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Abstract 
This paper develops a model, based on Bayesian beliefs networks, for representing mental maps 
and cognitive learning into micro-simulation models of activity-travel behavior. Mental maps 
can be used to address the problem that choice sets in models of travel demand are often ad hoc 
specified. The theory underlying the model is discussed, a specification is derived and numeri-
cal simulation is used to illustrate the properties of the model. The model reported in this paper 
is part of a wider research effort to model various aspects of learning and adaptation behavior in 
urban settings. These models will ultimately linked to the Albatross model system. 
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1. Introduction 

Transportation science has a long tradition in developing and applying choice models to pre-
dict transport mode, destination and route choice. Traditionally, many models have been de-
veloped to predict single choice facets. More recently, models predicting multiple choice fac-
ets have been proposed, culminating in complex activity-based models of travel demand.  

Although the theoretical underpinnings of these models may differ, they have in common the 
assumption that individuals will choose the alternative within their choice set they prefer, 
sometimes subject to some constraints. In the vast majority of these models, however, the 
construction and composition of individual choice sets is not explicitly modeled. Choice sets 
are typically arbitrarily assumed, or derived on an ad hoc basis by the researchers using some 
arbitrary rule (e.g. a travel time band). 

As long as the IIA-property is satisfied, the composition of the choice set has no implications 
for the estimation of the utility function. However, choice set composition will affect pre-
dicted market shares as the latent demand is allocated to the alternatives belonging to an indi-
viduals’ choice set. Thus, predictions of market shares of choice alternatives will be biased if 
individual choice sets are misspecified. If the composition of the choice set also influences in-
dividual preferences and choice behavior, the parameters of the estimated utility or preference 
function will also be biased. 

The literature on environmental cognition (e.g., Golledge, 1993; Horton and Reynolds, 1971; 
Smith, 1976; Potter, 1979; van der Heijden and Timmermans, 1982; Timmermans, et al, 
1984) suggests that people have limited information about their environment. They are not 
necessarily familiar with all the choice alternatives in their environment. Individuals learn 
about their environment during the implementation of their activities. Repeated choices make 
them (better) aware of some choice options, which may induce them to consider a destination, 
choose a route or try a new transport mode.  Thus, the implementation of activities leads to 
dynamics in the mental representation of choice alternatives, which constitutes the basis for 
choice.  

In addition to the above mechanisms, individuals may also decide to become involved in ac-
tive spatial search. For example, a move to a new unknown city or area implies the need to 
explore the area, try different alternatives and in doing so build up a choice set. Likewise, 
negative experiences with existing alternatives may prompt individuals to actively search and 
try alternatives, again leading to changes in existing choice sets. Spatial search, cognitive 
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learning and dynamic choice sets are all ignored in most existing models of spatial choice. 
This lack of attention can be reduced to a fundamental flaw, namely: mental maps of indi-
viduals are not explicitly represented in the models. 

The purpose of the present study therefore is to develop a model of mental maps and show 
how this can be integrated in discrete choice models/activity-based model to simulate dy-
namic decision-making under uncertainty, spatial search and spatial cognitive learning. The 
results envisioned are particularly relevant for micro-simulation of activity-travel choice in 
space and time. A mental map is defined as an individual’s mental representation of his/her 
environment and includes the beliefs and values about the attributes characterizing the alter-
natives in the environment. Hence, an individual will typically have imperfect and incomplete 
information about his/her environment. A full representation of a mental map will include all 
these aspects. In the present paper, however, we will focus on the perceptual and cognitive 
aspect. Hence, an individual will typically have imperfect and incomplete information about 
his/her environment. We represent the mental map of individuals as a Bayesian Belief Net-
work (BBN) and model cognitive learning as updating of beliefs in the network in response to 
observations the individual makes when (s)he implements trips and activities. We argue that 
this approach has several potential advantages. First, learning is incremental so that adaptive 
behavior can be modeled in a natural way. Secondly, beliefs are represented as probability 
distributions so that they can be integrated in a utility framework to model decision-making in 
a straightforward way (namely through the concept of expected utilities). Thirdly, beliefs are 
represented as probability distributions so that the degree of uncertainty and expected infor-
mation gain can be quantified by means of an entropy measure. 

2. Theory 

2.1 Definition of the problem 

Consider an individual who just moved to a new area and therefore has limited knowledge 
about the spatial environment in which (s)he lives and implements his/her daily activities. 
Having limited knowledge, the attributes of locations/destinations and routes are generally 
uncertain. During trips and activities, the individual makes observations on locations and links 
of the network that allow him/her to update his/her beliefs and increase his/her knowledge 
about the area. Observations are not necessarily perfect and the individual takes into account 
possible error in updating beliefs meaning that there may still be uncertainty left. Further-
more, (s)he uses knowledge about how urban areas are structured in general and derives ex-
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pectations if specific information about a location has become available such as for example 
the type of urban area in which it is located (e.g., inside or outside the inner city), the loca-
tion’s position relative to the road network, the land use in the neighborhood and so on. 

The present study addresses the problem of how mental maps and spatial learning can be 
modeled and integrated into micro-simulations of activity-travel choice. We will focus here 
on the part of mental maps that is concerned with the spatial environment and conveniently 
assume complete knowledge about the transport network. Furthermore, we will concentrate 
on static attributes such as physical characteristics of locations and leave more dynamic at-
tributes such as (congestion-dependent) waiting times out of consideration. These problems 
are addressed in other ongoing projects, and the results of these projects will be combined at a 
later stage. 

2.2 Formalization 

Although it is not critical for the approach proposed here, assume that the environment is rep-
resented as a regular grid of cells. Each cell represents a location where possibly an activity 
can be conducted and is described by a vector, Xl, of potentially relevant variables for location 
choice. A transport network connects the different locations and is modeled, as usual, by a di-
rected graph G(N, L) where N is a set of nodes and L is a set of links. A trip from an origin lo-
cation l1 to a destination location l2 is modeled by a path through the network from the nearest 
node from l1 to the nearest node from l2. The variables that describe locations are considered 
to be discrete or discretisized. The possible values (or states) of Xlk are denoted by xlks, where 
xlks is a specific value (or ‘state’) of Xlk and l is an index of location. The belief that Xlk = xlks is 
represented by a probability, P(xlks). Full information or certainty is represented as a special 
case, namely the case where the probability is zero for untrue values of the variable and one 
for the true value. Thus, the mental map of an individual is modeled by a set of probability 
distributions, Π = {P(Xlk) | l = (i, j), i = 1,…, I, j = 1,…, J, k = 1,…, K}  where I and J are the 
number of rows and columns of the grid and K is the number of location attributes. Individu-
als are represented as agents that schedule their activities and execute their activity schedules 
in space and time. Consequently, at any moment in time an individual is either conducting an 
activity in a cell or is traveling on a link of the network. In the course of both types of actions, 
the individual may make observations that change his/her beliefs in Π. Therefore, each time 
after completing an activity or trip, the system simulates possible observations made during 
the activity or trip and updates Π according to the outcome of the observation. 
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2.3 Observations and updating of beliefs 

 

Observations can be conceptualized as communication (between the observed and observer) 
over a noisy channel. Assuming that the subject (observer) is aware of possible error, we pro-
pose a Bayesian method of belief updating based on observations as follows. The unit of ob-
servation is a certain variable X in a certain cell. Let Y denote the outcome of the observation, 
whereby Y = ys denotes the outcome that X = xs in that cell. Possible error of observations 
means that the probability of Y = ys given that X = xs is not necessarily one and the probability 
that Y = ys given that X ≠ xs is not necessarily zero. Given some observation outcome yu, the 
belief in X = xs is updated according to the Bayesian method as: 
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where: 

P(xs)  is the prior belief in xs; 

P(xs | yu) is the updated belief after observation yu; 

P(yu | xs) is the probability of observation Y = yu given X = xs; 

n  is the number of possible values of X and Y. 

 

The updated belief, P(xs | yu), is the prior belief in a next observation so that learning indeed is 
incremental. 

Equation (1) assumes that the conditional probability table, P(Y | X), is known and taken into 
account by the individual in updating beliefs. The table defines the observation-outcome 
probabilities under each assumption of the actual value of the variable observed. Thus, the 
method assumes that the subject is aware of a probability of making errors in observations 
and takes this probability into account in updating his/her beliefs. In the extreme case where 
the observation is completely insensitive, the cells in the table would equal:  
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P(yu | xs) = 1/n  ∀ u, s              (2) 

 

where n is the number of possible values of Y (and X). Effectively, this limiting case is identi-
cal to making no observation at all, because it implies a uniform observation-outcome prob-
ability distribution for each value of X. It is easy to see that, in this case, according to (1) the 
updated beliefs stay equal to the prior beliefs, meaning that the observation has no impact on 
beliefs. In the other extreme case, the observation is maximally sensitive to values of X and 
we would have: 

 

 P(yu | xu) = 1 and P(yu | xs) = 0,  ∀ s ≠ u, ∀ u                    (3) 

 

It is easy to see that, in this case, according to (1) the updated beliefs equal P(xu | yu) = 1, and 
P(xs | yu) = 0, ∀ s ≠ u, if the outcome is yu. In other words, in this limiting case, any observa-
tion would reduce the uncertainty completely. In all other cases, where a subject is aware of 
the probability of making errors, we have: 

 

 1/n < P(yu | xu) < 1 and 0 < P(yu | xs) < 1/n, ∀ s ≠ u, ∀ u                   (4) 

 

It is easy to see from (1) that, in this case, P(xu | yu) > P(xu) and P(xs | yu) < P(xs), ∀  s ≠ u, 
meaning that an observation increases the belief in the outcome of the observation and de-
creases the belief in all other values of the variable. 

To use equation 1 for belief updating, we need a function to predict P(Y | X) in any possible 
state of the individual and the system and for each observational variable. To derive such a 
function, we assume that observation accuracy is composed of two factors, namely a sensitiv-
ity and bias. Sensitivity is conceptualized here as the inverse of the amount of error on the 
scale of which equations (3) and (4) constitute the upper and lower extreme, respectively, and 
bias is conceptualized as the likelihood of confusing values xs and xu after correcting for the 
error scale. Therefore, we propose to use a logit model defined as follows:  
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where βus are observation-bias parameters and θ  is the observation-sensitivity parameter. 
Keeping sensitivity, θ, constant, an increase in βus leads to a higher probability of confusing u 
for s. Observation bias would be absent if, for all u, βuu > 0 and βus = 0, ∀ s ≠ u. On the other 
hand, scale parameter, θ, meets the conceptual requirements expressed by equations (2) – (4). 
For θ  = 0 we find P(yu | xs) = 1/n, so that condition (2) is met and for increasing values of θ , 
P(yu | xu) goes to 1 and P(yu | xs) goes to 0, s ≠ u, so that also conditions (3) and (4) are met. 

Having reduced table P(Y | X) to a scaled logit function, the next question becomes how the 
beta and scale parameters involved can be set to simulate behavior. Regarding the beta pa-
rameters, some points on the scale can be identified logically. Since θ sets the scale of the pa-
rameters, it is most natural to use a zero-one scale for the bias parameters, whereby βuu = 1, 
∀ u, and βus = 0 for values xu and xs that are considered to be most easily confused with each 
other for the variable considered. On the other hand, we assume that the sensitivity parameter 
is a function of the following factors known in the system: 

 

),,,,,( LAMDXEf=θ                                (6) 

 

where E is the type of event (activity or trip), X is the type of variable the observation relates 
to, D is distance from the cell when the observation is made, M is transport mode (in case of a 
trip), A is the activity type or trip purpose depending on the event and L is the type of link (in 
case of a trip). To give some examples, sensitivity is higher if the variable type is easy to ob-
serve, the distance from the cell is small, transport mode is slow and the link type is local road 
(as opposed to highway). The activity type or purpose of the trip is included for its possible 
impact on the individual’s motivational state. For example, when the purpose of the trip is in-
formation seeking observation sensitivity is probably higher than on a routine trip from work 
to home. Also, interactions between X and A may be influential in the sense that certain trip 
purposes (e.g., shopping) increase or decrease the sensitivity to certain variables (e.g., pres-
ence of stores). 
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Updating the mental-map Π of a simulated individual involves, for each cell l and each vari-
able k, calculating conditional probabilities of observation outcomes based on equation (5), 
simulating an observation and updating the current beliefs in Π using equation (1). Simulating 
an observation is done by Monte Carlo drawing from the probability distribution P(Y | xs), 
where xs is the true value (of variable k in cell l). One of the advantages of including sensitiv-
ity as a continuous parameter of observations is that the system does not need to decide 
whether or not an observation is made. Not making an observation is simply a special case of 
making an observation, namely one with zero sensitivity. As long as the sensitivity function 
(equation 6) is properly specified, the deductions should be adequate. 

2.4 Representing mental maps as a Bayesian Belief Network 

The mental map is not considered as a collection of isolated beliefs, but rather as a set of be-
liefs that are interconnected. Links between beliefs represent causal or statistical relationships 
between variables that allow the subject to make inferences about, in this application, the 
land-use and transport system. Due to such inferences the evidence obtained for one belief 
tends to spread across the network and, therefore, has consequences for other beliefs as well. 
Given that we use the Bayesian method for updating beliefs, the method that we propose here 
qualifies as a Bayesian belief network. This kind of network has been and still is intensively 
studied in areas of Artificial Intelligence, Statistics, Decision Analysis and Operation Re-
search for application in probabilistic expert systems (Heckerman et al. 1995, Russel and 
Norvig 1995, Spiegelhalter et al. 1993). At present, efficient algorithms are available for be-
lief updating in the context of such networks.  

A Bayesian belief network defines a causal structure between beliefs by a directed, a-cyclic 
graph. Developing a belief network model for the present purpose involves identifying the at-
tribute variables, Xk, and the relationships between the variables that adequately represent the 
spatial knowledge that individuals use in activity travel choice. Consider as an example the 
simple specification of a belief network (Figure 1) that is used in the simulations described in 
the next section. This belief network includes the variables urban-area type (inner city, high 
urban density, low urban density and outer area), land use (industry, housing, commercial, 
green, mixed, other), availability of facilities for specific activities (yes, no) and attractiveness 
of locations for specific activities (zero, low, medium, large). Availability and attractiveness 
are included for only three activities (namely shopping, leisure and recreational activities). 
However, it is easy to see how the network can be extended to cover other activities as well. 
The arcs represent the supposed causal relationships. For example, expectations about the 
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land use of a location are influenced by urban-area type and expectations about availability of 
specific facilities are dependent on the land use. In this particular case, the graph of the net-
work is a tree. This is, however, not a formal restriction, as cross relationships can be included 
as well as long as the graph maintains a-cyclic. 

Attached to each node is a so-called node probability table (NPT) defining a-priori beliefs 
(P(Y | R)) for the node (Y) under each possible combination of states (rs) of the parent vari-
ables. For root nodes, which do not have parents, the NPT reduces to an unconditional prob-
ability distribution. To give an example, Table 1 displays an arbitrary NPT for the node repre-
senting the conditional beliefs for the availability of shopping facilities. In general, the struc-
ture and NPTs of a network represent (generic) knowledge of an individual. This knowledge 
may not be constant across persons and spatial contexts. Persons may hold different beliefs 
about how urban areas are structured depending on their specific experiences and level of ex-
pertise. In applications we suggest a compromise solution in which the network is taken as 
given and fixed and the included NPTs are estimated on data. 
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Table 1. Example: arbitrary NPT related to availability of shopping facilities 
 
 Shopping facilities (Pr) 
Land use Yes No 
Industry 0 1 
Housing 0.20 0.80 
Commercial 0.50 0.50 
Green 0 1 
Mixed housing-commercial 0.33 0.67 
Other 0 1 
 

 

In addition to the variables that have substantial meaning, the network includes observation-
outcome variables. The arcs run from substantial to observational nodes and not vice versa, to 
reflect the fact that the values of substantial variables affect observation-outcome probabilities 
and not vice versa. Moreover, connected in this way the NPT of each observation node has 
the structure P(Y | X) and, hence, is consistent with the method of belief updating outlined in 
the previous section (Y is the outcome and X is the object of the observation). The observation 
nodes are the (only) entries through which new information enters the network. An observa-
tion is modeled as hard evidence for the observation node. Evidence spreads through the net-
work by backward and forward reasoning. Backward reasoning involves applying the Bayes-
ian method given by equation (1) to update beliefs related to parents given evidence entered to 
child nodes. In forward reasoning the beliefs of child nodes are adjusted to make them consis-
tent with changed beliefs of parent nodes. Efficient algorithms for updating Bayesian belief 
networks based on these (Bayesian) principles exist. Using the updating algorithm means that 
at any moment in time all beliefs are consistent with evidence, given by observations, and 
spatial knowledge, given by the NPTs. 

Several levels of knowledge can be modeled by NPTs as follows. First, the complete absence 
of causal knowledge is modeled by repeating the same probability distribution in each row of 
the table so that in effect all beliefs are unconditional. Under this setting, the individual still 
learns from observations, but beliefs are not interconnected so that learning is slower (and un-
biased). Second, the individual may know the (typical) marginals of distributions (e.g., land 
use or facilities) and hence the a-priori probability of finding a particular state of the variable 
in a cell. This knowledge puts a constraint on the NPTs as follows: 

 

x
uu pxP =)(   ∀ u                       (7) 
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for all root nodes X and 
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for all other nodes Y, where rs is a combined state of parent nodes, S is the number of com-
bined states of parent nodes, yu is the u-th level of the node and pu

x and pu
y are given, a-priori 

probabilities of X and Y. Hence, this knowledge level can be represented by adjusting P(yu | rs)  
such that constraint (7) is met for each level yu and each node Y (working from root nodes 
downwards in the directions of the arcs). Finally, the individual may have perfect (generic) 
knowledge meaning that the conditional probabilities perfectly correspond to the real condi-
tional probabilities. To simulate that limiting case, we set the NPTs to the true values in the 
study area. 

NPTs represent generic knowledge in the sense that they apply to all locations (cells). This is 
complementary to the location-specific probability distributions stored in the mental map that 
represents the individual’s current beliefs related to specific locations. The complete absence 
of location-specific knowledge is modeled by setting the probability distributions for each lo-
cation to the a-priori probability distributions, i.e. the probabilities computed based on NPTs. 
Each time observations are made related to some location l, the network (set of NPTs) is in-
stantiated by l and updated based on the (hard) evidence entered at the observation nodes. In-
stantiating the network means adopting the current probability distributions for l as the prior 
probabilities at nodes. The updated probabilities replace the existing probabilities for l and 
constitute the new state of the mental map. In this way, evidence obtained by observations is 
accumulated and incorporated in the current beliefs for each location. 

The difference between the current belief and the a-priori belief in a certain value for a spe-
cific cell represents the level of specific knowledge about that value in that cell. We assume 
that due to limited memory retention capacity, a certain decay of specific knowledge occurs in 
each time step in the system. As a consequence of the decay, beliefs return to their corre-
sponding a-priory belief with a certain step size in each time step (cf. Arentze and Timmer-
mans, 2003; Timmermans, Arentze and Ettema, 2003). In equation: 
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Rewriting gives: 

 

 10)1( −+−= t
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where plu
t is the belief in value u for cell l at time t, pu

0 is the a-priori belief and α is the step 
size parameter, whereby α = 1 means no decay and α = 0 means complete decay in every time 
step. Thus, the decay undoes the effects of observations meaning that if no observations are 
made for a sufficiently long time the belief will have been completely returned to the starting 
point. The step size parameter does not necessarily have the same value for each variable, as 
memory retention may differ depending on characteristics such as saliency and relevance of 
the variable. 

3. Illustration 

The model was implemented in a C++ program. For illustration purpose, a simple belief net-
work was implemented (Figure 1) together with Pearl’s method (Pearl 1988, see also Neapoli-
tan 1990) for updating beliefs in a Bayesian Belief Network. The method of belief updating 
proposed by Pearl was designed as a model of how humans adjust their beliefs and, therefore, 
suits our present modeling purpose. In this method, nodes undergoing a change send mes-
sages to parent and child nodes. In the receiving node, a message from a child or parent trig-
gers adjustments of existing beliefs so as to make them consistent with the new evidence. The 
method works optimally only for networks in which the graph is a tree, such as the network 
assumed here. 

In this section we discuss results of simulations that were conducted to explore the behavior 
of the model and show how it can be used in micro-simulations of activity-travel patterns. The 
model predicts the learning path of an individual whose activities are simulated in time and 
space. First, we describe the data of the hypothetical case. 
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3.1 Data of the case 

The hypothetical study area is modeled by a 32-by-32 raster of cells. Figure 2 shows the as-
sumed distributions of the urban-area-type variable (by shades of gray) and land-use variable 
(by numbers). The white lines indicate the borders of the inner city and the black lines repre-
sent the transport network. For the purpose of illustration, only a limited number of facilities 
were taken into consideration. These included shopping facilities, leisure (restaurants, cafes, 
etc.) and green recreation (parks). The circles show the residential and fixed activity locations 
of the hypothetical individual. The activities include work, social, shopping, leisure and rec-
reational activities. The locations for work and social activities are taken as given, whereas 
the locations for the other activities are free to choose. All work activities take place at the 
same location. Since this location is located outside the study area, the work trips are moni-
tored till the point where they leave/enter the study area. The location for social activities var-
ies across specific episodes of the activity. For the destination choice of shopping, leisure and 
recreational trips, a simple decision rule is used. The rule selects the location maximizing the 
expected utility based on current beliefs about attractiveness. The utility function used in-
cludes parameters for distance and the (ordinal) attractiveness levels. 
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The transport network includes only main roads and consists of 54 links and 42 nodes. The 
data for each link includes a resistance (i.e., the length). All links can be traveled in both di-
rections. Although the spatial and transport-network data are made up, they do convey a typi-
cal structure of urban areas (at least for Dutch cities). Figure 3 displays the distributions of the 
attractiveness variables related to the three activities. 

Each activity includes a trip from home to the activity location, an activity at the trip destina-
tion and a return trip. A shortest-path algorithm maps the trips on the road network. After 
each trip/activity event, the system predicts an observation for each cell and each attribute and 
updates the beliefs accordingly. Basic settings were adopted for the observation-outcome 
probability function. All βus were set to zero for off-diagonal cells (u ≠ s) and to unity for the 
diagonal cells (u = s). This defines a case where there are no specific observation biases. The 
only exceptions are the attractiveness variables. For these variables complete confusion was 
assumed between non-zero levels (low, medium, high) reflecting the idea that attractiveness 
level cannot be observed from a distance. A basic specification was also assumed for the 
function used to predict thetas (equation 6), namely: )25.14 ,0max( D−=θ , where D is dis-

tance measured in cell widths and refers to the shortest (straight-line) distance across the links 
and nodes included in the trip. Thus, the function assumes that theta depends only on distance 
and is the same for all variables Xk. The thetas relate to observations made during the trip. For 
activity events it is assumed that for the cell in which the activity is conducted all variables 
are observed with certainty, whereas for all other cells no observations are made at all. Fi-
nally, the memory retention parameter, α, is set to one simulating the case were there is no 
decay of specific knowledge in time. 

The initial state of the mental map assumes full information about the urban-area-type vari-
able and complete absence of information about the other variables. Thus, for the latter vari-
ables initial probabilities are derived from NPTs. In turn, the specification of NPTs implies 
perfect general knowledge in the sense that the conditional probabilities all correspond to sta-
tistical data of the study area. In sum, the specifications are consistent with the case of an in-
dividual who just moved into a new city and knows nothing about available facilities, but has 
full information (e.g., through a map) of how the area is structured in terms of area type and 
has unbiased general knowledge about cities. 
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Outer area Urban low dens. Urban high dens. 

0 = zero (not available), 1 = low, 2 = medium, 3 = high 

Figure 3: Maps of facilities for shopping (A), leisure (B) and recreation (C) 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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3.2 Results 

To measure the knowledge content of the mental map at any moment in time, an entropy 
measure and likelihood measure are defined as follows: 

 

{ }∑ ∑ ×−=
l s lkslksk xPxPXH )(log)()( 2          (11) 

 

 ∑=
l lkk xPXL )()( *                       (12) 

 

where H(Xk) is the total entropy of variable Xk across locations, L(Xk) is the total likelihood of 
correct beliefs about Xk across locations, P(xlks) is the belief in value xlks of Xk in cell l and 

)( *
lkxP  is the belief in the true value. Thus, where the entropy expresses the degree of uncer-

tainty or information content, the likelihood indicates the accuracy of the knowledge. 

The graphs in Figure 4 represent the entropy and likelihood for the availability of shopping 
facilities (as an example) as a function of time for three runs of the model. The runs differ 
with respect to the role of the belief network. In the first and third run (Without and Initial 
With), the network was excluded, so that beliefs are updated based only on observations made 
on the variable under concern. In the second run (With), the network was included to spread 
evidence among related variables. In the Initial With case, the network is used only to derive 
the initial beliefs (i.e., a-priori beliefs) and is further excluded in belief updating. In all three 
cases, the entropy decreases and likelihood increases monotonously indicating that the knowl-
edge increases over time. Flat regions in the curves correspond to the periods in which only 
work activities are conducted and, hence, the same trips are repeated multiple times. The state 
of perfect knowledge would correspond with a zero value for the entropy and a value of 32 × 
32 = 1024 for the likelihood measure. The fact that these levels are not attained means that the 
mental map still reflects incomplete knowledge of the area after all activities have been con-
ducted. 
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The differences between the curves indicate the impact of the belief network on learning. 
Both in terms of the entropy and likelihood, the With condition improves the learning end re-
sult compared to the Without condition indicating that reasoning reduces uncertainty and in-
creases the accuracy of the mental map. However, this effect of the belief network is to be at-
tributed to a better starting point rather than to a higher learning rate. In effect, learning is 
even somewhat slower under the With condition. This is proven by the ‘Initial with’ graph, 

Figure 4: Entropy and likelihood of the mental map as a function of time (i.e.,
number of activities conducted) 
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which combines the better starting position with the higher learning rate. Similar patterns 
emerge for the other variables as well (not shown). 

This finding suggests that the best learning result is obtained when generic knowledge is used 
to derive a-priori beliefs, in an initial state, and is not used afterwards in belief updating in re-
sponse to observations. A closer look at differences in state of the mental map under the dif-
ferent conditions reveals the impact of spatial reasoning. When spatial reasoning is involved, 
the beliefs display a tendency to regress to theoretically expected values. This follows from 
the fact that indirect evidence, which has a theoretical component, is combined with direct 
evidence each time a belief is updated. Theory has the advantage that the system is less sensi-
tive to biases or lack of (sensitivity of) observations on a certain attribute. However, in the 
case when all attributes are observed with identical outcome-probability functions, as in the 
simulations here, spatial reasoning is counter-productive in the sense that it introduces con-
ceptual biases. From a modeling point of view the behavior may however be adequate as real 
mental maps may display similar biases.  

To illustrate the state transitions of the mental map underlying these measures, Figure 5 repre-
sents the mental map under the With condition at three time moments in time again regarding 
the shopping-facility-availability variable. The numbers represent rounded probabilities on a 0 
– 10 scale (0 is certainly no, 10 is certainly yes and 5 means maximum uncertainty). Map A 
shows the a-priori beliefs in the initial state. The initial probabilities differ only between the 
areas distinguished by the urban-area-type variable, as this is the only information initially 
available. For example, in the inner city the a-priori probability of a shopping facility is higher 
than in high-density area around the center. In the outer area the probability is even consid-
ered to be zero.  Map B depicts the state of the mental map after the first activity has been 
conducted. This activity is a work activity so that the route of the trip 
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Figure 5: Predicted beliefs of availability of shopping facilities with network (θ = 4 – 
1.25 d, no knowledge decay). A: after 1 activity; B: after 23 activities. 

0: 0%, 1: 10 %, …, 10: 100% 
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describes the shortest path between the home and work location (see Figure 2). The simulated 
effects of observations made during the trip are clearly visible as a band along both sides of 
the route of the trip of approximately 2-3 cells wide. Within this band the probabilities tend to 
be approximately equal to 0% for locations were there are no shops and 100% for locations 
were there are shops (cf. Map A in Figure 3) meaning that uncertainty has been reduced al-
most completely. The width of this band reflects the assumed distance-decay function of the 
observation sensitivity. However, the effects of observations are not completely homogeneous 
within the band. For some of the cells there is more uncertainty left as a consequence of con-
flicting outcomes of observations (due to limited sensitivity). The probability of conflicting 
outcomes increases and their impact on beliefs decreases with increasing distance from the 
route. 

Map C portrays the state of the mental map of shopping facilities after all 23 activities have 
been conducted. The uncertainty about where shopping facilities are located has decreased 
considerably as indicated by the increasing number of zero and ten-value cells. However, the 
reduction is not homogeneous across locations, but rather reveal the routes that the individual 
frequently takes to conduct the activities at different locations in the area. The center area and 
areas around frequently traveled routes are well known, while other parts of the city are still 
largely or completely unknown. As it turns out, the incremental learning over time has an ef-
fect also on the location choice of shopping activities (not shown). For example, at first the 
individual chooses the nearest location from home being unaware of the relative attractiveness 
of the locations observed on routes. It appears that this location has a low attractiveness and 
the next time the individual tries the second nearest location from home. After experiencing 
that also this location has a low attractiveness, the next shopping trip switches back again to 
the nearest location. Because of the distance, the expected utility of the other shopping loca-
tions known to the individual is lower, even though there is full uncertainty about the attrac-
tiveness of these alternatives. 

4. Conclusions and discussion 

In this paper, we have put forward a Bayesian belief network for modeling the dynamics of 
mental maps. In the present paper, we have restricted the model to the problem which destina-
tion location and their attributes are known to an individual traveler and how such maps 
evolve over time as a function of the implementation of activity-travel schedules. The poten-
tial of the approach has been illustrated using numerical simulation. The results of the simula-
tion demonstrate the potential of the suggested approach. 
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When evaluating the results of the model, it should be realized that only part of the full prob-
lem of mental maps of urban environments have been covered. Four additional lines of re-
search are required to develop a full-fledged model. First, the model presented in this paper 
dealt with the perception of locations. In addition, a model how individuals learn about the 
road network structure needs to be developed to complement the present model. Secondly, al-
though we articulated its importance, the present model has focused on how people learn 
about their environment as a result of conducting a particular set of activities. However, peo-
ple may also learn from other sources such as news media and social contacts, implying that 
either the present model should be further elaborated along for this case, or that another model 
should be developed to simulate the effect of sources other than travel on the dynamics of 
mental maps. Finally, we have only considered the perception and cognition dimension. In 
conducting their activities, people will also experience their environment, thereby forming 
and updating judgments. Again, the development of a model how individuals form and update 
their value judgments about the attributes of the choice alternatives in their mental maps con-
stitutes another critical component of a realistic dynamic micro-simulation system of activity-
travel behavior. 

Furthermore, the model of the mental map and cognitive learning includes several sets of pa-
rameters that need to be estimated on data. These include the parameters of the observation-
outcome probability function and the conditional probabilities associated with nodes in the 
belief network. Possibly, data about how individuals perceive and update their beliefs could 
be collected in virtual reality environments where the experimenter is able to control the 
physical aspects of the environment and subjects can implement their trips and activities in a 
simulated environment. Alternatively, the model may be calibrated on revealed knowledge 
patterns stratified by level of expertise and activity-pattern characteristics of a larger sample 
of individuals. Much additional work is needed to develop feasible and effective methods of 
data collection and estimation/calibration. 

One immediate application of the suggested approach concerns the delineation of choice sets. 
Depending upon one’s definition of a choice set, the model presented in this paper could ei-
ther be applied in a straightforward manner or could be the stepping stone of a model to de-
lineate dynamic choice sets. If one would define a choice set as the set of choice alternatives 
known to an individual traveler, then the model presented in this paper could be used as is. If, 
on the other hand, one would entertain a stricter definition, arguing that an alternative would 
only belong to a choice set if it is seriously considered for choice, then some additional as-
sumptions have to be made. We intend to address this problem in more detail in a forthcom-
ing paper. 



10th International Conference on Travel Behaviour Research 
______________________________________________________________________________ August 10-15, 2003 

21 

Ultimately, all these components will be added as agents to the Albatross system (Arentze 
and Timmermans, 2000). The agents dealing with the dynamics of mental maps as discussed 
here will then be used to simulate the dynamics of individuals’ cognitive representation of 
space and transport networks, and to simulate the dynamics of their value judgment. The ap-
plication of these agents in a micro-simulation will then generate at each point in time an in-
dividuals’ mental map and subjective assessment of the available choice alternatives. The 
rules embedded in the current version of Albatross, representing choice heuristics, can then 
be used to schedule activities in time and space. 
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