Multinomial Choice Models
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Two data sets

_ B v, ;
Upnj = alyj + BM,; + Eni Vn in Boston

L '8 . .
Upj = al,j + BM,; + Eni Vn in Chicago,

where the variance of afj is not the same as the variance of 8”(; Label

the ratio of variances as k = Var(enc i) /Var(sfl-). We can divide the utility

for travelers in Chicago by +/k: this division doesn’t affect their choices,
of course, since the scale of utility doesn’t matter. However, doing so
allows us to rewrite the model as

Uyj =al,j+ M, + &,; Yn in Boston
Unj — (a/\/E)Tnj + (ﬁ/\/E)MH] + Enj Vn in Chicago.
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where now the variance of ¢,; is the same for all n in both cities (since
Var(gfj/\/l?) = (l/k)Var(Sf;j) = [Var(gig)/Var(gfj )]Var(efj) = Var(gl_?j).
The scale of utility is set by normalizing the variance of ¢,;. The param-
eter k, which is often called the scale parameter, is estimated along with
B and «. The estimated value k of k tells the researcher the variance of
unobserved factors in Chicago relative to that in Boston. For example,
k=1.2 implies that the variance of unobserved factors is twenty percent

greater in Chicago than in Boston.
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Overview

Model definition
Model properties

Utility functions for MNL models
— Attributes of alternatives and individuals
— Alternative-specific constants

Independence from irrelevant alternatives (l1A)
— Definition
— The red bus/blue bus paradox
— Avoiding IIA consequences
— Introducing new modes

Selecting choice sets
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MNL Model Definitions

e Three modes

e N modes

« Example

exp(V,)

Pr{1) =

Pr(i) =

exp(V,)+exp(V,)+exp(V;)

exp(V;)

J

>exp(V;)
j=1

Drive Alone 1.5 4.48 0.31
Carpool 1.9 6.69 0.46
Bus 1.2 3.32 0.23
Totals 14.49 1.00
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MNL Model Properties

Each probability depends on the deterministic
components of the utilities of all alternatives (V.

all j) ’
Each probability i increases as V. increases, and
decreases as V, (j #1i) increases

Can be used for any number of alternatives
Relatively easy to understand and apply

Probability that alternative i is chosen depends
only on the values (V; - V) for all alternatives j,
except |



MNL Utility Functions

Attributes of Alternatives and Individuals

* Similar to the previos examples
Example

Deterministic component of utility for mode |
V;=-T;-5C/Y

Drive Alone | 0.50 | 2.00 | -1.17 0.31 0.33 | -0.83 0.44 0.38

Carpool 0.75 | 1.00 A -1.08 0.34 0.34 | -0.92 0.40 0.34

Bus 1.00 | 0.75 | -1.25 0.29 0.29 | -1.13 0.32 0.28

Totals — — — 0.94 1.00 1.16 1.00
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MNL Utility Functions

Alternative Specific Constants

Previous example with equal times and costs for all modes
(T=0.75,C=1.00;Y =20)

Drive Alone -1.00 0.37 0.33
Carpool -1.00 0.37 0.33
Bus -1.00 0.37 0.33
Total 1.10 1.00

Would we expect this result?

Accounting for other modal factors
— Include more variables if possible; and/or
— Add constants to N — 1 modes
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MNL Utility Functions

Alternative Specific Constants (continued)

Example of constants —

Vg, = 0.8 — T, - 5°C,./Y
Vg, =0.2-T,, - 5*C,/Y
V,=-T, - 5*C,/Y

Drive Alone -0.20 0.82 0.50
Carpool -0.80 0.45 0.28
Bus -1.00 0.37 0.23
Total 1.64 1.00




Taste Variation

* Logit models can capture taste variations that
relate to observed characteristics of the
decision maker but not random taste variation

 Example:

— Household choosing among make and models of
cars

— Two attributes:
PP —purchase power
SR —shoulder room (interior size of the car)

Unj — O{nSRj + IBHPPj + Enjs



Taste variation - continue

* Suppose SR vary with number of people in the
HH Mn, and importance of purchase price in
inverse to income

Oy = IOMH

ﬁn = 9/1”

UH‘/. — ,()(M”SR/) + (')(PP//[H) + gflj



But if random — more problematic

 |f there addition random effects on these
parameters, for example they vary with size of
people which we don’t observe.....

oy = )OMH + Mn
ﬁn — H/In I Mn

U”.f — IO(MHSR/) + )U-HSRj + H(PP]/]H) + )],,PPJ,' + Enj

qu — p(M”SRJ') + H(ij/[n) 0 gnj

Enj = MnSRj +1,PPj + &4;
* This error term can’t possibly be i.i.d.



The IIA Property

Definition

 The independence from irrelevant alternatives
property
— “For any individual, the ratio of the probabilities of
choosing two (available) alternatives is
independent of the availability or attributes of any
other alternative”
 Mathematically

Pr(i) _ exp(V;)
Pr(k) - exp(V)

=exp(V;—V,)

No dependence on V; (j # i or k)
6-12



6-13

The IIA Property

Red and Blue

Scenario 1

Available modes are (da) and red buses (rb); red buses have plenty of seats for
all passengers

Vda = Vrb
MNL model says Pr(da) = Pr(rb) = 0.5
Is this reasonable?

Scenario 2

A new bus operator exactly duplicates red bus service using blue buses (bb)
MNL model says Pr(da) = Pr(rb) = Pr(bb) = 0.33

How has service changed for the passengers?

What new mode shares would we expect?

What is the MINL prediction if we say that
red and blue buses are the same mode?



The IIA Property

A more realistic example — light rail fares increase

Drive Alone -0.20 0.458 -0.20 0.467 +0.009
Carpool -0.80 0.251 -0.80 0.256 +0.005
Bus -1.53 0.121 -1.53 0.123 +0.002
Light Rail -1.19 0.170 -1.31 0.154 -0.016

Is this realistic?
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The IIA Property

Avoiding its Consequences
* The source of the problem: dependency
between the error terms

* Include additional variables

e Use other choice models
— Nested logit

— Probit
— Mixed logit
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Panel Data

If the unobserved factors that affect decision makers
are independent over repeated choices, logit is fine...

Any dynamic related to observed factors that enter
the decision process (e.x., person past choice
influence current choice, or lagged response to
change in attribute) can be handled.

Dynamic associated with unobserved factors can’t be
handled, since the unobserved factors are assumed
to be unrelated over choices.

The dependent variable in previous periods can also
be entered as explanatory variable, as long as we
assume that the errors are independent over time



Panel Data - Continue

* However, in many cases one would expect
there be some factors that are not observed
by the researcher that affect each of the
decision maker’s choice

* |n such cases other model structure may be
more appropriated

* Or, if possible, re specify the model to bring
the source of the unobserved dynamic into
the model explicitly such that the remaining
errors are independent over time.



Non Linear Parameters

* |n some context, we may want to allow non-
Inear parameters

* However, estimation is more difficult since the
og likelihood function may not be globally
concave, and

 Computer routine are not widely available, so
one may need to write his own code.



Adding New Modes

* Transfer the deterministic component of
utility (V) from an existing mode (except
the modal constant) to the new mode

e Use judgment to specify the modal

constant, guided by experience where the
new mode exists

e Result — uncertain forecasts for new modes
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Selecting Choice Sets

* Only consider modes which are practically
significant assume others are never chosen

— Should walk and bike modes be included?

e Tailor available modes to individuals and trips
— Children cannot drive -> no drive alone mode

— Households without autos -> no drive alone or
drive to transit modes

— Transit farther than 2 miles at origin or destination
-> no transit with walk access mode

— Others?
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Home-Based Work Mode Choice

M Od@l Coefficients From Selected Cities

Baltimore 1993 -0.034 -0.044 -0.143 -0.143
Dallas 1996 -0.055 -0.558 -0.558
Denver 1985 -0.018 -0.093 -0.350 -0.950
Detroit 1996 -0.052 -0.410 -0.410
Houston 1985 -0.022 -0.614 -1.540
Los Angeles 1991 -0.021 -0.296 -0.296
Milwaukee 1991 -0.016 -0.041 -0.450 -0.450
Philadelphia 1986 -0.042 -0.260 -0.260
Pittsburgh 1978 -0.047 -0.069 -2.100 -2.100
Portland 1985 -0.039 -0.065 -1.353 -1.353
Sacramento 1991 -0.025 -0.038 -0.279 -0.279
St. Louis 1965 -0.023 -0.057 -1.170 -1.170
Tucson 1965 -0.034 -0.184 -0.184
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Home-Based Work Mode Choice

M Od@l Coefficients From Selected Cities

Baltimore 1993 -0.034 | -0.044 -0.029 -0.016 -0.053 -0.268
Dallas 1996 -0.025 -0.064 -0.064 -0.064 | -0.550
Denver 1985 -0.018 | -0.054 -0.028 -0.059 -0.440
Detroit 1996 -0.009 -0.019 -0.019 -0.019 -0.410
Houston 1985 -0.022 -0.057 -0.057 -0.057 | -0.614 -0.088

Los Angeles 1991 -0.021 -0.053 -0.053 -0.053 -0.296
Milwaukee 1991 -0.016 -0.041 -0.041 -0.041 -0.450
Philadelphia | 1986 -0.042 -0.032 -0.051 -0.051 -0.115
Pittsburgh 1978 -0.047 | -0.069 -0.069 -0.069 -2.100

Portland 1985 -0.039 -0.065 -0.040 -0.090 -1.353
Sacramento 1991 -0.025 -0.038 -0.038 -0.038 | -0.279
St. Louis 1965 -0.023 -0.057 -0.057 -0.057 | -1.170
Tucson 1965 -0.034 | -0.040 -0.040 -0.040 -0.184
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Home-Based Work Mode Choice

MOdEl Coefficient Relationships From Selected Cities

Baltimore 1993 3.55 2.33 $14.16 $14.16
Dallas 1996 2.56 2.56 $5.91 $2.73
Denver 1985 3.00 1.57 $3.09 $2.45
Detroit 1996 2.00 2.00 $7.61 $1.36
Houston 1985 2.58 2.58 $2.15 $2.15
Los Angeles 1991 2.50 2.50 $4.25 $4.25
Milwaukee 1991 2.62 2.62 $2.09 $2.09
Philadelphia 1986 2.97 4.80 $9.66 $5.53
Pittsburgh 1978 1.47 1.47 $1.33 $1.33
Portland 1985 1.64 1.01 $1.75 $1.75
Sacramento 1991 1.52 1.52 $5.39 $5.39
St. Louis 1965 2.50 2.50 $1.17 $1.17
Tucson 1965 2.25 2.25 $5.78 $5.78
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Incremental Logit

when each utility has changed by AUx

, e(Uk+AUk)
k)=

(Ux+AUy)
Qe "

X

U AU
ek*e k

U, s« AU,
Z[e e (4.5)

X

ie.p(k)=



Incremental Logit - continue

U
e X
Now dividing numerator and denominator by Zx: we have,
el
%k eAU k
U,
2.
/
plk)=—= -
(4 Us
¥ e
Ux (4.6)
X e
| X _

"~ Ip@)Fe™ ]




6-26

Consumer Surplus

| 1
E(CSH) — —E[max_,-(V,,j I gnj)]~

aH

If all errors are i.l.d extreme value ad utility is linear in
income, this expectation become:

l S
E(CS,) = —I ) Vij C
€S (Z )+

J=1

AE CS” _— l ?“”f — l _)\;nj
( ) " n ( E ¢ ) n ( E ¢

J=1 J=1
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Derivatives
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If representative utility is linear in z,; with coefficient g, the derivative
becomes f. P,;(1 — P,;). This derivative is largest when P,; = 1 — P,;.
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Cross Derivatives
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When an observed variable change, the changes
in the choice probabilities sum to zero

J
aPm' 9Vn dV,,
> =Pyl - PM+Z( ’) Pyj Pai

i—1 a-:nj 0Znj i (9:111'

oV,
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= (),
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Elasticities

. apni Zni
L Zni ‘
()Z,”‘ Pm'

avni <ni
— ._Pui(l — Pm')_
) P,

” .
S ni

8Vni (l p )
3, ini nil-

iLni

If representative utility is linear in z,,; with coefficient ., then £

ﬁ:zni(l — Pm')-

I lni
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Cross Elasticities

d Pm' inj

iZnj — o
awtj Pni

V)
_ T‘»ﬂj Pnj ;
0Zn;

which in the case of linear utility reduces to E;; = — B.2,; P;

The cross elasticity is the same for all i, a change in an attribute of
alternative j changes the probability for all other alternative by the
same percent.

This manifests the IIA property
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