare increased. 

Figure 3: Welfare for each headway and pricing rule, I. Kaddoura, 2013 

2.2.3 Second-best pricing strategies 

Unfortunately, first-best pricing strategies are really difficult to apply in a real world 

situation, due to the fact that the parameters cannot be fully controlled and that sev-

eral sorts of barriers and constraints may prevent to charge the ideal amount of fare. 

Most of the informations cited below arise from a research of E. T. Verhoef (2002).  
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A first problem is the complexity of application of a First-Best pricing strategy. For in-

stance, in the case of a public First-Best pricing scheme in public transportation, the 

fares used for pricing may vary continually, they may depend on the exact amount of 

passengers, on the congestion state, on the time of the day, etc. The monitoring 

technology needed may be too sophisticated than the currently available technology 

or the pricing scheme too complex to be understood by the users. In addition to that, 

some laws may prevent adjustments of the pricing scheme, e.g. quick adjustments to 

avoid congestions during an unpredicted change on the system (construction work, 

weather conditions, etc.). 

Secondly, a pricing strategy can have not only an effect on the road system itself, 

but, because of the market interactions, on other economic activities. Changes in 

transport prices may affect the equilibria on other markets, especially the labor mar-

ket: high marginal tax rates may lead to a serious under-supply of labor, because of 

the increase of transportation costs. It may tend to a downward adjustment in 

transport taxes when the revenues are used to lower labor supply decision or an up-

ward adjustment when the revenues are used to lower labor taxes. 

Finally, the acceptance of a pricing scheme is difficult to obtain because of the uncer-

tainty of the results and the supplementary charges that appears to the users. More-

over, in some democracies, the quantity of charges becomes an important political 

issue, maybe more than an economic question. The agreements needed between 

political parties may create limitations on the type of charges and the flexibility that 

can be implemented. 

Due to the several constraints listed above, the first-best pricing strategy has often to 

be replaced by a so called “second-best pricing strategy”, more adapted to a realistic 

situation, but more complicated. Indeed, the informational requirements are consid-

erably higher: in addition to the level of marginal costs found with the first-best pric-

ing scheme, other parameters such as demand and cost elasticity within public 

transport or estimation of the effects on the other markets are needed.  

Taking into account all these new parameters, the welfare gains that can be 

achieved with second-best pricing may be substantially lower than those arising from 

theoretical first-best pricing. The researches accomplished by I. Kaddoura on opti-

mized supply (fares and headway) of a public transport schedule showed that pricing 

leads to a larger welfare (the optimal fare wasn’t $0) (Kaddoura, Kickhöfer, 

Neumann, & Tirachini, 2012), but that the welfare obtained with this optimal fare was 

always smaller than with use of an agent-based pricing strategy (see Figure 3: Welfare 
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for each headway and pricing rule, I. Kaddoura, 2013) (Kaddoura, Kickhöfer, Neumann, & 

Tirachini, 2013). 

Figure 4: Social welfare level dependent on bus headway and fare, I. Kaddoura, 2013 

Worst still, if some parameters are not taken into account or their consequences 

wrong estimated, or if the wrong prices are set, a risk of failure is possible, causing a 

reduction in overall social welfare.  

Fortunately, the body of research on this topic is growing fast and many models are 

currently available with which the detailed effects of various types of second-best 

pricing instruments can be studied in detail.  

For instance, the use of “policy packaging” allows to reduce the risk of failure. The 

method consists on a combination of second-best pricing instruments, such as park-

ing fees, toll booths or fuel taxes in a case of road pricing that may not give satisfac-

tory results if implemented alone, but that can replicate the full set of incentive given 

by a First-Best pricing scheme if combined. 

In addition to that, the emergence of new fares payment systems offers more oppor-

tunities to the transport system designer to implement pricing strategies. For exam-

ple, the Smart Card used in Singapore records the boarding and alighting stations of 

passengers and calculates the trip fare according to these data. Moreover, the times 

when boarding or alighting occur or the number of agents in the vehicle can be rec-

orded.  



Evaluation of Dynamic Public Transport Pricing with MATSim___________________________________ January 2014 

12 

3 MATSim 

MATSim is an open-source software that provides a framework to implement large-

scale agent-based transport simulations. It has been initially developed by the 

Transport Systems Planning and Transport Telematics group at the Technische Uni-

versität Berlin, the Transport Planning group at the Swiss Federal Institut of Technol-

ogy Zurich and the Senozon company. In addition, other research groups are using 

and extending MATSim around the world (www.matsim.org) 

This section gives a general overview of how works MATSim, including the special 

characteristics of public transport. Furthermore, the modifications of the MATSim’s 

code accomplished in the framework of this project are explained. 

3.1 MATSim Overview 

In MATSim, private and public transport users are modelled as individual agents that 

have a mental and physical behavior. These agents can move in a chosen network 

and they have to follow the rules given by the latter (free flow speed, maximum ca-

pacity, etc.). They interact with each other and, following the rules of the fundamental 

diagrams, and they can create congestion effects that reduce the traveling speed of 

all agents on the affected link. 

In addition, the facilities of the network (“Home”, “Work”, “Shopping”, etc.) are mod-

elled. They represent the origins and the destinations of each agent trip. As the 

MATSim simulations are time-dependent, it is possible to implement the opening and 

the closing time of the facilities. 

Basically, the goal of each agent during a simulation is increasing his own benefit, or 

“utility”. The utility increases when the agent is performing an activity (when “working” 

in particular) and decreases when the agent is traveling (see section 4.2.1 for more 

explanations). 

A simulation with MATSim can be summarized in the following steps: 

1. Plans generation (initial demand) 

All agents independently generate daily plans that contain the planned activities, the 

departure times and transport modes for incoming trips. For the simulations describ-

ing a real network (a city, a quarter, etc.), these first plans can derivate from survey 

and real data analyses.  
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2. Traffic flow simulation (execution) 

All agents simultaneously execute their selected plans, interacting with each other in 

the physical layer. 

3. Plan evaluation (scoring) 

The benefits (or utility) of each executed plans are calculated taking into account 

both activities and trips. Thus, a score is given to each of these executed plans. 

4. Learning (replanning) 

To allow an increase of their score during the next execution of the simulation (next 

iteration), some agents generate a new plan or modify copies of existing plans. The 

type of allowed plan modification must be given at the beginning of the simulation: 

mode change (e.g. car => public transport), departure time, visited facilities, etc. The 

other agents chose among their existing plans according to a multinomial logit mod-

el.  

The amount of plans saved by each agent can be limited: when a new plan is creat-

ed, only the best plans are kept and the worst is erased. 

Then, an iterative process is engaged, each agent trying to improve his own plans. 

The simulation is stopped when the average utility of all agents is maximized. The 

outcome is normally stable, the demand is relaxed and, assuming that the travel al-

ternatives form valid choice sets, the system state is in an approximate stochastic 

user equilibrium (Nagel & Flötteröd, 2011). For simulations describing a real network, 

simulation data are compared with real data in order to validate the obtained results. 

Figure 5: MATSim Overview, www.matsim.org 



Evaluation of Dynamic Public Transport Pricing with MATSim___________________________________ January 2014 

14 

3.2 Public transport in MATSim 

In addition to the flexible trips planned by the agents, MATSim allows to create a 

transit schedule for the public transportation, containing all the transit lines, the 

routes, the stations and the departure times. Each vehicle is separately simulated in 

the traffic flow simulation. Depending on the vehicle type and the number of boarding 

or alighting agents, a vehicle can be delayed or be too full to allow the boarding of 

new passengers. If the transit vehicles are using the same lane as the cars, they 

may be delayed by the congestions occurring along this way. 

Regarding boarding and alighting, two kinds of doors operation type are available: 

“parallel” or “serial”. A parallel door operation mode allows simultaneous boarding 

and alighting, whereas a serial mode gives priority to alighting passengers. In this 

project, the buses of the Singaporean public transport system are studied: the front 

door is normally used to board and the rear door(s) to alight. It means that these op-

erations are done simultaneously and thus the door operation mode that must be 

chosen is “parallel”.  

The “dwell time” is the time during which a bus has to stop at a bus station to allow 

passengers to board or alight. In MATSim, the dwell time for a parallel door operation 

mode is calculated as follow: 

�� � ����� � 	
 � � �� ��� (3.1) 

where 	 and � are number of boarding and alighting passengers, respectively. Cor-

respondingly, � and � represent the marginal time for boarding and alighting per 

passenger. Finally, �� is the dead time spent on opening and closing the doors. 

In this project, it has been decided to take into account the research of L. Sun (Sun, 

Tirachini, Axhausen, Erath, & Lee, 2013), in which the amount of on-board passen-

gers has an effect on the dwell time (see 2.1.1). The combined dwell time model 

found in the research is showed thereafter: 

�� � ����� � �� � ��  � � ������� � �
 ���
 � � �	 � ��� (3.2) 

where �� is the number of on-board passengers, � is the critical occupancy and the 

other notations are the same as in Equ.(3.1). The recorded dwell time is here the in-

terval between the first and the last-nth activities, so only �� � �� intervals are taken 

into accounts.  
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Figure 6: Explanation of dwell time for 2-doors bus, L. Sun, 2013

The doors operation time was not taken into account in Sun’s research, but it is re-

quired in this study. A supplementary waiting time �� is thus added, representing the 

door operations (opening = 1 sec, closing = 1 sec) and the deceleration and acceler-

ation times of the bus (acc. + dec. = 8 sec). Therefore, the dwell time is as follows:   

�� � ����� � �� � ��  � � ������� � �
 ���
 � � �	 � ��� ���  (3.3) 

In addition, L. Sun observed a linear relation between the standard deviation of ob-

served dwell time over all the types of buses studies. Thus, the standard deviation 

formula is used in this study:  

�������� �  !   �!� � ��" (3.4) 

where ��" is the predicted dwell time (the dwell time calculated with Equ.(3.3)) and  

��� the observed dwell time. It allows calculating the dwell time following a normal 

distribution. To keep only consistent results (and to not consider boarding or alighting 

times of e.g. 0.1 sec), a minimum is set to ��"# . The dwell time is calculated as fol-

low: 

�� � ���$%&'��(�)*�')�+�)&�,-.+�/!/�
 -.+�/!0�1
 -.+�/!/�# 2 (3.5) 

The next figure gives an overview of the differences that can occur between this new 

model and the normal implementation of MATSim. The occupancy of the bus repre-

sented below is high. The number of agents boarding and alighting is equal in the 

two cases. 
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Figure 7: Dwell time according to the model used 

Finally, a last point concerning the boarding and alighting operations in MATSim can 

be noticed: when a bus arrives at a station, all the agents waiting get on this bus. If 

the following bus arrives at the station before the end of the boarding in the first bus, 

the agents who haven’t been boarding yet are going to continue to board the first bus 

and are not going to get on the second one, which is less full, as it is the case in the 

reality. If this situation occurs, the following bus is going to overtake the first one and 

continue to the next station. 
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4 Scenario 

In this section, the data used for the simulations of this project (supply and demand) 

are summarized and the method used for the simulations is explained. 

4.1 Setup 

4.1.1 Supply 

For the simulation experiments, a corridor with a total length of 20km is considered. 

From 6 a.m. the corridor is constantly served in one direction by a constant number 

of buses with headway of 2 minutes. Transit stops are placed each 600m along the 

corridor. 

The chosen bus type is Mercedes-Benz OC500LE: it has a maximal capacity of 90 

passengers including 34 seats. Its length is 12.5m and its width is 2.5m. There are 

two doors, the front door using for boarding and the rear door for alighting. According 

to the L. Sun’s results (2013), the boarding time for this kind of bus is set to 1.49 sec 

per person, the alighting time to 1.29 sec per person and the critical occupancy is 

55.98 passengers. 

The free flow speed is the same for the buses and for the cars and it is set to 50 

km/h. As the two kinds of vehicles use the same lane, they can interact with each 

other and may be both affected by congestion. 

Finally, the walking speed is set to 3 km/h. The facilities (“Home” and “Work”) are lo-

cated along the corridor at a maximum distance of 2 km from them. The walking dis-

tance is calculated multiplying the beeline distance to the “Home” location by 1.3.  

4.1.2 Demand 

On the demand side, 20’000 travelers are considered. The data set results from a re-

laxed demand after 2’000 iterations on the corridor. Three modes are available for 

each agent (“Car”, “Bus” and “Walk”) without restrictions. At this point, 11’214 agents 

use the public transport system as main mode (56.1%), 7’365 agents drive a car 

(36.8%) and 1’421 agents walk (7.1%). 
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Figure 8: Trip distribution - Original state - With Car 

On the one hand, the “Home” locations are situated along the first half of the corridor, 

following a normal distribution. On the other hand, the “Work” facilities are situated 

along the second half of the corridor, following a normal distribution, too. Therefore, 

there is only one activity pattern type: “Home” => “Work”.  

Figure 9: Corridor Scenario, Supply and Demand, A. Chakirov, 2013

The typical working duration is 8 hours, but a minimal duration of 7 hours is allowed. 

The opening time is set at 8 a.m., the closing time at 17 a.m., whereas for the 
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agents, the latest start time is at 10 a.m. and the earliest end time is at 17 a.m. If 

some agents work out of this period of time, they will receive a penalty. 

Another set of agents, containing 12’331 agents, was created from the initial set. It is 

composed only by the agents using the public transports (11’214 agents, 90.9%) or 

walking (1’117 agents, 9.1%)). Due to the lack of other vehicles on the lanes, this set 

avoids the congestion effects created by the cars and only focuses on the public 

transport behavior. 

Figure 10: Trip distribution - Original State - Only PT 

It is important to precise that the number of agents using the public transport system 

along the corridor is high in comparison with the supply, despite the fact that the 

headway is really small (2 minutes). Thus, phenomena of full buses or even bus 

bunching may occur during the peak period. An example of the data used in this pro-

ject is given in the next figure:  
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Figure 11: Effects of full buses and bus bunching 

In this time-space diagram, it can be observed that some buses are full and don’t 

stop at facilities. It is the case for the bus number 37 which doesn’t stop at stations 

12, 13 and 14. In addition to that, the bus bunching effect is observable: since the 

beginning of its schedule, many passengers get on the bus 35. The next bus, bus 36, 

has fewer passengers who need to board. Therefore, this bus is faster and comes 

closer to bus 35. And the closer are the two buses, the shorter is the period of time 

that passengers have to come at station between the departure of bus 35 and the ar-

rival of bus 36. At station 12, the bus 36 is already behind bus 35. After that, they 

stay together, overtaking each other.   

4.2 Simulation Approach 

4.2.1 Utility Functions 

As written before, the iterative learning mechanism of MATsim uses an utility-based 

approach. Each iteration, agents choses one daily plan from their own set. At the end 

of the simulation’s day, executed daily plans are evaluated by summing the activity 

and trip related part of the utility:  

3"456 � 7 �3589
:  39;:"
:�
6
:<=  (4.1) 
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where 3"456 is the total utility of a daily plan, � is the total number of activities or trips, 

3589
: is the utility to performing an activity ) and 39;:"
: is the utility of the trip to activity 

). Normally, the utility to perform an activity has a positive value and the utility to 

travel is negative. Negative utility can be called “disutility”. 

The utility to travel is calculated using parameters >:. They represent the utility costs 

per unit of time (�:) or distance (�:). In this project, the trip related utility is calculated 

as follow: 

- For a trip with public transport: 

3"9
:
? � >@
"9 � �:
@
"9  >A
"9 � �:
A
"9  >A54B � ,�:
5  �:
C1  >�
"9 � �:
"9  D"9  (4.2) 

where 3"9
:
? is the utility for a person E on his trip to activity ). �:
@
"9, �:
A
"9 and 

,�:
5  �:
C1 represent the durations spent in the vehicle, waiting at facility and walking 

to/from the station respectively with their corresponding parameters >:. >�
"9 is the 

cost per distance to travel with a public transport,  �:
"9 is the covered distance and 

D"9 is a fixed cost. 

- For a trip with car: 

385;
:
? � >9;
85; � �:
9;
85;  >�
85; � �:
85;  D85; (4.3)

where 385;
:
? is the utility for a person E on his trip to activity ), �:
9;
85; is the travel 

time, >�
85; is the cost per distance for traveling with a car,  �:
85; is the covered dis-

tance and D85; is a fixed cost. 

- For a walk trip: 

3A54B
:
? � >A54B � �:
A54B (4.4) 

where 3A54B
:
? is the utility for person E on his trip to activity ) and �:
A54B is the dura-

tion of the trip. 

Then, the performing utility is calculated following the so-called “Charypar-Nagel 

scoring function” using a logarithmic form: 

3589
:��589
:� � >589 � �F
: � GH��
9IJK
L
9M
L

� (4.5) 

where �589
: is the actual duration of performing an activity ), �F
: is the activity “typical” 

duration (here, “Work” is 8 hours) and �N
: is a calculated duration. According to K. 

Nagel (www.matsim.org), this last duration is largely irrelevant and aims to shift the 
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function up and down, i.e., it determines how much you lose if you drop an activity 

completely. �N
: is set to �F
: � O�P�����Q#�F
:).  

>"C;R is normally positive: it sets the gain of performing an activity. But if the activity 

is performed outside the opening time of the facility (from 8 a.m. to 5 p.m., see sec-

tion 4.1.2), the agents are penalized by the opportunity costs of time �>"C;R.  

4.2.2 Crowding effects 

The effects of crowdedness are actually not implemented in MATSim: if a public 

transport vehicle has some free places, the agents waiting at the stations are going 

to board without taking into account the disutilities caused by crowdedness (see sec-

tion 2.1). 

In this project, the crowdedness effect is implemented as a penalty and calculated in 

the scoring phase: if an agent suffers from crowding during a trip, a disutility depend-

ing firstly on the trip duration is added to the traveling disutility.  

Two utility models used by A. Tirachini (2013) in his research about the crowding in 

public transport systems were chosen. The model notation used by A. Tirachini is 

kept: 

M3: Standee density and proportion of occupied seats as source of disutility  

  3ST
:
? � 3"9
:
?  >�C6 � ��C6 � �:
@
"9  >UC59 ������VUC59 � �! W
 �� � �:
@
"9 (4.6) 

where  3"9
:
? is the public transport utility (Equ. 4.2), ��C6 is the density of standees 

per square meter, VUC59 is the proportion of occupied seats and �:
@
"9 the traveling 

time in these crowding conditions. >�C6 and >UC59 are parameters of the multinomial 

logit model and were determined using a set of real data collected in Sydney, Aus-

tralia. 

This function results from a crowding disutility estimation made by Henser and al. 

(2011), used in order to estimate the willingness to pay to get a seat as a function of 

the number of people seating and standing. A. Tirachini (2013) showed that the den-

sity of standees alone wasn’t enough to properly account for the disutility of crowding 

and that the availability of seats also plays a role in the choice made by respondents. 

The first crowding penalties appear when the proportion of seat is higher than 25%. 
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M4: Load factor as source of disutility 

3SX
:
? � 3"9
:
?  >4R ������(Y"9 � �!Z
 �� � �:
@
"9 (4.7) 

where  3"9
:
? is the public transport utility (Equ. 4.2), (Y"9 is the load factor (number of 

passengers over the number of seats) and �:
@
"9 the traveling time in these crowding 

conditions.�>4R is a parameter of a multinomial logit model and were determined us-

ing a set of real data collected in Sydney, Australia.  

This function was chosen by A. Tirachini (2013) because of the more common ap-

pearance of the load factor in the literature. Another Tirachini’s model added penalty 

when the seat occupancy reachs 90% (Model M5), but the model M4 was chosen 

because of its proximity with to model M3: a crowdedness disutility is added when 

the occupied seat proportion (or load factor, if < 100%) reaches 25% for the model 

M3 and 60% for the model M4. 

To observe the effects of crowdedness, both these models are compared with a “No 

Crowding” Model, 3[�\;�A�
:
? � 3"9
:
? (Equ. (4.2)). 

4.2.3 Parameters 

The parameters used in the simulations were estimated by A. Tirachini (2013) follow-

ing the multinomial logit models described above. The data set (n = 4152 observa-

tions) was a part of a feasibility study of a new metro system proposed in Sydney, 

conducted in 2009 by the Institute of Transport and Logistics Studies at Sydney Uni-

versity. 

In this study, three sets of Tirachini’s parameters are required, according to the used 

model: parameters for model M3, for model M4 and for a model without crowding 

costs. However, the parameters are recalibrated: the value of the parameter corre-

sponding to the public transport trips (>@
"9� is set to 0 and the initial value is added to 

the others parameters, to keep the concordance between them. Thus, the performing 

value is +>@
"9 and it is the only positive parameter. Moreover, the waiting time pa-

rameter (>A
"9) is set to 0. 

As far as the fixed costs for traveling by public transport (D"9� is concerned, a $1.5 

fare is taken to each agent boarding a bus. This cost is converted into utility by the 

marginal utility of money parameter (>8) given in Tirachini’s sets. The traveling costs 

per distance (>�
"9) is assumed to be 0. 
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The cost to travel by car amounts to $10 (D85;) for the car park and $0.15 per km 

(>�
"9) for the travel. These costs are converted into utility by the marginal utility of 

money parameter (>8) given in Tirachini’s sets. 

Finally, if an agent arrives at work later than the latest starting time or finish working 

earlier than the earliest ending time, a negative utility equivalent to the performing 

utility (�>"C;R) is accounted. 

The same kind of parameters classification was used by A. Tirachini (2013) and I. 

Kaddoura (2013) in their study using an agent-based simulator. The following table 

summarized all parameters: 

Table 1: Multinomial logit model parameters 

No Crowding Model M3 Model M4 

]^_`a Performing [utils/h] 1.14 0.48 0.66 

]b UtilityOfMoney [utils/$] 0.153 0.148 0.148 

]c
^d TravelingPT [utils/h] 0.0 0.0 0.0 

]e
^d WaitingPT [utils/h] 0.0 0.0 0.0 

]f
^d UtililityDistancePT [utils/m] 0.0 0.0 0.0 

g^d ConstantPT [utils] - 0.2295 - 0.222 - 0.222 

]d`
bh` TravelingCar [utils/h] - 0.24 - 0.96 - 0.78 

]f
bh` UtilityDistanceCar [utils/m] - 0.002295 - 0.00222 - 0.00222 

gbh` ConstantCar [utils] - 1.53 - 1.48 - 1.48 

]ehij TravelingWalk [utils/h] - 1.5 - 2.22 - 2.04 

]f_k DensityStandees [utils/h] * 0.0000333 * 

]l_hd ProportionSeating [utils/h] * 0.0002 * 

]ia LoadFactorParameter [utils/h] * * - 0.0001 
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4.2.4 Replanning strategies 

The simulations conducted with MATSim are divided into two groups, depending on 

the population that is used: “WithCar” for the population with all agents and “OnlyPT” 

for the population without car. Each population follows different replanning strategies: 

- For 80% of both populations, the “ExpBetaPlanSelector” replanning module is 

used, which changes to another plan if that plan is better. The probability to 

change depends on score differences (www.matsim.org).  

- For 2% of both populations, the “TimeAllocationMutator” replanning module is 

used, which mutates randomly the duration of activities within a specified 

range (www.matsim.org). The value of the mutation range is set at 3600 sec-

onds, i.e., the departure time or the end of work may be moved of one hour for 

2% of the agents. 

- For 2% of the “With Car” population, “ChangeLegMode” replanning module is 

used, which changes the transportation mode of all legs in a plan to a ran-

domly chosen different mode (“PT”, Car” or “Walk”) (www.matsim.org). This 

module is not used with the “Only PT” population in order to keep only the 

public transport and walking modes. 
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5 Agent based Marginal Cost pricing for PT 

As explained in section 2.2, to execute a first-best pricing strategy with MATSim, the 

external effects caused by an agent can be internalized charging him the equivalent 

monetary amount he caused. In MATSim, this internalization is accomplished by 

transforming the amount of money to pay in disutily, i.e., the externality is multiplied 

by the utility of money (parameter >8).  

This study focuses on crowdedness and delay effects within the public transport 

mode through three kinds of externalities: the crowdedness in public transport vehi-

cles, the delay due to passengers boarding or alighting (in vehicle time delay) and 

the increased waiting time for passengers who cannot board a full bus (capacity con-

straint). 

5.1 Crowdedness externalities 

If the occupancy of a bus is already high, a passenger boarding it can create or in-

crease the crowdedness effect, which will be felt by all the passengers already 

onboard. This effect is internalized converting it into a monetary cost: the crowding 

disutility calculated with the multinomial logit model is divided by the marginal utility 

of money (>8) and the found cost is added to the public transport fare that the agent 

has to pay. The externalities induced by the crowding models M3 and M4 are calcu-

lated as follow: 

-��8;�A�:6mST � �>�C6 � ��C6 � �:
@
"9  >UC59 ������VUC59 � �! W
 �� � �:
@
"9�#>8 (5.1) 

-��8;�A�:6mSX � �>4R ������(Y"9 � �!Z
 �� � �:
@
"9�#>8 (5.2) 

5.2 In vehicle time delay 

Each time an agent boards or alights a public transport vehicle, a delay correspond-

ing to the access or the egress time is added to the transit schedule and imposed on 

each on-board passengers. Therefore, the travel time, i.e. the in-vehicle time, in-

creases with the number of agents who gets on and off the bus. 

This effect is internalized calculating the delay caused by an agent during his board-

ing/alighting and multiplying this time by the number of passengers in the bus and by 
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the value of travel time savings (3nn�@
"9). For example, the externalities induced by 

an agent boarding are calculated as follow: 

-��:6oCpq:rCsC45t ���588CUU � �� � 3nn�@
"9 � �588CUU � �� �
uv
wKxuwyz{

uJ
 (5.3) 

where �588CUU is the access time (in hours), �� the amount of onboard passengers 

and 3nn�@
"9 the value of travel time savings to travel by public transport. 

The codes used by I. Kaddoura in his studies (2012-2013) and available in the 

MATSIM playground are modified and reused in this project. 

Figure 12: In vehicle time delay, I. Kaddoura, 2013

5.3 Capacity constraints 

If a transit vehicle arrives at a station and the amount of available places (seating 

and standing places) is not enough to let all agents waiting board, there is a so called 

“capacity constraint” problem. The denied passengers have to wait until a vehicle 

with free places arrives, increasing their waiting time. 

Assuming the onboard passengers are the cause of this disagreement (they occupy 

the bus places), they have to pay for the externalities (increasing waiting time) 

caused. The amount of time lost, i.e., the waiting time until the next vehicle arrives 

times the number of agents waiting, is divided by the number of onboard passengers 

and its monetary cost is internalized in each of them using the 3nn�: 

  -��85"58:9t\�6U9;5:69 ��
9|
}~w��6|

�6
� 3nn�A
"9 ��

9|
}~w��6|
�6

�
u|
wKxuwyz{

uJ
 (5.4) 

where �A
U�" is the waiting time until the next vehicle arrives (in hours), �A is the 

number of agent that are forced to wait, �� is the number of onboard passengers 

and 3nn�@
"9 the value of travel time savings to wait for public transport. 
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In case boarding is denied a second time, the agents in the second bus pay for the 

interval until the third bus arrives at the transit stop, and so forth. 

The codes used by I. Kaddoura in his studies (2012-2013) and available on the 

MATSIM playground are modified and reused in this project. 

Figure 13: Capacity constraints externality, I. Kaddoura, 2013 
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6 Overview Simulations 

The diversity of available populations, crowding effects and externalities allows exe-

cuting several simulations with MATSim in order to measure and compare the effects 

on the agent choices. The possibilities are listed below: 

Table 2: Overview Simulations

No Crowding Model M3 Model M4 

W
it

h
 C

a
r 

No Externalities X X X 

Crowding Externalities O X X 

In Vehicle Time Delay X X X 

Capacity Constraints X X X 

All Externalities X X X 

O
n

ly
 P

T
 

No Externalities X X X 

Crowding Externalities O X X 

In Vehicle Time Delay X X X 

Capacity Constraints X X X 

All Externalities X X X 

 “X” = Simulation executed; “O” = Simulation not executed 

In order to obtain a stable state, it was decided to run 600 iterations before stopping 

the simulations. After 500 iterations, the “TimeAllocationMutator” and the 

“ChangeLegMode” strategies are switched off. It allows to stabilize faster the simula-

tion, the agent using for the last 100 iterations only the best plans they created dur-

ing the first iterations. 
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7 Results 

At the end of each simulation, data concerning the vehicles (load factor, number of 

boarding/alighting at station, externalities produced, etc.), the agents (mode choice, 

score, money paid, etc.) and the behavior of the simulation along the iterations are 

written in PostgreSQL tables.  

In this section, the simulation results are showed and analyzed. The first part con-

cerns the behavior of the simulations along the iterations, the second part shows the 

effect of the new dwell time model, the third part describes the agents and vehicles 

behavior depending on the crowding model or the externality type and the last part is 

about the monetary differences between each type of externalities. 

A unique notation describing the different kind of models is used:  

Table 3: Model notations 

Source of 

disutility 

Any crowdedness 

effect 

Density of standees and pro-

portion of occupied seats Load factor 

Section in 

project 4.2.1 4.2.2 4.2.2 

Notation NoCrowding ModelM3 ModelM4 

7.1 Behavior along the iterations 

The simulations accomplished in the framework of this project showed significant dif-

ferences depending on the type of crowding model used. 

Firstly, the average score is highly dependent on the model used, i.e. the multinomial 

parameters of the logit model. Indeed, average scores of circa 20.5 for the NoCrowd-

ing model, circa 7.0 for the ModelM3 and circa 10.5 for ModelM4 have been found 

on simulations without externalities as well as on simulations with externalities (±0.2). 

These values are set after a few iterations and stay constant along the rest of the 

simulation. The small score variation between the different types of externalities sug-

gests that their use hasn’t a real impact on the score. 
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Figure 14: Score along iterations, CrowdingM3 - No externalities - With Car 

Although the score is stable, the trip distribution varies strongly along the iteration. 

The following figures show the reparation of the departure times and of the en-route 

agents for the simulations using the “OnlyPT” population (no trips with cars, no mode 

choice).  
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Figure 15: Trip distribution along iterations, Only PT - CrowdingM3 - No Externalities

It appears than an important spreading of the trip distribution occurs between the it-

erations 0 and 150: some agents change their departure time and set it earlier or lat-

er (see “Departure”). Thus, the amount of agents traveling at the same time is clearly 

decreased (see “En route”). 

After this state, the agents continue to adapt their journey: the early and late depar-

ture times decreased till a state close to the initial situation. However, the initial peak, 

localized between 08:00 and 08:30, is spread over a longer period, from 07:00 to 

08:30. Logically, the amount of en-route agents is also decreased. 

These great changes in the trip distribution show that the new implementations add-

ed in MATSim (here only the Sun’s dwell time) produce an effect on the agents: first-

ly, some of them move their departure times in order to avoid the peak hour. Then, 
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they come close to the peak again, certainly to increase their performing time. In ad-

dition to that, there is no congestion on the driving lanes due to the remove of car 

driver population. These kinds of results along the iterations are observable in each 

simulation using the “OnlyPT” population, with variation of the number of agents. 

The next figures provide the repartition of departure times and of en-route agents for 

the simulations using the “WithCar” population (car trips allowed, mode choice avail-

able).  

Figure 16: Trip distribution along iterations, With Car - CrowdingM3 - No Externalities 

First of all, the biggest differences with the trip distribution of the “OnlyPT” population 

are the real peaks situated at 08:30 in the departure distribution and at circa 09:00 in 

the arrival distribution. They represent the journeys accomplished by the car drivers: 

as they don’t have to walk to the nearest station and to wait for a bus, they can de-

part later and arrive earlier.  
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Concerning the behavior of the trip distribution along the iterations, the biggest 

changes appear during the circa 100 first iterations: the amount of agents traveling 

during the peak hour drops and a new “peak” is created around 07:00. Then, the two 

peaks continue to increase slowly until they reach a stable state. Moreover, peak 

spreading is slightly observable between 06:30 and 08:00, showing the increasing 

amount of agents that departs earlier.  

The changes occurring in this simulation are smaller in comparison them of the simu-

lations using the “OnlyPT”. The “ChangeLegMode” replanning strategy may be the 

main reason of this difference: agents who undergo too many disutilities can here al-

so change their traveling mode in order to avoid disutilities of traveling by PT. Thus, 

the departure time spreading is smaller. However, the growing of the 07:00 peak 

shows that this spreading exists. The results showed on Figure 16 are the result of 

only one kind of simulation (CrowdingM3 – No Externalities), but the behavior of the 

trip distribution along the iterations is similar for the other simulations. 

7.2 Effects of the new dwell time function 

The new function that calculates the dwell time at station and that were implemented 

in MATSim (L. Sun, 2013 – section 3.2) increase strongly the dwell time if the occu-

pancy of the vehicle is high, that is the case in this project.  

The figures below show the changes on the public transport trip distribution between 

the initial situation (iteration 0) and the 600th iteration of a simulation without crowd-

ing effect and without externalities (for populations “OnlyPT” and WithCar”). A trip is 

called “public transport trip” if the main mode is public transport. The departure time 

is thus the time when the agent quits home and not when he gets on the bus.  
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Figure 17: Trip distribution, effects of the L. Sun's dwell time – No Crowding – No Extern. 

   The two figures above show clearly that the agents adapted their departure time to 

avoid the peak hour and, at the same time, the too full buses. The travel time may be 

longer as when the original dwell time function was used, but an earlier depart allows 

some agents to not come too late at work. 

In the first figure (“OnlyPT”), the trips are better distributed between 07:00 and 09:00 

than in the original distribution. At the original peak hour (08:30), the amount of trips 

is really smaller. 

In the second figure, it appears that the original peak (08:30) is totally spread and 

that a second peak grows around 07:00. It confirms that this peak, already observed 

in section 7.1 is caused by PT users in order to avoid the effects of the new dwell 

time model.  
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Moreover,  an analysis of the boarding time distribution show that the peak that ap-

peared in the initial distribution is totally spread after 600 iterations using the L. Sun’s 

dwell time model:  

Figure 18: Boarding times distribution, NO Crowding – No Externalities 

  

7.3 Behavior according to the simulation type 

The several simulations executed have producted a large amount of data. To keep 

clear the analyze of the results, the data obtained using the “OnlyPT” population are 

separated from the data from the “WithCar” population in most of the cases 

7.3.1 “OnlyPT” population 

The figures below show the trip distributions of the simulations using the population 

“OnlyPT” and containing no externalities. The goal is to obtain a comparison focused 

on the different kinds of crowdedness.  
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Figure 19: Trip distribution per crowding model, Only PT - No Externalities 
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The differences between the models observable in the tables may be small, but they 

confirm that the implementation of a crowdedness effect produces an effect on the 

agents behavior: With use of a crowding model, the 08:30-peak is slightly reduced 

(see “Departures”) and the maximal amount of agents en-route is smaller (circa 130 

less agents for model M4 and circa 300 less for model M3).   

In the next step, the effects of the externality internalization on the trip distribution are 

analyzed. The figures below show the trip distributions for simulations internalizing 

Crowding externalities. 

Figure 20: Trip distribution per crowding model, Only PT - Crowding Externalities 
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Differences between models are in this case clearly observable, showing the impact 

of the externalities on the trip distribution: for departure times, the 08:30-peak is 

strongly decreased and a small spreading of the departures earlier and later takes 

place. Concerning the arrivals, it can be show that more agents arrive early (08:00) 

or late (10:00) at activity if crowding externalities are implemented. The sum of these 

effects has for consequence a decrease of the amount of en-route agents at peak 

hour. 

In addition to that, these figures show clearly that the impact of the model M3 on the 

trip distribution is higher as the impact of the model M4. 

The trip distributions resulting from the internalization of the In Vehicle Time Delay 

and Capacity Constraint externalities follow the same model as the figures above, 

but in a smaller range: the same increases/decreases of the peaks occurs a spread-

ing is observable and the order between the model effects is kept (CrowdingM3 > 

CrowdingM4). Thus, the figures are not drawn in this section but they are available in 

the annexes of the project (Annexes A1 – A5). 

7.3.2  “WithCar” population 

As a reminder, the “WithCar” population contains car drivers that interact with the PT 

system and the agents are allowed to change their mode in a new created plan. The 

next figures show the trip distributions of the simulations using this population and 

containing no externalities, in order to observe the differences between the crowding 

models.  
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Figure 21: Trip distribution per crowding model, With Car - No Externalities 
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Concerning the crowdedness, its effects on the trip distribution is clearly observable 

in these models: the amount of agents departing at first peak (07:00) increases 

strongly and the amount at second peak (08:30) decreases. Knowing that this sec-

ond peak is created by the earlier departure of the PT user (see section 7.1 and 7.2), 

this result shows that crowding effects increase this spreading.  

Furthermore, the arrival distribution is modified from 08:00 to 08:30 (earlier arrival) 

and from 09:00 to 11:00 (later arrival). This two last changes cause a spreading of 

the en-route distribution. The impact of the CrowdingM3 model on the trip distribution 

is slightly higher as the impact of CrowdingM4. In addition to that, a better analysis of 

the car trip distribution shows that a spreading occurs also at 08:30 peak within this 

mode. Thus, the implementation of crowding effects has not only an effect on the PT 

distribution, but also on the car mode, as showed in the figure below: 

Figure 22: Car driver trip distribution, With Car - Crowding externalities 

With regards to mode choice, the percentage of agents using public transport in-

creases for the models with crowding effect: +1.5% (315 agents) for model M4 and 

+3.6% (720 agents) for model M3. Taking account of the figure above, it is probable 

that some of these agents change from car to PT mode to avoid the congestion ef-

fects at peak hour. But these agents aren’t only car drivers: for the model M3 34% 

(245 agents) and for model M4 61% (193 agents) of the mode changing agents are 

going to “Work” by walk.  

Secondly, the figures below show the trip distributions of the simulations using the 

population “WithCar” and internalizing Crowding externalities. 
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Figure 23: Trip distribution per crowding model, With Car - Crowding Externalities 
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The same changes as these occurring in the simulations without externalities can be 

observed, but in a bigger way: the increase of the first peak (07:00) is higher and the 

spreading of the en-route distribution is larger due to the increasing amount of 

agents arriving earlier and later. Thus, the maximum number of agents traveling at 

the same time decreased in comparison with the simulations without crowding effect 

(from circa 7400 agents to circa 7000 agents at peak).  

Concerning the mode choice, the percentage of users traveling by PT is again higher 

as for the NoCrowding model (58.6% for model M3 and 57.2% for model M4, versus 

56.3% for NoCrowding model). But the implementation of Crowding externalities re-

duce the number of agents traveling by PT. The next figure summarizes these re-

sults: 

Figure 24: Percentage of PT users within simulations 

The trip distributions resulting from the internalization of the In Vehicle Time Delay 

and Capacity Constraint externalities follow the same model as the figures above 

(Figures 22 and 23), but in a smaller range. They are not inserted in this section, but 

are available in the annexes of the project (Annexes A6 – A10). However, the per-

centage of PT users according to the externality type for model M3 is drawn below: 
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It can be observed that the percentage of PT user decreases if externalities are in-

ternalized, in particular the Crowding externalities. The In Vehicle Time Delay and 

Capacity Constraint externalities obtain a percentage almost similar. These results 

are observable with the three kinds of models (model M3, model M4 and NoCrowd-

ing model). A summary of the mode repartitions is available in the annexe of this pro-

ject (A15). 

The reduction of the PT user number after implementation of externalities is an effect 

that can (and sometimes that has to) occurs when a pricing strategy is implemented: 

the PT users who have a bigger flexibility (e.g. other traveling modes available, more 

flexible working times) are pushed to change their plans, which benefit the agents 

who cannot modify their plans. 

7.4 Behavior per station 

The next figure summarizes the amount of agents boarding and alighting at each sta-

tion along the whole day of simulation. No externalities are implemented. 

Figure 25: # agents boarding and alighting pro station along the whole day - No externalities 

Some observations can be done according to this figure. Firstly, the results obtained 

by the three simulations using the “OnlyPT” population are exactly the same. The 

main reason is the impossibility for the agent to change their mode, i.e. they have to 
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travel by public transport. Secondly, for the simulations using the “WithCar” popula-

tion and containing crowding effect, the number of agents increases for the stations 

9-17 (boarding) and 19-33 (alighting). These additional agents are certainly the 

agents who change their traveling mode to PT (see section 7.3.2). Furthermore, the 

high number of agents boarding at the first station is only due to the “boarding” of the 

bus driver at the beginning of a bus schedule. This information has then not to be 

taken into account in the analysis. 

But the most important information may be the “hollow” observable in the boarding 

distribution. Since the “Home” location density follows a normal distribution, the 

boarding distribution should also follow this distribution. On the contrary, the distribu-

tion found suggests that agents situated along the stations 9 to 18 rather use the car 

than the public transport vehicles. To explain this behavior, the occupancy at differ-

ent periods of the day must be studied. 

The next figure represents the average load factor in the buses that travel between 

08:15 to 08:45, that mean during the peak seen in the trip distribution analyzis. 

Figure 26: Load factor and boarding pro station around 08:30, Only PT - No Externalities 

This figure shows that the average load factor is maximal between the 10th and the 

20th station. That means that all the vehicles that arrive at these stations during this 

period of time are full (load factor = 90 users / 34 seats = 2.65). The average number 

of agents boarding confirms this fact: there are almost no boarding between the sta-

tions 10 and 14 and then the number increases slowly. Thus, for agents situated 
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along these stations, it is worthwhile to to depart earlier or later (or to change their 

traveling mode if this replanning strategy is allowed) if they want to board a bus.  

Secondly, the figure 27 show that the implementation of crowding effects in simula-

tion ameliorate slightly the situation: the load factor is smaller at stations 6, 7 and 8 

for the crowding model M3 and M4. Moreover, if externalities are implemented, the 

situation is even better. The next figure represents the same situation as above, but 

with the simulation in which the three kinds of externalities are implemented. It is 

clearly observable that the average number of agents boarding during this period is 

smaller and that the buses are full along a smaller part of the corridor. The increased 

spreading of the trip departure distribution has certainly allowed this better state. 

Figure 27: Load factor and boarding pro station around 8:30, Only PT - All Externalities 

Moreover, an analysis of the load factor before the peak shows that more agents are 

boarding earlier if externalities are implemented. 

7.5 Analyses of the vehicles travel times 

The travel time of the public transport vehicles varies according to congestion state 

of the corridor and the dwell times at stations. A vehicle undergoing no congestion 

effect and with nobody getting on need 1440 seconds (24 minutes) to accomplish the 

whole trip along the corridor.  
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The next figure shows the average travel times depending on the period of the day 

for all the kinds of simulations done with the “OnlyPT” population 

Figure 28: Travel times – Only PT 

It is observable on this figure that the travel time increases a lot between 06:00 and 

11:00. It is totally normal, knowing that most of the trips occur during this period. The 

variation at peak within the types of simulations is small, but the travel times of the 

simulations using the crowding model M3 and, in a smaller rate, the crowding model 

M4 are shorter at the peak and are longer out of it. This is a consequence of the trip 

distribution spreading caused by the crowdedness effects and the externalities. 

Then, the next figure illustrates the travel times obtained with the simulations using 

the “Withcar” population. To make it more understandable, an average travel time 

pro crowding model is drawn. Indeed, the variation between the simulations of a 

same model (different kinds of externalities) is small enough to group all the data to-

gether and average them. 
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Figure 29: Average travel time along the simulation day 

Here, bigger differences are observable: the travel times resulting from model con-

taining crowdedness effects are smaller at peak and higher before and after. This re-

sult confirms that the adaptation of the agents plan to avoid the crowding effects has 

an effect not only on the public transport system itself, but also on the congestion 

states along the corridor. The implementation of crowdedness effects may reduce 

the congestion.  

7.6 Analyses of the externalities 

The externalities internalized by each agent, i.e. the money each agent has to pay, 

change a lot depending on the kind of simulation or on the period of the day. Most of 

the monetary charges are situated between $0.5 and $2.0, which is conceivable, 

knowing that the price of a PT ticket is $1.5. The maximum external fare is $5.6 and 

was internalized during the simulation OnlyPT_NoCrowding_AllExternalities. All the 

fares higher than $4.4 come from this simulation and the other one containing the 

Capacity Constraint externalities (OnlyPT_NoCrowding_CapConstrExternalities). For 

the simulations that use crowding models, the higher fare is found when all the ex-

ternalities are internalized and its maximum is $4.4 for model M3 and $4.2 for model 

M4. Finally, it is interesting to see that the maximum fares for models using the popu-

lation “WithCar” are lower than these using the population “OnlyPT. It can be ex-
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plained by the fact that the agents of simulations “WithCar” undergo congestion disu-

tility at peak hour (longer travel time = more traveling disutility) and that this disutility 

is added to the externality disutility. In the simulations “OnlyPT”, this supplementary 

congestion disutility doesn’t exist and thus agents can internalize more externality 

disutility and obtain the same score as agent from the “WithCar” population. 

Figure 30: Maximal fares paid 

Furthermore, it is interesting to check the sum of all fares produces by each simula-

tion. The next model summarizes these results: 

Figure 31: Sum of fares pro simulation 
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Firstly, it is observable that the fares paid because of the In Vehicle Time Delay ex-

ternalities are small in comparison with the others. There is little increase between 

the simulations with crowding models and without crowding model and between the 

“OnlyPT” and the “WithCar” simulations. This last result seems to be in contradiction 

with the fact that the higher fares are greater for the “OnlyPT” simulation than for the 

“WithCar” simulations. An explanation may be that because of the congestion effects 

along the corridor, the time in crowded bus and the waiting time at facility are higher 

and increase the Crowding and Capacity Constraint externalities respectively. 

Moreover, it is normal to see that the sum of fares is higher for the simulations con-

taining all externalities. It is important to remark that the Crowding externalities can-

not be implemented in the simulations using NoCrowding model. This is certainly 

why this sum is smaller for these simulations.  

Finally, the sum of fares resulting from the Crowding externalities is higher for the 

model M3 as for the model M4. The reason come certainly from the formula imple-

mented, knowing that the fares to pay for the same time is higher with model M3 as 

with model M4. 

But the most interesting point is the behavior of the simulations using the Capacity 

Constraint externalities: the sum of these externalities is smaller if a crowding model 

is used. As this externality is strongly dependent on the amount of full buses during 

the simulation (more full buses = more waiting at station = more externalities), it sug-

gests that the use of the crowding model reduce strongly the problem of full buses.  

However, this result must be taken carefully. Indeed, an analysis of the fare sum 

along iterations shows that this sum “jump” after the 500th iteration, especially for the 

NoCrowding simulations. It means that the switch off of the replanning functions 

(“TimeAllocationMutator” and “ChangeLegMode”) has an important effect. The next 

figure depicts this situation: 
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Figure 32: Capacity Constraint externalities, sum of fares paid along iterations 

To evaluate if this “jump” has a real impact on the function or if this behavior is nor-

mal after 500 iterations, the same simulation was ran again with 1500 iterations. The 

behavior along the iterations is showed below. 

Figure 33: Capacity Constraint externalities, 1500 iterations 

The figure above shows clearly that the sum of fares paid should normally continue 

to go down after 500 iterations (particularly between the iterations 650 and 700) and 

stabilize after circa 1100 iterations. A smaller “jump” is visible after the switch off of 

the replaning methods (after 1400th iteration), but in a smaller scale as after the 500th

iteration.  

These results suggest that the simulation NoCrowding_OnlyPT and NoCrowd-

ing_WithCar wasn’t stable enough to be stopped. This situation could lead up to a 

renewal of each simulation, but, knowing that the sum of fares paid with this model is 
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always higher after 1500 iterations than the sum of fares resulting from the model 

M4, it has been decided to keep the data used until now.  

In addition to the effects described above, it is observable in the Figure 32 that the 

simulation behavior is completely different depending on the population used (“On-

lyPT” or “WithCar”). If the population contains only public transport, the sum of fares 

paid decreases till the 100th – 150th iteration and increase again to reach a level 

close to the model using the population “WithCar”. This behavior results from the trip 

distribution spreading analyzed in section 7.1 and is observable for all the simula-

tions using “OnlyPT” at different scales. Concerning the “jump” after 500 iterations, it 

is especially observable in the simulations taking into account the Capacity Con-

straints externalities, but in a smaller scale than the example described above. 

7.7 Fares relations 

In order to understand the behavior of externalities distribution and to allow the de-

velopment of a Second-Best pricing strategy, relations between the fares paid by 

each agent and some of the parameters of the simulation have to be found. 

Firstly, the next figure gives the average fares paid according to the facility of alight-

ing and the period of the day for the simulations that include all externalities. In addi-

tion, to that, the standard deviation of the fares paid according to these two parame-

ters is represented. 
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Figure 34: Fares paid, Average and Standard deviation – All Externalities 

The first figure shows clearly that the higher average fares occur from 07:30 and 

09:30. That’s in relation with the trip distribution and the fact that most of the working 

facilities are located along the last bus stations of the corridor. Then, observation of 

the second figure shows that the higher average fares are distributed with a greater 

standard deviation as the lower. However, a focus on the facilities 18 to 21 from 

07:30 to 09:00 shows that although the average fares are the higher of the simulation 
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day, the standard deviation keep average value in comparison with the last facilities. 

Thus, it suggests that the fares keep a high but stable value at this period. 

Secondly, the analysis of the results allows finding a relation between externalities 

and trip duration. For example, the next figure represents this relation for the Crowd-

ing externalities within the two models M3 and M4. 

Figure 35: Relation Fares - Trip duration, Crowding externalities 

For this kind of externalities, the relation is clear: a polynomial function and even a 

linear function can be used to describe the behavior of the models M4 and M3 re-

spectively. The behavior of the function can be described as “longer the trip, higher  

the fare”, that is not surprising knowing that the initial functions depends strongly on 

the travel time (see Equ.(5.1) and Equ.(5.2)). But if the fares of model M3 seems to 

always increase with the trip duration, the fares of the model M4 stop to grow after 

reaching a maximum of around $2.3 and a trip duration of circa 1800 seconds. 

As regards to the In Vehicle Time Delay externalities, another clear relation has been 

found:  
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Figure 36: Relation Fares - Trip duration, In Vehicle Time Delay externalities 

The variation of the results seems to be greater than in the Figure 35, but the range 

of results is here smaller (from $0.0 to $0.9). Thus, linear relations can well describe 

the fare behavior over the trip duration. It suggests that the agents traveling during a 

smaller period cause more externalities than the agents traveling during a longer pe-

riod. That can be explained by the fact that agents traveling fewer board at stations 

situated farther on the corridor, and that the buses arriving at these stations are al-

ready highly occupied. As the In Vehicle Time Delay externalities depend on the 

number of passengers onboard when a new one get on, it is normal than the users 

boarding later pay more externalities. 

Finally, the relation between the fares produced by the Capacity Constraints exter-

nalities and the trip durations is represented:  
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Figure 37: Relation Fares - Trip duration, Capacity Constraint externalities 

Here on the contrary, there is no clear relation observable. On the one hand, the re-

sults deriving from the simulations using the model M3 seem to be more grouped 

(they stay below $2), but on the other hand, the variation of the results from No-

Crowding models is high. The possible non-stable state of these last simulations 

(see section 7.6) may be the reason of this high variance. 

However, it is possible to find better relations by focusing on the facility of alighting. 

Indeed, if an agent alights early, his Capacity Constraint externality is smaller. That’s 

explainable by the fact that most of the buses become full in the middle stations be-

cause of the higher demand around these facilities. In addition, it can be observed 

that the Capacity Constraint externalities are almost zero if small trips are accom-

plished to the facilities situated far away on the corridor. The explanation may be that 

the agents that board late are not the cause of the externalities, but the agents that 

board early are because they stay longer in the bus and prevent many other agents 

to get on. 
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Figure 38: Relation Fares - Trip duration, Capacity Constraint externalities, stations 26-34 
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8 Second-best pricing 

The methodology followed in section 7 can be qualified as First-Best pricing strategy: 

the externalities depend on several parameters that vary over time (bus occupancy, 

number of agents waiting at station, etc.) and are thus different for each agent. This 

kind of pricing may be inapplicable in a real situation. That’s why a Second-Best pric-

ing strategy has to be developed.  

In this project, the opportunities given by the Smart Card system used in Singapore 

can be exploited. Knowing that the boarding and alighting times are recorded and 

because of the good relations found in section 7.7, a pricing strategy using the trip 

duration is developed. It uses several functions given by the relation between the ex-

ternalities (or fares) to pay and the trip duration. The functions are polynomial (sec-

ond degree) and are designed using trend lines models available on the software 

Tableau. It was decided to use only the data of the model M3, because the results of 

the precedent sections show their effect on the trip distribution is higher than these of 

model M4.  

Concerning the externalities resulting from the Crowding and the In Vehicle Time De-

lay externalities, it has been showed in section 7.7 that the relation between trip du-

ration and money paid was strong. It has thus been decided to use this relation in the 

pricing strategy by make depend on the trip duration the fares that passengers have 

to pay. In addition to that, to increase the accuracy of the strategy, the functions 

“fare/trip duration” vary according to the alighting time. The day has been divided in 

six parts: on the one hand, if a passenger alights from the beginning of the simulation 

to 06:30 or from 10:30 to the end of the simulation, no externalities are added. On 

the other hand, the period of time situates between 06:30 and 10:30 is divided in four 

equal periods of one hour each. For each of these periods, a polynomial function of 

the fare paid over the trip duration is implemented. The coefficient of determination 

R2 has a value situated around 0.8 – 0.9 for the Crowding externalities functions and 

around 0.4 – 0.5 for the In Vehicle Time Delay externalities function. This worse re-

sult is compensated by the fact that the standard error of the function is situated 

around $0.04, which makes it accurate, too. The parameters of the polynomial func-

tions can be found in the annexes (A16).  

Concerning the Capacity Constraint externalities, the results developed in section 7.7 

show that their relation with the trip duration isn’t so great that the other kinds of ex-

ternalities. To solve this problem, it is decided to divide the alighting facilities in three 

groups (from station 1 to 12, 13 to 17 and 18 to 34). The groups have been chosen 
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because of the similarities of behavior of the trend lines, as represented in the next 

figure: 

Figure 39: Fares pro trip duration, groups of stations 

As the externalities caused by the group containing the stations 1-12 and the amount 

of data are smaller, it has been decided to not add Capacity Constraint fares if pas-

sengers are alighting at these stations. The parameters of the polynomial functions 

used can be found in the annexes (A16). 

Using these functions, two simulations are conducted: the first one using the “On-

lyPT” population, the second one the “WithCar” population. The parameters from the 

multinomial logit model remain the same as these used for the simulations using the 

crowding model M3. The replanning strategies are also the same (2% ChangeLeg-

Mode, 2% TimeAllocationMutator), as well as the number of iterations (600 itera-

tions) and the time at which the strategies are switched off (after 500 iterations). 

The results of the trip distribution for the population “OnlyPT” are showed below. The 

distribution found with the second-best pricing strategy is compared with the results 

of the simulation without externalities and without crowding (On-

lyPT_NoCrowding_NoExternalities) and with the simulation using the crowding M3 

model and internalizing the three kinds of externalities (On-

lyPT_ModelM3_AllExternalities). Later in this section, to increase the clarity of the 

text, this last model is called “reference simulation” or “reference model”. 
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Figure 40: Second-Best pricing, Only PT 

Firstly, it can be observed that the second-best pricing strategy has a positive effect 

on the trip distribution: the amount of agents traveling at peak hour is smaller than 
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without crowding or externalities and the peaks at 07:00 and 08:30 are slightly 

spread. However, greater differences with the trip distribution of the reference model 

are observable: the number of agents departing from 07:00 to 08:30 is higher, the 

number of agents arriving late also and it results to a trip distribution closer to the 

model without crowding effect than to the “goal” model.  

For the simulation using the population “WithCar”, the trip distribution of the Second-

best pricing strategy is compared with the same models as in figure 40. The results 

are showed below. 

Figure 41: Second-Best pricing, WithCar 
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Here again, the implementation of the Second-Best pricing model ameliorates slight-

ly the trip distribution along the day (the amount of en-route passengers is lower than 

the model without crowding/externalities). But a great spreading of the agents travel-

ing can be observed on the left side of the en-route trip distribution. This result is due 

to the high amount of agents arriving later than in the reference simulation. 

Concerning the mode repartition, the public transport mode contains 59.6% of the 

agents for the Second-Best pricing simulation. This percentage is situated in the 

same range as the results obtained with implementation of the reference model (see 

figure below). Thus, it may confirm that this second-best pricing strategy is working 

well, because of the proximity of this result with the first-best pricing strategy. How-

ever, the percentage of PT user is slightly too high in comparison with the result of 

the reference model for population “WithCar”. 
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Figure 42: Percentage of agents using PT 

Finally, a view on the final sum of fares paid by agents shows that this sum is really 

close to the sum of externalities found with the reference model. 

Figure 43: Behavior of the Second-Best pricing simulation along the iterations

In addition to that, it can be observed that the behaviors of the simulation using “On-

lyPT” are similar between the first-best and second-best models, but in a smaller 

range for the second-best strategy. Knowing that this behavior comes from the 

spreading of the trip distribution along the first iterations (see section 7.1), it may be 

suggested that this spreading effect is smaller for the second-best pricing strategy. 
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In summary, these results shows that this implementation of a Second-Best pricing 

provides an amelioration of the situation, but in a smaller scale as with the use of a 

First-Best pricing strategy depending on the same parameters. In particular, the trip 

distributions are rather different: while the agents of the reference simulation seem to 

rather depart early to avoid the disutilities of peak hour, the agents of the Second-

Best pricing simulation rather arrive later. An optimization of the parameters may 

bring closer the two results. 

Finally, it is important to talk about the feasibility of this kind of pricing strategy. On 

the one hand, knowing that the boarding and alighting times of each agent are rec-

orded, the technical constraints of implementing a Second-Best pricing strategy may 

be solved with small adjustments of the Smart Card system. On the other hand, the 

informations that need to be given to the users before the introduction of the pricing 

scheme must be clear and well explained. Indeed, a pricing strategy can only bring 

to the expected results if the repartition of the fares is totally understood by the users 

of the system. If not, the users cannot have the appropriate behavior that should 

permit them to optimize their trip.  
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9 Conclusion 

The recent researches accomplished on friction effect at boarding and alighting (L. 

Sun, 2013), on crowdedness effects within the public transport vehicles (A. Tirachini, 

2013) and on delay externalities occurring along a bus line (A. Kaddoura, 2013) have 

been for the first time grouped, implemented and simulated within the agent-based 

simulator MATSim. The main conclusions found by analyzing the simulation results 

can be summarize in four considerations. 

Firstly, the implementation of the new dwell time model developed by L. Sun (2013) 

and describing the friction effect at facility has showed that the dwell time may be 

strongly increased if boarding occurs in a rather to high filled bus. Therefore, the 

dwell time increases lead up to a prolongation of the travel time and force the agents 

to adapt their plans to this new parameter. It is showed in this project that the peak of 

boarding agents that exists in the original trip distribution (i.e. using the normal 

MATSim dwell time model) has been totally spread, the number of agents boarding 

during the 5-minutes peak time decreasing from circa 475 to circa 350 agents. Ac-

cording to these results, it may be necessary to implement definitively this model in 

the MATSim code. However, the special state of the corridor used for the simulation 

(Demand >> Supply, many full buses) may have accentuated an effect that occurs in 

a smaller scale in real PT system. 

Secondly, the addition of crowding effects on the travel disutility has lead up to the 

desired results: peak spreading, earlier departures of PT users, diminution of the 

travel times at peak and increasing of the percentage of PT users. The last point 

even suggests that the implementation of a crowding effect may ameliorate the con-

gestion state of the roads along the corridor, because the number of private user is 

reduced by the mode change of some of them to the PT mode. But these results 

must be taken carefully: in this project, the implementation of crowding effects in 

MATSim hadn’t for goal to modify the trip distributions to obtain a better state (that’s 

the role of the externalities, see below), but to recreate the passenger behavior 

which can be observed in a real network. Thus, the next step would be to simulate a 

real network and to compare data obtained from the two crowding models (e.g. trip 

duration) with the real data, in order to determine which model is closer to the reality.  

Thirdly, the implementation of different kinds of externalities (Crowding, In Vehicle 

Time Delay and Capacity Constraint externalities) has produced the desired effects 

on the agent populations, increasing the benefits obtained by the implementation of 

the new dwell time model and the two crowding models (better distribution of the de-
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parture, diminution of the travel time, etc.). In addition to that, the decrease of the 

number of agents using PT when the amount of implemented externalities increases 

has showed that the agents in MATSim reproduced also behaviors observable in the 

reality: PT users who have a bigger flexibility (e.g. other traveling modes available, 

more flexible working times) make some changes in their plans in order to avoid the 

periods where the fares are higher. Therefore, these changes reduce the number of 

people traveling at the most critical times, which benefit the agents who cannot modi-

fy their plans. The effects of First-Best pricing strategies are thus completely design-

able with MATSIM. 

Fourthly, the almost linear relations found between the fares paid and the trip dura-

tion was reused to develop a Second-Best pricing strategy that can be implemented 

in Singapore. Indeed, the Smart Card system actually in use within the public 

transport system records the boarding and alighting times of each user. After simula-

tion, a comparison with the First-Best pricing strategies gives some contrasted re-

sults: on the one hand, the trip distribution is better spread in comparison with “emp-

ty” pricing model (without crowding models and externalities); on the other hand, alt-

hough some results such as the amount of fares paid or the mode repartition are 

similar, the Second-Best pricing model has created a trip distribution strongly differ-

ent as the First-Best Pricing scheme (with crowding model and all externalities) with 

which it was compared. 

If an optimization of the actual model could be appropriate, it must be discussed. In 

order to increase the accuracy of the Second-Best strategy, fares have been set not 

only depending on the trip duration, but also on the time of the day and, for the Ca-

pacity Constraint externalities, on the facility of alighting. A supplementary refinement 

of the model, with e.g. fares depending on smaller span of times, may increase its 

complexity and make it incomprehensible for the PT users. In addition to that, it may 

be difficult that a so good relation between fares and trip duration is found if the net-

work contains more than one straight way (corridor). In a next step, the use of a 

more complex network may lead up to the design of other type of Second-Best pric-

ing strategies, such as fares per time/facility of alighting.  

In summary, if this project gives a good overview of the consequences of implemen-

tation of new dwell time models, crowding effects or externalities within MATSim and 

offers some ways to design a Second-Best pricing stategy, the use of scenarios 

closer to real cases is a need for the further steps. 
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