Aggregate Forecasting

Outline

- Aggregate forecasting problem
- Aggregation bias
- Forecasting methods
 - Average individual
 - Classification
 - Sample enumeration

What's the Problem?

- The models are disaggregate
 - Based on data for individuals or households
 - Predict the behavior of individuals or households
- Predictions must be aggregate to provide forecasts of highway volumes, transit ridership, air pollutant quantities
- How do we obtain aggregate predictions
 from disaggregate models?

Aggregate forecasting

- Disaggregate models
 - Behavior of decision-maker
- Forecasting
 - Prediction of market shares
 - Population
 - Market segments

Definition

Disaggregate behavior

$$Y_n = h(X_n)$$

Aggregate quantity in population

$$Y_{g} = \sum_{n=1}^{N_{g}} Y_{n} = \sum_{n=1}^{N_{g}} h(X_{n})$$
$$W_{g} = \frac{1}{N_{g}} \sum_{n=1}^{N_{g}} Y_{n} = \frac{1}{N_{g}} \sum_{n=1}^{N_{g}} h(X_{n})$$

Discrete choice model

Expected market share

$$P(i \mid X_n) = h^i(X_n)$$
$$W_g(i) = \frac{1}{N_g} \sum_{n=1}^{N_g} P(i \mid X_n) = E\left[P(i \mid X_n)\right]$$

 Requires knowledge of attributes of all population members

$$W_{g}(i) = \int_{X} P(i \mid X) f(X) dX = E \left[P(i \mid X_{n}) \right]$$

 Requires knowledge of the distribution of attributes in the population

The problem

- Limited information of the distributions of attributes in the population
- Computation can be very expensive
- What may be available?
 - Averages
 - Sample

- \overline{X}_{g} $X_{n}, \quad n = 1, \dots, N_{g}$ $\hat{f}_{g}(X)$
- Assumed distributions

Aggregation bias

- Use of averages
 - Linear model

$$\overline{Y} = \beta' \overline{X}$$

- Average demand can be estimated without bias as the demand of average attributes
- Nonlinear model
 - The curvature of the function introduces bias

Jensen's inequality

• Concave functions $h[E(X)] \ge E[h(X)]$ - Reverse for convex functions

- Difference is aggregation bias
- Direction of bias is unknown

Logit example

Choice between two alternatives

$$P_n(1) = \frac{1}{1 + \exp\left[-(X_n)\right]}$$

n	X	P(1)
1	0.5	0.62
2	2.0	0.88
Average	1.25	0.78

$$W_g(1) = \frac{1}{N_g} \sum_{n=1}^{N_g} P(i \mid X_n) = \frac{1}{2} [0.88 + 0.62] = 0.75$$

Graphical representation

Forecasting methods

- Average individual
- Classification
- Sample enumeration

Average individual

$$\hat{W}(i) = P(i \mid \overline{X})$$

- Appropriate
 - Homogenous population: var(X) is small
 - Model not highly nonlinear

Classification

- Steps
 - Divide population to (homogenous) segments
 - Mutually exclusive collectively exhaustive
 - Choose a representative set of variables for each group

$$\overline{X}_{g}$$
 $g = 1, ..., G$

Apply average individual method for each segment and approximate W(i)

$$\hat{W}(i) = \sum_{g=1}^{G} \frac{N_g}{N_T} P(i \mid \overline{X}_g)$$

Determining segments

- Ideally, different ranges of utility, V_i
- Cannot realistically use all X's
 - Important X's in the model
 - Segment averages can be reasonably estimated
 - Zones, geographic classification
 - Ease of estimating segment population size
 - Avoid very small segments
- Open segments
 - Minimize the size of open ended segmetns, i.e., income over \$100,000
- Account for availability of alternatives
 - i.e., households with no vehicles
- Zones or zone pairs provide a "natural" classification

Sample enumeration

- Use a sample to represent population
- Random

$$\hat{W}(i) = \frac{1}{N} \sum_{n=1}^{N} P(i \mid X_n)$$

• Non-random

$$\hat{W}(i) = \frac{\sum_{n=1}^{N} W_n P(i \mid X_n)}{\sum_{n=1}^{N} W_n}$$

- Weight inversely related to sampling rates

Useful for segment-based policies and forecasts₆

Choice simulation

- Sample enumeration requires tracking all probabilities
- Large choice sets
 - -e.g., destination and route choice
- Multidimensional choices
 - Model systems
 - Dynamic choice processes over time
- Computationally demanding
 - Many "paths" through decision tree

Monte Carlo simulation

- Generate realizations for each choice
 Repeat to estimate shares
- Draw random variables from a uniform [0,1] distribution
- Make simulated choices
- Use simulated choice in subsequent models
- Sum up simulated choices

$$\hat{W}_{t}(i) = \frac{N^{t}(i)}{N_{s}}$$
¹⁸

Sample Enumeration Characteristics

- Predictions are subject to sampling error; they will have large errors when the choice probabilities or sample size are small
- The predictions are a consistent estimate when the parameters are consistent
- Predictions for socioeconomic groups are easy to obtain
- Simulation predictions have higher variances
- Convenient for testing policy changes which affect entire groups

Disaggregate Prediction

Generate Disaggregate Population

Conclusions

- Average individual prediction should be avoided
- Classification typically used when spatial results are needed
- Classification should be based on groups having differences in alternative availability
- Sample enumeration typically used to provide area wide forecasts
- Errors due to aggregation across individuals can bemad small without great difficulty