Lecture 3: Introduction to Discrete Choice

- Choice Theory
- Utility Theory

Choice Theory

- In every choice process
 - The decision-maker
 - The alternatives
 - Attributes of alternatives
 - Decision rule

The Alternatives (the choice set)

- Must be mutually exclusive
 - The decision maker choose only one alternative
- Must be exhaustive
 - All possible alternative are included
- The number of alternatives must be finite

Utility Theory

- Preferences
- Utility maximization
- Utility function
 - Has a numerical value which depends on attributes of the available options and the individual
 - Its value for one option exceeds its value for another if and only if the individual prefers the first option to the second
 - The individual chooses the most preferred option, which is the one with the highest utility-function value

Mathematical Presentation

c = The choice set: the set of options available to an individual

- i = index for options •
- x_i = attributes of option i –
- s = attributes of the individual •

For any two options *i* and *j* in c, –

U(x1,s)>U(x,,s)

implies that the individual prefers alternative *i* to alternative *j*

A Utility Model of Mode Choice Example

$\mathbf{U} = -\mathbf{T} \mathbf{-} \mathbf{5} \mathbf{C} / \mathbf{Y}$

Mode	Time (hours)	Cost (\$)	Income y=40	Income y=10
Drive Alone	0.50	2.00		
Carpool	0.75	1.00		
Bus	1.00	0.75		

A Utility Model of Mode Choice Example

$\mathbf{U} = -\mathbf{T} - \mathbf{5}\mathbf{C} / \mathbf{Y}$

Mode	Time (hours)	Cost (\$)	Income y=40	Income y=10
Drive Alone	0.50	2.00	-0.75	-1.50
Carpool	0.75	1.00	-0.88	-1.25
Bus	1.00	0.75	-1.09	-1.38

- Choices depend only on preference ordering
- Nonuniqueness of utility functions

A Utility Model of Mode Choice Example

$\mathbf{U} = -\mathbf{T} \mathbf{-} \mathbf{5} \mathbf{C} / \mathbf{Y}$

Mode	Time (hours)	Cost (\$)	Income y=40	Income y=10
Drive Alone	0.50	2.00	-0.75	-1.50
Carpool	0.75	1.00	-0.88	-1.25
Bus	1.00	0.75	-1.09	-1.38
Bus	0.75	0.75	-0.84	-1.13

The Need for Random Utility Models

The Need for Random Utility Models

- Inadequacy of Deterministic Utility Models
 - Lack of information for the modeler about alternatives, about the individual
 - Lack of information for the individual making the choice
 - Similar individuals may make different choices
 - Unexplained variations
- Deterministic Utility Models predict the choices individuals will make with certainty
- Random Utility Models predict the probabilities that each of the available alternatives will be chosen

Limitations of Analysts' Information

- Omission of relevant variables from models
- Measurement errors
- Proxy variables
- Differences between individuals may be ignored
- Day-to-day variations in the choice context may be ignored

Examples of Unexplained Variation in Choice Behavior

Missing variables – example

 $U_{DA} = -T_{DA} - 5C_{DA}/Y + 0.4(A-1)$ $U_{CP} = -T_{CP} - 5C_{CP}/Y$ UB = -TB - 5CB/YY = 15

_	Time	Cost	Utility Values		es
Mode	(Hours)	(Dollars)	0 Cars	1 Car	2 Cars
Drive Alone	0.50	2.00			
Carpool	0.75	1.00			
Bus	1.00	0.75			

Examples of Unexplained Variation in Choice Behavior

Missing variables – example

 $U_{DA} = -T_{DA} - 5C_{DA}/Y + 0.4(A-1)$ $U_{CP} = -T_{CP} - 5C_{CP}/Y$ UB = -TB - 5CB/YY = 15

_	Time	Cost	Utility Values		es
Mode	(Hours)	(Dollars)	0 Cars	1 Car	2 Cars
Drive Alone	0.50	2.00	-1.57	-1.17	-0.77
Carpool	0.75	1.00	-1.28	-1.08	-0.88
Bus	1.00	0.75	-1.25	-1.25	-1.25

Examples of Unexplained Variation in Choice Behavior (continued)

• Measurement errors (difference in travel time) – one car

Percent Individuals	20	50	20	10
DA TT (Hours)	0.40	0.50	0.60	0.70
Car Pool TT (Hours)	0.65	0.75	0.85	0.95
U _{DA}	-1.07	-1.17	-1.27	-1.37
U _{CP}	-0.98	-1.08	-1.18	-1.28
U _B	-1.25	-1.25	-1.25	-1.25
Chosen Mode	Carpool	Carpool	Carpool	Bus

Examples of Unexplained Variation in Choice Behavior (continued)

Differences in preferences among individuals

 $U_{DA}^{1} = -0.75 T_{DA} - 5C_{DA}/Y + 0.4(A-1)$ $U_{CP}^{1} = -0.75 T_{CP} - 5C_{CP}/Y + 0.2\{A-1\}$ $U_{B}^{1} = -0.75 T_{B} - 5C_{B}/Y$ $U_{DA}^{2} = -1.50 T_{DA} - 5C_{DA}/Y + 0.4(A-1)$ $U_{CP}^{2} = -1.50 T_{CP} - 5C_{CP}/Y + 0.2(A-1)$ $U_{B}^{2} = -1.50 T_{B} - 5C_{B}/Y$

Y=15, same travel time and cost as previous examples

Mode	0 Cars Group 1	0 Cars Group 2	1 Car Group 1	1 Car Group 2	2 Cars Group 1	2 Cars Group 2
Drive Alone			-1.04	-1.42	-0.64	-1.02
Car Pool			-0.90	-1.46	-0.70	-1.26
Bus			-1.00	-1.75	-1.00	-1.75
Chosen Mode						

Multiple sources of unexplained variations in choices

Formulation of the Random Utility Model

U = V+e

'i\

- V = The deterministic component
- e = The random component
- U_i ? U_i
- $P(i) = P[U_i > U_j \text{ for all } j \text{ in the choice set}]$

- The dependence of choice on the deterministic component of the utility
- The probability of observing a specific choice

Probabilities in RUM

$$P_{ni} = \operatorname{Prob}(U_{ni} > U_{nj} \forall j \neq i)$$

= $\operatorname{Prob}(V_{ni} + \varepsilon_{ni} > V_{nj} + \varepsilon_{nj} \forall j \neq i)$
= $\operatorname{Prob}(\varepsilon_{nj} - \varepsilon_{ni} < V_{ni} - V_{nj} \forall j \neq i).$

$$P_{ni} = \operatorname{Prob}(\varepsilon_{nj} - \varepsilon_{ni} < V_{ni} - V_{nj} \forall j \neq i)$$

= $\int_{\varepsilon} I(\varepsilon_{nj} - \varepsilon_{ni} < V_{ni} - V_{nj} \forall j \neq i) f(\varepsilon_n) d\varepsilon_n,$

where $I(\cdot)$ is the indicator function, equaling 1 when the expression in parentheses is true and 0 otherwise. This is a multidimensional integral over the density of the unobserved portion of utility, $f(\varepsilon_n)$.

 $f(\varepsilon_n)$. Is the joint density of the random vector $\varepsilon'_n = \langle \varepsilon_{n1}, \ldots, \varepsilon_{nJ} \rangle$

16

Various RUM Models

- The linear probability model
- The Logit model
 - Assumes f(.) is lid extreme value
 - e are uncorrelated over alternatives
 - They have the same variance for all alternatives
- The Probit model
 - Assumes f(.) is a mulitivariate normal
 - With full covariance matrix any pattern of correlation and heteroskedasticity can be accommodated

Various RUM Models

• General Extreme Value (GEV)

Generalization of the extreme value distribution

- Mixed Logit
 - f(.) can have any distribution
 - Two part, one contains all the correlation and heterorsedasticity, the other is iid extreme value

The Binary Logit Model

P_r(1) increases monotonically with

$$\mathsf{P}_{r}(1) = \frac{\exp(v_{1})}{\exp(v_{1}) + \exp(v_{2})}$$

$P_f(1)$ decreases monotonically with v_z

$$P_r(1) = \frac{1}{1 + \exp[-(v_1 - v_2)]}$$

- Only differences in utility matter
- The scale of utility is arbitrary

Number of Independent Error Terms

• The probability is a J-dimension integral over the density of the J error terms

$$P_{ni} = \int_{\varepsilon} I(\varepsilon_{nj} - \varepsilon_{ni} < V_{ni} - V_{nj} \,\forall j \neq i) f(\varepsilon_n) \, d\varepsilon_n.$$

• The dimension can be reduced by recognizing that only differences in utility matter

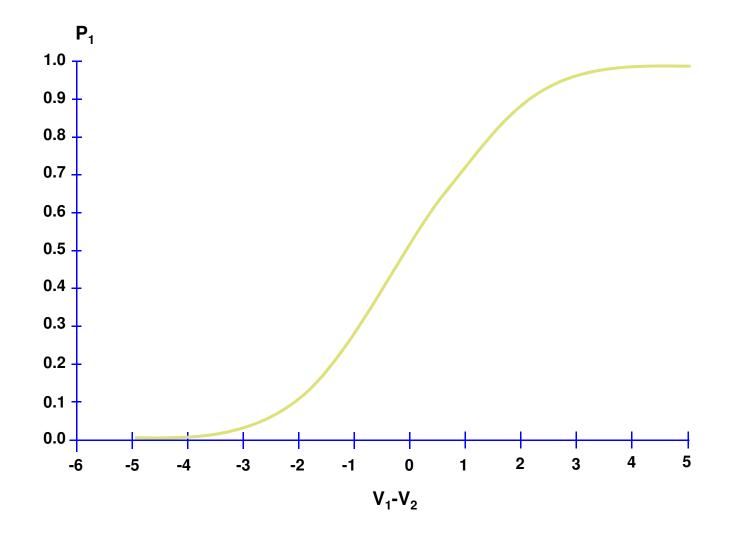
$$P_{ni} = \operatorname{Prob}(U_{ni} > U_{nj} \forall j \neq i)$$

= $\operatorname{Prob}(\varepsilon_{nj} - \varepsilon_{ni} < V_{ni} - V_{nj} \forall j \neq i)$
= $\operatorname{Prob}(\tilde{\varepsilon}_{nji} < V_{ni} - V_{nj} \forall j \neq i)$
= $\int I(\tilde{\varepsilon}_{nji} < V_{ni} - V_{nj} \forall j \neq i)g(\tilde{\varepsilon}_{ni}) d\tilde{\varepsilon}_{ni}$

where
$$\tilde{\varepsilon}_{nji} = \varepsilon_{nj} - \varepsilon_{ni}$$

 $\tilde{\varepsilon}_{ni} = \langle \tilde{\varepsilon}_{n1i}, \dots, \tilde{\varepsilon}_{nJi} \rangle$ is the (J - 1)-dimensional vector of error differences, with the ... over all alternatives except *i*; and $g(\cdot)$ is the density of these error differences. Expressed in this way, the choice probability is a (J - 1)-dimensional integral.

The Binomial Logit Model



22

Specification of the Utility Function

Policy variables/level of service variables

 $V_a = -T_a - 5C_a/y$

 V_{b} =- T_{b} - $5C_{b}/y$

Demographic/socioeconomic variables

Example

T_a=0.5hr, T₆=1.0hr

 $C_a =$ \$1.50, $C_b =$ \$0.50, \$1.00

Probability of choosing bus

	C _b = \$0.50	C _{to} = \$1.00
Low Income (20K)	0.44	0.41
High Income (40K)	0.41	0.39

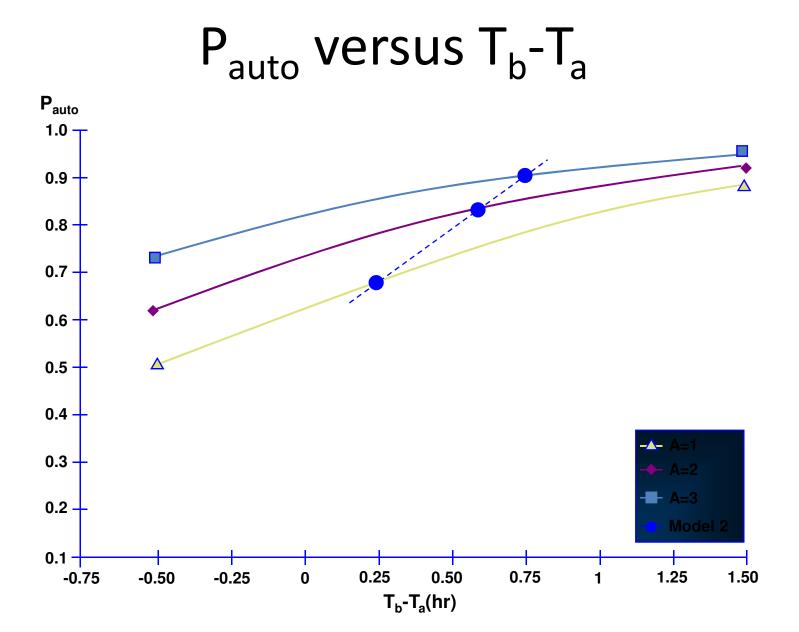
Low: $\Delta P_b = -7\%$

High: $\Delta P_b = -5\%$

Example – Effects of Omitting a Variable That is Correlated with a Policy Variable

 $V_a = -T_a + 0.5 A$ $V_b = -T_b$

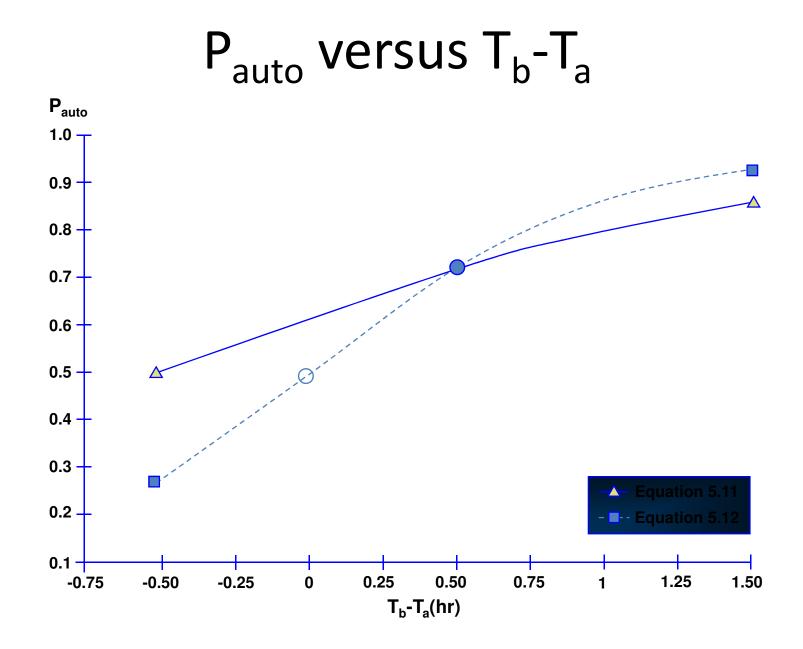
Group	T _b - T _a	Α	Pauto
1	0.25	1	0.68
2	0.60	2	0.83
3	0.75	3	0.90



Alternative Specific Constant

$$V_a = 0.5 - T_a$$

 $V_b = -T_a$



Components of Travel Time

Model 1	
$U_A = -T_A$	
$U_B = -T_B$	
Model 2	
U _A = -0.48TI _A	-1.21TO _A
$U_{\rm B} = -0.48 T I_{\rm E}$	₃ -1.21TO ₈
Tl _B = 0.5hr	Tl _A =0.4hr
TO _B = 0.3hr	TO _A = 0.05hr
T _B = 0.8hr	T _A = 0.45hr
$P_{A}^{1} = 0.59$	$P_{A}^{2} = 0.59$

- - -

	P _{auto} According to		Change from Base Case	
Case	Model 1	Model 2	Model 1	Model 2
Base	0.59	0.59	0.00	0.00
Increase TI _B	0.61	0.60	0.02	0.01
Increase TO _B	0.61	0.62	0.02	0.03
	Same effect	Different effect	t	

Generic vs. Mode Specific Variables

Model 1 $UA = -T_A$ $UB = -T_B$ Model 2 $U_A = -4.2T_A$ $U_B = -2.8T_B$ $T_A = 0.45hr T_B = 0.80hr$ $P_A^{1} = 0.59 P_A^{2} = 0.59$

	P _{auto} Acc	ording to	Change from	n Base Case
Case	Model 1	Model 2	Model 1	Model 2
Base	0.59	0.59	0.00	0.00
Increase T _B	0.61	0.65	0.02	0.06
Decrease T _A	0.61	0.68	0.02	0.09
	Same effect	Differen ⁻ effect	t	

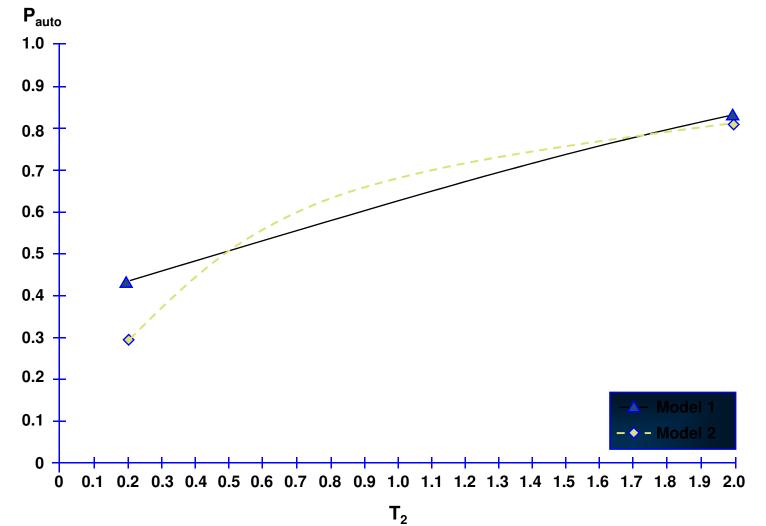
Travel Time

Functional Form

- Travel cost and income
- Auto ownership variables

Travel Time

Functional Form



Estimation of the Logit Model

- Acquisition of data
- Model specification
- Model estimation

The Maximum Likelihood Method

V = a T

		Travel Time (minutes)	
Person	Chosen	Automobile	Bus
1	Auto	50	30
2	Auto	10	20
3	Bus	30	40

```
Individual 1: P(Auto) = [exp(50a)]/[exp(50a)+exp(30a)]
Individual 2: P(Auto) = [exp(10a)]/[exp(10a)+exp(20a)]
Individual 3: P(Bus) = [exp(40a)]/[exp(30a) + exp(40a)]
Individual 1: P(Auto) = 1 / [1 + exp(-20a)]
Individual 2: P(Auto) = 1 / [1 + exp(-10a)]
Individual 3: P(Bus) = 1 / [1 + exp(-10a)]
```

The Maximum Likelihood Method (continued)

L = P(Person 1 chooses auto) x P(Person 2 chooses auto) x P(Person 3 chooses bus)

<u>1 1 1</u> [1+exp(-20a)] [1+exp(10a)] [1+exp(-10a)]

logL = -(log[1+exp(-20a)] + log[1 + exp(10a)] + log[1+exp(-10a)])