Multinomial Choice Models

Two data sets

$$U_{nj} = \alpha T_{nj} + \beta M_{nj} + \varepsilon_{nj}^B \,\forall n \text{ in Boston}$$
$$U_{nj} = \alpha T_{nj} + \beta M_{nj} + \varepsilon_{nj}^C \,\forall n \text{ in Chicago},$$

where the variance of ε_{nj}^B is not the same as the variance of ε_{nj}^C . Label the ratio of variances as $k = \text{Var}(\varepsilon_{nj}^C)/\text{Var}(\varepsilon_{nj}^B)$. We can divide the utility for travelers in Chicago by \sqrt{k} ; this division doesn't affect their choices, of course, since the scale of utility doesn't matter. However, doing so allows us to rewrite the model as

$$U_{nj} = \alpha T_{nj} + \beta M_{nj} + \varepsilon_{nj} \forall n \text{ in Boston}$$
$$U_{nj} = (\alpha/\sqrt{k})T_{nj} + (\beta/\sqrt{k})M_{nj} + \varepsilon_{nj} \forall n \text{ in Chicago}$$

where now the variance of ε_{nj} is the same for all *n* in both cities (since $\operatorname{Var}(\varepsilon_{nj}^C/\sqrt{k}) = (1/k)\operatorname{Var}(\varepsilon_{nj}^C) = [\operatorname{Var}(\varepsilon_{nj}^B)/\operatorname{Var}(\varepsilon_{nj}^C)]\operatorname{Var}(\varepsilon_{nj}^C) = \operatorname{Var}(\varepsilon_{nj}^B)$. The scale of utility is set by normalizing the variance of ε_{nj} . The parameter *k*, which is often called the scale parameter, is estimated along with β and α . The estimated value \hat{k} of *k* tells the researcher the variance of unobserved factors in Chicago relative to that in Boston. For example, $\hat{k} = 1.2$ implies that the variance of unobserved factors is twenty percent greater in Chicago than in Boston.

Overview

- Model definition
- Model properties
- Utility functions for MNL models
 - Attributes of alternatives and individuals
 - Alternative-specific constants
- Independence from irrelevant alternatives (IIA)
 - Definition
 - The red bus/blue bus paradox
 - Avoiding IIA consequences
 - Introducing new modes
- Selecting choice sets

MNL Model Definitions

• Three modes

$$Pr(1) = \frac{exp(V_1)}{exp(V_1) + exp(V_2) + exp(V_3)}$$

• N modes

$$\Pr(i) = \frac{\exp(V_i)}{\sum_{j=1}^{J} \exp(V_j)}$$

• Example

Mode i	V _i	exp(V _i)	Pr(i)
Drive Alone	1.5	4.48	0.31
Carpool	1.9	6.69	0.46
Bus	1.2	3.32	0.23
Totals		14.49	1.00

MNL Model Properties

- Each probability depends on the deterministic components of the utilities of all alternatives (V_j, all j)
- Each probability i increases as V_i increases, and decreases as V_i (j ≠ i) increases
- Can be used for any number of alternatives
- Relatively easy to understand and apply
- Probability that alternative i is chosen depends only on the values $(V_j V_i)$ for all alternatives j, except i

MNL Utility Functions

Attributes of Alternatives and Individuals

• Similar to the previos examples *Example*

Deterministic component of utility for mode j $V_j = -T_j - 5C_j/Y$

			Y = 15				Y = 30	
Mode	Time	Cost	V	exp(V)	Pr	V	exp(V)	Pr
Drive Alone	0.50	2.00	-1.17	0.31	0.33	-0.83	0.44	0.38
Carpool	0.75	1.00	-1.08	0.34	0.34	-0.92	0.40	0.34
Bus	1.00	0.75	-1.25	0.29	0.29	-1.13	0.32	0.28
Totals	—	—	—	0.94	1.00		1.16	1.00

MNL Utility Functions

Alternative Specific Constants

 Previous example with equal times and costs for all modes (T = 0.75, C = 1.00; Y = 20)

Mode	V	exp(V)	Pr
Drive Alone	-1.00	0.37	0.33
Carpool	-1.00	0.37	0.33
Bus	-1.00	0.37	0.33
Total		1.10	1.00

- Would we expect this result?
- Accounting for other modal factors
 - Include more variables if possible; and/or
 - Add constants to N 1 modes

MNL Utility Functions Alternative Specific Constants (continued)

Example of constants –

 $V_{da} = 0.8 - T_{da} - 5^*C_{da}/Y$ $V_{cp} = 0.2 - T_{cp} - 5^*C_{cp}/Y$ $V_{b} = -T_{b} - 5^*C_{b}/Y$

Choice of base mode is arbitrary

Mode	V	exp(V)	Pr
Drive Alone	-0.20	0.82	0.50
Carpool	-0.80	0.45	0.28
Bus	-1.00	0.37	0.23
Total		1.64	1.00

Taste Variation

- Logit models can capture taste variations that relate to observed characteristics of the decision maker but not random taste variation
- Example:
 - Household choosing among make and models of cars
 - Two attributes:
 - PP purchase power
 - SR shoulder room (interior size of the car)

$$U_{nj} = \alpha_n \mathrm{SR}_j + \beta_n \mathrm{PP}_j + \varepsilon_{nj},$$

Taste variation - continue

• Suppose SR vary with number of people in the HH Mn, and importance of purchase price in inverse to income

$$\alpha_n = \rho M_n$$

$$\beta_n = \theta/I_n$$

 $U_{nj} = \rho(M_n \mathrm{SR}_j) + \theta(\mathrm{PP}_j/I_n) + \varepsilon_{nj}$

But if random – more problematic

 If there addition random effects on these parameters, for example they vary with size of people which we don't observe.....

 $\alpha_n = \rho M_n + \mu_n$

 $\beta_n = \theta / I_n + \eta_n$

 $U_{nj} = \rho(M_n SR_j) + \mu_n SR_j + \theta(PP_j/I_n) + \eta_n PP_j + \varepsilon_{nj}$

 $U_{nj} = \rho(M_n \mathrm{SR}_j) + \theta(\mathrm{PP}_j/I_n) + \tilde{\varepsilon}_{nj}$

 $\tilde{\varepsilon}_{nj} = \mu_n \mathbf{SR}_j + \eta_n \mathbf{PP}_j + \varepsilon_{nj}$

• This error term can't possibly be i.i.d.

The IIA Property Definition

- The independence from irrelevant alternatives property
 - "For any individual, the ratio of the probabilities of choosing two (available) alternatives is independent of the availability or attributes of any other alternative"
- Mathematically

$$\frac{\Pr(i)}{\Pr(k)} = \frac{\exp(V_i)}{\exp(V_k)} = \exp(V_i - V_k)$$

No dependence on V_i ($j \neq i$ or k)

The IIA Property

Red and Blue

- Scenario 1
 - Available modes are (da) and red buses (rb); red buses have plenty of seats for all passengers
 - V_{da} = V_{rb}
 - MNL model says Pr(da) = Pr(rb) = 0.5
 - Is this reasonable?
- Scenario 2
 - A new bus operator exactly duplicates red bus service using blue buses (bb)
 - MNL model says Pr(da) = Pr(rb) = Pr(bb) = 0.33
 - How has service changed for the passengers?
 - What new mode shares would we expect?
 - What is the MNL prediction if we say that red and blue buses are the same mode?

The IIA Property

• A more realistic example – light rail fares increase

	Base	Case	Fare Increase		Change	
Mode	V	Pr(i)	V	Pr(i)	in Pr(i)	
Drive Alone	-0.20	0.458	-0.20	0.467	+0.009	
Carpool	-0.80	0.251	-0.80	0.256	+0.005	
Bus	-1.53	0.121	-1.53	0.123	+0.002	
Light Rail	-1.19	0.170	-1.31	0.154	-0.016	

Is this realistic?

The IIA Property

Avoiding its Consequences

- The source of the problem: dependency between the error terms
- Include additional variables
- Use other choice models
 - Nested logit
 - Probit
 - Mixed logit

Panel Data

- If the unobserved factors that affect decision makers are independent over repeated choices, logit is fine...
- Any dynamic related to observed factors that enter the decision process (e.x., person past choice influence current choice, or lagged response to change in attribute) can be handled.
- Dynamic associated with unobserved factors can't be handled, since the unobserved factors are assumed to be unrelated over choices.
- The dependent variable in previous periods can also be entered as explanatory variable, as long as we assume that the errors are independent over time

Panel Data - Continue

- However, in many cases one would expect there be some factors that are not observed by the researcher that affect each of the decision maker's choice
- In such cases other model structure may be more appropriated
- Or, if possible, re specify the model to bring the source of the unobserved dynamic into the model explicitly such that the remaining
 6-17 errors are independent over time.

Non Linear Parameters

- In some context, we may want to allow nonlinear parameters
- However, estimation is more difficult since the log likelihood function may not be globally concave, and
- Computer routine are not widely available, so one may need to write his own code.

Adding New Modes

- Transfer the deterministic component of utility (V) from an existing mode (except the modal constant) to the new mode
- Use judgment to specify the modal constant, guided by experience where the new mode exists
- Result uncertain forecasts for new modes

Selecting Choice Sets

- Only consider modes which are practically significant assume others are never chosen

 Should walk and bike modes be included?
- Tailor available modes to individuals and trips
 - Children cannot drive -> no drive alone mode
 - Households without autos -> no drive alone or drive to transit modes
 - Transit farther than 2 miles at origin or destination
 -> no transit with walk access mode
 - Others?

Home-Based Work Mode Choice Model Coefficients From Selected Cities

		Auto In-	Auto Out-of	Auto	
	Survey	Vehicle	Vehicle	Operating	Parking
City	Year	Time	Time	Cost	Cost
Baltimore	1993	-0.034	-0.044	-0.143	-0.143
Dallas	1996	-0.055		-0.558	-0.558
Denver	1985	-0.018	-0.093	-0.350	-0.950
Detroit	1996	-0.052		-0.410	-0.410
Houston	1985	-0.022		-0.614	-1.540
Los Angeles	1991	-0.021		-0.296	-0.296
Milwaukee	1991	-0.016	-0.041	-0.450	-0.450
Philadelphia	1986	-0.042		-0.260	-0.260
Pittsburgh	1978	-0.047	-0.069	-2.100	-2.100
Portland	1985	-0.039	-0.065	-1.353	-1.353
Sacramento	1991	-0.025	-0.038	-0.279	-0.279
St. Louis	1965	-0.023	-0.057	-1.170	-1.170
Tucson	1965	-0.034		-0.184	-0.184

Home-Based Work Mode Choice Model Coefficients From Selected Cities

		Transit In-	Transit	Transit	Transit		
	Survey	Vehicle	Walk	1st Wait	Transfer	Transit	Number of
City	Year	Time	Time	Time	Time	Cost	Transfers
Baltimore	1993	-0.034	-0.044	-0.029	-0.016	-0.053	-0.268
Dallas	1996	-0.025	-0.064	-0.064	-0.064	-0.550	
Denver	1985	-0.018	-0.054	-0.028	-0.059	-0.440	
Detroit	1996	-0.009	-0.019	-0.019	-0.019	-0.410	
Houston	1985	-0.022	-0.057	-0.057	-0.057	-0.614	-0.088
Los Angeles	1991	-0.021	-0.053	-0.053	-0.053	-0.296	
Milwaukee	1991	-0.016	-0.041	-0.041	-0.041	-0.450	
Philadelphia	1986	-0.042	-0.032	-0.051	-0.051	-0.115	
Pittsburgh	1978	-0.047	-0.069	-0.069	-0.069	-2.100	
Portland	1985	-0.039	-0.065	-0.040	-0.090	-1.353	
Sacramento	1991	-0.025	-0.038	-0.038	-0.038	-0.279	
St. Louis	1965	-0.023	-0.057	-0.057	-0.057	-1.170	
Tucson	1965	-0.034	-0.040	-0.040	-0.040	-0.184	

Home-Based Work Mode Choice Model Coefficient Relationships From Selected Cities

		Ratio: Walk to In-	Ratio: Wait to In-		
City	Survey	Vehicle	Vehicle	Value of	Value of Time
City	Year	Time	Time	Time (Auto)	(Transit)
Baltimore	1993	3.55	2.33	\$14.16	\$14.16
Dallas	1996	2.56	2.56	\$5.91	\$2.73
Denver	1985	3.00	1.57	\$3.09	\$2.45
Detroit	1996	2.00	2.00	\$7.61	\$1.36
Houston	1985	2.58	2.58	\$2.15	\$2.15
Los Angeles	1991	2.50	2.50	\$4.25	\$4.25
Milwaukee	1991	2.62	2.62	\$2.09	\$2.09
Philadelphia	1986	2.97	4.80	\$9.66	\$5.53
Pittsburgh	1978	1.47	1.47	\$1.33	\$1.33
Portland	1985	1.64	1.01	\$1.75	\$1.75
Sacramento	1991	1.52	1.52	\$5.39	\$5.39
St. Louis	1965	2.50	2.50	\$1.17	\$1.17
Tucson	1965	2.25	2.25	\$5.78	\$5.78

Incremental Logit

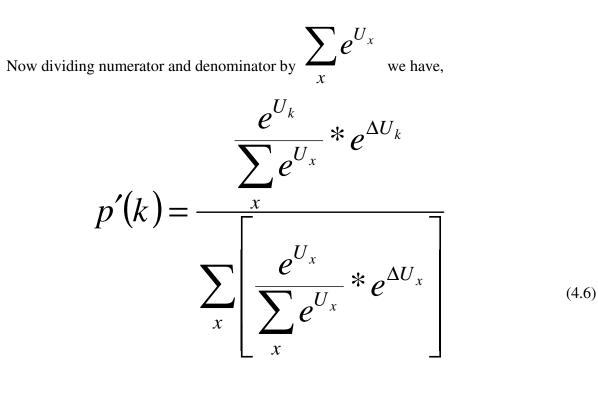
$$p(k) = \frac{e^{U_k}}{\sum_x e^{U_x}}$$

when each utility has changed by ΔU_k

$$p'(k) = \frac{e^{(U_k + \Delta U_k)}}{\sum_{x} e^{(U_x + \Delta U_x)}}$$
(4.4)

$$i.e.\,p'(k) = \frac{e^{U_k} * e^{\Delta U_k}}{\sum_{x} [e^{U_x} * e^{\Delta U_x}]}$$
(4.5)

Incremental Logit - continue



$$\therefore p'(k) = \frac{p(k) * e^{\Delta U_k}}{\sum_{x} [p(x) * e^{\Delta U_x}]}$$
(4.7)

6-25

Consumer Surplus

$$E(\mathrm{CS}_n) = \frac{1}{\alpha_n} E[\max_j (V_{nj} + \varepsilon_{nj})],$$

If all errors are i.i.d extreme value ad utility is linear in income, this expectation become:

$$E(\mathrm{CS}_n) = \frac{1}{\alpha_n} \ln\left(\sum_{j=1}^J e^{V_{nj}}\right) + C$$

$$\Delta E(\mathrm{CS}_n) = \frac{1}{\alpha_n} \left[\ln \left(\sum_{j=1}^{J^1} e^{V_{nj}^1} \right) - \ln \left(\sum_{j=1}^{J^0} e^{V_{nj}^0} \right) \right]$$

6-26

Derivatives

$$\frac{\partial P_{ni}}{\partial z_{ni}} = \frac{\partial \left(e^{V_{ni}} / \sum_{j} e^{V_{nj}}\right)}{\partial z_{ni}}$$
$$= \frac{e^{V_{ni}}}{\sum e^{V_{nj}}} \frac{\partial V_{ni}}{\partial z_{ni}} - \frac{e^{V_{ni}}}{\left(\sum e^{V_{nj}}\right)^{2}} e^{V_{ni}} \frac{\partial V_{ni}}{\partial z_{ni}}$$
$$= \frac{\partial V_{ni}}{\partial z_{ni}} \left(P_{ni} - P_{ni}^{2}\right)$$
$$= \frac{\partial V_{ni}}{\partial z_{ni}} P_{ni} (1 - P_{ni}).$$

If representative utility is linear in z_{ni} with coefficient β_z , the derivative becomes $\beta_z P_{ni}(1 - P_{ni})$. This derivative is largest when $P_{ni} = 1 - P_{ni}$,

Cross Derivatives

 $\frac{\partial P_{ni}}{\partial z_{nj}} = \frac{\partial \left(e^{V_{ni}} / \sum_{k} e^{V_{nk}} \right)}{\partial z_{nj}}$ $= -\frac{e^{V_{ni}}}{\left(\sum e^{V_{nk}} \right)^2} e^{V_{nj}} \frac{\partial V_{nj}}{\partial z_{nj}}$ $= -\frac{\partial V_{nj}}{\partial z_{nj}} P_{ni} P_{nj}.$

When an observed variable change, the changes in the choice probabilities sum to zero

$$\sum_{i=1}^{J} \frac{\partial P_{ni}}{\partial z_{nj}} = \frac{\partial V_{nj}}{\partial z_{nj}} P_{nj} (1 - P_{nj}) + \sum_{i \neq j} \left(-\frac{\partial V_{nj}}{\partial z_{nj}} \right) P_{nj} P_{ni}$$
$$= \frac{\partial V_{nj}}{\partial z_{nj}} P_{nj} \left[(1 - P_{nj}) - \sum_{i \neq j} P_{ni} \right]$$
$$= \frac{\partial V_{nj}}{\partial z_{nj}} P_{nj} [(1 - P_{nj}) - (1 - P_{nj})]$$
$$= 0.$$

Elasticities

$$E_{iz_{ni}} = \frac{\partial P_{ni}}{\partial z_{ni}} \frac{z_{ni}}{P_{ni}}$$
$$= \frac{\partial V_{ni}}{\partial z_{ni}} P_{ni} (1 - P_{ni}) \frac{z_{ni}}{P_{ni}}$$
$$= \frac{\partial V_{ni}}{\partial z_{ni}} z_{ni} (1 - P_{ni}).$$

If representative utility is linear in z_{ni} with coefficient β_z , then $E_{iz_{ni}} = \beta_z z_{ni} (1 - P_{ni})$.

Cross Elasticities

$$E_{iz_{nj}} = \frac{\partial P_{ni}}{\partial z_{nj}} \frac{z_{nj}}{P_{ni}}$$
$$= -\frac{\partial V_{nj}}{\partial z_{nj}} z_{nj} P_{nj},$$

which in the case of linear utility reduces to $E_{iz_{ni}} = -\beta_z z_{nj} P_{nj}$

The cross elasticity is the same for all i, a change in an attribute of alternative j changes the probability for all other alternative by the same percent.

This manifests the IIA property