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Abstract 

In this work, route-choice simulations and laboratory experiments were conducted in order to 
evaluate the effect of feedback mechanism on decision-making under uncertainty, with and 
without provided information about travel times. We discuss the prediction of travellers' re-
sponse to uncertainty in two route-choice situations. In the first situation travellers are faced 
with a route-choice problem in which travel times are uncertain but some information (which 
may be static or dynamic) about travel times of each (or some) route is provided. The second 
situation takes place in a more uncertain environment in which information about routes is not 
provided, and the travellers' only source of information is their own experience. Experimental 
results are in conflict with the paradigm about traveller information systems: providing travel-
lers with information will not necessarily lead them to make better decisions. There are situa-
tions when propensity to choose a more efficient route might be decreased (instead of in-
creased) when travel time information about the routes is provided. As a consequence of infor-
mation, the propensity of travellers to maximize utility is not always increased. It was found out 
that providing travellers with static information about expected travel times increases the non-
homogeneity of travellers and reduces the maximization rate. These findings are described and 
explained. This better understanding of route-choice behaviour may improve traffic predictions 
based on route-choice modelling. The design of better cost-effective ATIS may benefit from 
such an insight.  
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1. Introduction 

Advanced Traveller Information Systems (ATIS) are a major component of Intelligent Trans-

portation Systems (ITS). ATIS aims are to provide travellers with real-time travel information 

in order to help them proceed to their destinations efficiently and safely. On-going develop-

ment of ATIS technologies includes on-board navigation systems, pre-trip route planning sys-

tems, traffic information broadcasting and electronic route-guidance systems. Successful ap-

plication of ATIS may assist travellers in making more efficient travel choices. Two of the 

critical aspects involved in the design of ATIS which should not be overlooked are informa-

tion acquisition and cognitive processing. Information acquisition and cognitive processing 

have a major impact on the travellers' abilities to predict network conditions as well as mak-

ing rational route-choice decisions. 

In route-choice process there exists a relation between the network performances which oc-

curred in past time periods and travellers’ current route choices. Route attributes, such as 

travel time, are usually not constant, and are not likely to be known to travellers before cur-

rent travel occurs. Therefore, route-choices in the current period are based on information 

concerning network performances in previous time periods. There are many studies that have 

been focusing on modelling travellers’ learning and the day-to-day dynamics of network flow, 

among them: Horowitz (1984), Friesz et al. (1984), Smith (1984), Cascatta (1989), 

Cascatta & Canterella (1991) and van Berkum & van der Mede (1998). 

The common route-choice models are based on the assumption of utility maximization. Each 

individual tries to maximize the utility Uj of choosing route j. Many experiments in behav-

ioural studies often find the predictions of utility maximization to be violated (for example, 

Kahneman & Tversky, 1979). Humans’ rationality was found to be restricted by cognitive 

limitations (Simon, 1957). Hogarth (1987) states that there are four consequences of limited 

human information-processing capacity that affect judgment: (1) humans have a selective per-

ception of information, (2) the nature of human processing is generally sequential, (3) humans 

have a limited capacity to process information: they typically use heuristics or simple rules, 

and (4) humans have limited memory. These limitations suggest that the amount of informa-

tion provided to decision-makers may not be as important as the method of presentation or the 

stage in the choice process that it is presented (Adler, 1993). Mahmassani (1996) has sug-
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gested that the behaviour of repetitive travellers is guided by simple heuristic strategies and 

by a limited set of mental choice rules. Chang & Mahmassani (1988) conducted simulation 

experiments to analyze how individuals adjust their departure time choice in response to pre-

vious experience. They conclude that the most recent information, essentially the previous 

trip's travel time, is the key factor to the current decisions. Iida et al. (1992) also conducted a 

laboratory experiment to analyze route-choice behaviour and dynamic adjustment over time. 

Their empirical estimates suggested that more recent travel experience is more important than 

less recent travel experience. 

Several studies of the route-choice process by repetitive travellers have been made based on  

behavioural decision theory, among them: Horowitz (1984), Mahmassani & Chang (1985, 

1987), Chang & Mahmassani (1988), Mahmassani (1990), Iida et al. (1992); Supernak 

(1992), Lottan & Koutsopoulos (1993); Emmerink et al. (1998); Nakayame et al. (1999); 

Polak & Oladeinde (2000); Fujii & Kitamura (2000) and Avineri & Prashker (2003). The 

above studies represent a great variety of approaches to model information acquisition and 

learning process. They vary tremendously in their complexity and data requirements. Bonsall 

(2000) found that it would be naive to imagine that one and only approach will be suitable to 

all circumstances. 

Analysis of choice behaviour in iterative tasks with immediate feedback reveals robust devia-

tions from utility maximization. The most obvious class of such failures is the Payoff Vari-

ability Effect: High payoff variability seems to move choice behaviour toward random choice 

(See Myers et al., 1965; Busemeyer & Townsend, 1993; Erev et al., 1999). Evidence of the 

Payoff Variability Effect in route-choice situations was found in recent studies. Avineri & 

Prashker (2003) have showed, that the higher the variance in travel times is, the lower is the 

travellers’ sensitivity to travel time differences. Particularly, it was found out that in some 

cases, increasing travel time variability of a less attractive route can enlarges its perceived at-

tractiveness. This affects the choice proportion of specific route, and produces results which 

completely differ from those predicted by models based on the utility maximization assump-

tion. The Payoff Variability Effect is predicted by learning models. 

Many researchers have studied the effect of provided information on route-choice. In some of 

these studies it was found that learning speed is accelerated by the provision of information. 

Polak & Oladeinde (2000) have conducted lab experiments, in which separate groups of sub-
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jects were provided with different level of information accuracy. They found that even bad in-

formation accelerate the speed of travellers' learning. 

In this work we would like to discuss the effect of providing travel-time information on the 

learning process under uncertainty. 

There are many different methods in which travellers can acquire information. Travellers’ 

perceptions of the routes’ attributes may be formed through actual experience, through ATIS 

technologies, or through a combination of different methods. Traveller information systems, 

such as broadcasts of traffic conditions, Variable Message Signs (VMS), or cellular informa-

tion systems can provide the traveller with information which is more comprehensive and 

more accurate than the information acquired only by their own experience.  

 

Information acquired using ATIS may be represented in a dynamic or a static manner. For ex-

ample providing average (expected) travel time of each the routes, without updating this in-

formation, is an example to static information. Information may be presented in a dynamic 

form, such as recent travel time which occurred the available routes. Dynamic information 

may be based on real-time information gathered and processed by the ATIS. There may be 

different reasons for providing information in a static form. It may be provided due to ATIS 

limited capabilities of collecting and calculating recent data, or due to ATIS design specifica-

tions. ATIS designers may consider not to update travel information too often, in order to 

achieve better system stability and reliability in the mind of the travellers. 

 

 

2. Models of Information Acquisition Process: Learning as 
a Sequential Sampling Process 

Five basic different models of information acquisition process are discussed in this section: 

(1) Travellers are provided with dynamic information about past network performance, about 

all of the routes. (2) Information is being acquired by travellers only through their own ex-

perience. (3) Travellers acquire information by their own experience, and are provided as well 

with dynamic information based on past performance of some of the routes. (4) Travellers ac-
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quire information based on their own experience, and are provided as well with static infor-

mation about network performance, about all of the routes. (5) Travellers acquire information 

by their own experience, and are provided as well with static information about network per-

formance about some of the routes. 

A classification of information acquisition models is provided in Figure 1. 

 

 

2.1 Model 1: Travellers are provided with dynamic information 
about all of the routes 

In route-choice decision-making process there exists a relation between the perception of 

route attributes, which is based on network performances in past time periods, and the travel-

lers’ current route-choice decisions. We may describe travellers’ route-choice behaviour as an 

iterative process, in which, at each iteration, the traveller uses historical frequencies of differ-

ent travel times and form a belief about the routes’ expected travel times. Based on his/her be-

Figure 1 A Classification of Information Acquisition Models 

 

 

INFORMATION ACQUISITION 

Information Provided 
by ATIS 

Travelers' Own Experience 
(Dynamic Information) 
(Minimal Information) 

Dynamic Information 
(Recent Travel Times) 

Static Information 
(Expected Travel Time) 

Several Routes Network 
(Complete Feedback) 

Several Routes Network 
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lief, the traveller chooses a route, which is supposed to minimize the expected (or random) 

travel time.  

Horowitz (1984) described a simple learning model. In this model, in order to treat route-

choice decisions over time, one assumes that in each period t these decisions are based on 

weighted average of measured travel utilities in previous time periods. This learning model is 

formulated as follows: 

 

where (t)U j
ˆ  is the utility of route j as perceived by the traveller at time period t; Uj(t) is the 

measured utility of travel of route j in time period t; εjt is a random variable whose probability 

distribution is independent of t; and wr(t-1) is a non-negative weight. For each route j, for 

each time period t, the weights satisfy 

 

The left term in eq. 2, 1)(tw 
1t
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=

, represents the composite effect of past measured route 

performances on current perceived utility. The weights 1)(tw jr, −  describe the relative influ-

ences of recent and distant past route performances on current utility perception (Horowitz, 

1984). 

 

The probability of choosing route j in time period t may be predicted using the Multinomial 

Logit model: 
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where Uj(t) is the measured utility of travel on route j in time period t. The parameters of this 

model are µ and the time period weights 1)(tw kr, − ; µ>0 is a free parameter that determines 

the “extremeness” of the choice probabilities and the sum is over m, the number of alternative 

routes in the choice set. 

In many studies, the rate of learning is determined (or estimated) using an exponential 

weighted moving average approach (for example, Ben-Akiva et al., 1991; Koutsopoulos & 

Xu, 1993; Axhausen et al., 1995; van Berkum & van der Mede, 1998; Emmerink et al., 

1998). This approach requires (at least) another parameter which would determine the learn-

ing rate measure. For simplicity, we assumed that all the weights till current time period t are 

equal: 

 
w1,j(t-1) = w2,j(t-1)  = … = wt-1,j(t-1) = 1/t         ∀j; ∀t=1,…,T                                 (4) 
 

where T is the number of time periods.  

The models described by Horowitz (1984) are typical Stochastic Fictitious Play (SFP) learn-

ing models, described and discussed by Brown (1951), Robinson (1951), Fudenberg & Le-

vine (1998) and Cheung & Friedman (1998). 

. 

 

2.2 Model 2: Information acquired by travellers only through their 
own experience 

Model 2 describes a situation where travellers acquire information only through their own ex-

perience. Model 2 is similar to model 1, but instead of averaging all of the past travel times of 

a specific route, only travel times experienced by the traveller are averaged. This may reduce 

the amount of information provided by )m
1 - (1 , where m is the number of the routes in the 

choice set. This learning model is formulated as follows: 



10th International Conference on Travel Behaviour Research 

______________________________________________________________________________ August 10-15, 2003 

9 

 

where tj is the set of past time periods in which route j was chosen; (t)U j
ˆ is the utility of route 

j as perceived by the traveller at time period t; Uj(t) is the measured utility of travel of route j 

if it was chosen in time period t; εjt is a random variable whose probability distribution is in-

dependent of t; and 1)tw jr −(, is a non-negative weight. For each route j, for each time period 

t, the weights satisfy the following equation: 
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performances on current perceived utility. The weights 1)tw kr −(, describe the relative influ-

ences of recent and distant past performances on current utility perception (Horowitz, 1984). 

Notice that the value of the weight 1)tw jr −(,  has no meaning when route j is not chosen at 

travel time period r. 

The probability of choosing route j in time period t may be predicted using a Logit model: 

where Uj(t) is the measured utility of travel at route j in time period t. 
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2.3 Model 3: Travellers are provided with dynamic information 
about some of the routes 

This model is a combination of the last two models. Routes which explicit information is pro-

vided, the perceived utility at time t, (t)U j
ˆ , is calculated based on model 1 assumptions (eq. 

1). For routes in which information is acquired by the travellers only through their own ex-

perience, the perceived utility at time t, (t)U j
ˆ , is calculated based on model 2 assumptions 

(eq. 5). 

The probability of choosing route j in time period t may be predicted using the MNL model, 

as described in eq. 8. 

 

2.4 Model 4: Travellers are provided with static information about 
all of the routes 

This model can be summarized by the following assumptions: 

L1: Initial propensities: The traveller has an initial propensity to choose each route. The ini-

tial propensity to select route j (at travel period 1) is given by qj(1): 

where Lj is the expected travel time of route j, provided to the traveller before he/she has ex-

perienced traveling. Thus, on the first travel time period, where traveller only source of infor-

mation is the static information provided, he/she will tend to choose the route with the mini-

mal expected travel time. 

In the particular case, where there is more than one route provided with a minimal travel time, 

qj(1)=1/N, where N is the number of routes in which given travel times are minimal. 


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L2: Average updating: The propensity to choose route j in travel period t+1 is a weighted av-

erage of the initial propensity (qj(1)) and the average travel time obtained from choosing j at 

the first t rounds (Uj(t)). The weight of the initial propensity is a function of a “strength of ini-

tial propensities” parameter N(1). The weight of the average past travel times is a function of 

the number of times route j has actually been chosen in the past (Cj(t)). Specifically, 

 

In the above equation, the average of the obtained travel times in route j, Uj(t), is not 

weighted, i.e., all the weights of measured travel times, till the last experienced travel time, 

are equal. 

L3: Exponential Response Rule: The probability pj(t) of choosing route j in travel period t is 

given by: 

 

2.5 Model 5: Travellers are provided with static information about 
some of the routes 

This model is a combination of model 2 and model 4. Routes for which explicit static infor-

mation is provided, the perceived utility at time t, (t)U j
ˆ , is calculated based on model 4 as-

sumptions (eqs. 9-11). Routes for which information is acquired by the travellers only 

through their own experience, the perceived utility at time t, (t)U j
ˆ , is calculated based on 

model 2 assumptions (eqs. 5-7). 

An exponential response rule is assumed, as in the former models. 

 

In the next section, some numeric examples are given in order to evaluate the information ac-

quisition process under uncertainty. Simulation was used in order to analyze these examples. 
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3. Route-Choice with Dynamic Information: Simulated 
Examples 

In order to study the impact of travel time dynamic information on travellers' information ac-

quisition and learning process, different situations involving dynamic information are dis-

cussed. Monte-Carlo simulation, based on the models described in section 2, was used in or-

der to analyze several situations. Four examples of simplified route-choice decision tasks 

were studied; all of them were based on the following binary route-choice situation (Figure 

2): 

 

Figure 2 The binary route-choice problem 

 

 

 

 

 

In all of the examples, one choice (route A) yielded an average travel time of 33 minutes and 

the other (route B) yielded an average travel time of 30 minutes. Routes A and B travel times 

were normally distributed travel times with standard deviations of 1 minute and 7.5 minutes 

respectively. Travel time distributions for both routes are described in Figure 3. All values in 

this work were drawn from the normal distributions and assumed to be positive and discrete 

(i.e., integer travel times, in minutes).  

Work Home 

A 

B 
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Figure 3 Route A and route B travel time distributions 

                           

Travel Time Distribution (minutes)

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0 10 20 30 40 50 60

Route A
Route B

 

 

 

The following route-choice situations were simulated: 

 
Example 1 

There are two alternative routes, A and B, to get from a traveller's work to his/her home. The traveller 

does not have any information about the travel time on either of the routes. The traveller has to choose 

one of the routes (A or B) in order to get from work to home. After a choice is being made, the traveller 

is informed about the duration of the trip he/she has made (in minutes). Then he/she chooses again, un-

til 400 daily trips are accomplished.  

 

Example 2 

There are two alternative routes, A and B, to get from a traveller's work to his/her home. The traveller 

does not have any information about the travel time on either of the routes. The traveller has to choose 

one of the routes (A or B) in order to get from work to home. After a choice is being made, the traveller 

is informed about the duration of the trip he/she has made (in minutes), as well as how long it could 

have taken if the second route was chosen. Then he/she chooses again, until 400 daily trips are accom-

plished.  

 

Example 3 

There are two alternative routes, A and B, to get from a traveller's work to his/her home. The traveller 

does not have any information about the travel time on either of the routes. The traveller has to choose 
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one of the routes (A or B) in order to get from work to home. After a choice is being made, the traveller 

is informed about the duration of the trip he/she has made (in minutes). The traveller is informed as 

well on route’s A recent measured travel time, even if it wasn’t chosen by him/her. Then he/she chooses 

again, until 400 daily trips are accomplished.  

 

Example 4 

There are two alternative routes, A and B, to get from a traveller's work to his/her home. The traveller 

does not have any information about the travel time on either of the routes. The traveller has to choose 

one of the routes (A or B) in order to get from work to home. After a choice is being made, the traveller 

is informed about the duration of the trip he/she has made (in minutes). The traveller is informed as 

well on route’s B recent measured travel time, even if it wasn’t chosen by him/her. Then he/she chooses 

again, until 400 daily trips are accomplished.  

 

Obviously, Example 1 is framed in the context of model 2 (information acquired by travellers 

only through their own experience). Example 2 is framed in the context of model 1 (travellers 

are provided with dynamic information about past network performance, for all of the routes). 

Examples 3 and 4 are framed in the context of model 3 (travellers acquire information by their 

own experience, and are provided as well with dynamic information about past performance 

of one of the routes). 

 

Figure 4 presents the prediction of the discussed information acquisition models, for each of 

the four examples. The results present the proportion of route A choices in 5 blocks of 20 tri-

als each. In all the examples, µ value was 1.2. 

In the simulated results of all the four examples, travellers “learn” to prefer route B, which 

has lower expected travel time. At the end of the simulation process, the predicted preference 

of route B is higher than the predicted final preference for route A (PA < PB, or 0 < PA < 0.5). 

The models used capture the effect of learning rate on preferences behaviour: the fast learning 

to prefer route B occurs when dynamic information is provided on both routes (Example 2, PA 

= 0.02 after 400 trials), and the slow learning to prefer route B occurs when information is 

acquired by travellers only through their own experience (Example 1, PA = 0.21 after 400 tri-

als).  
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One may wonder why the learning process is so slow. The proportion of route A choices, us-

ing model 3 (experience-based information), is not approaching zero, even after 400 time pe-

riods. The explanation for that is that people's perception of the travel time distribution, as 

modeled in the simulation of the information acquisition process, is biased. Typically, people 

use sample data to infer population characteristics. Since sample expectation and sample vari-

ance are biased estimates of population expectation and population variance, to the extent that 

people use sample data in their perception of population distribution, their perception is dif-

ferent from the true values. 

 

Figure 4 Proportion of route A choices, presented in blocks of 20 time periods each. 

The four examples described on section 3: 

Example 1: Information acquired only by experience 

Example 2: Dynamic information provided for both routes 

Example 3: Information acquired by experience, as well as dynamic information about route A 

Example 4: Information acquired by experience, as well as dynamic information about route B 

                          

Proportion of Route A Choices

0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400

example 1 example 2
example 3 example 4

 

 



10th International Conference on Travel Behaviour Research 

______________________________________________________________________________ August 10-15, 2003 

16 

Travellers' learning in route choice situations may be considered as a sequential decision 

problem. At each stage, the traveller takes an action and observes a stochastic outcome (travel 

time). The traveller's stage utility depends on his/her action, the observed outcome and on 

previous outcomes. We may assume the traveller is Bayesian and is endowed with a subjec-

tive belief over the distribution of travel times. The traveller's initial belief is typically inaccu-

rate. Therefore, his/her subjectively optimal strategy is initially suboptimal. As time passes, 

information about the true dynamics is accumulated and, depending on the compatibility of 

the belief with respect to the truth, the traveller may eventually learn to optimize.  

In many examples a subjective agent may never learn to optimize. In other examples agents 

always learn and there are cases where agents may or may not learn, depending on the spe-

cific realized sequence of outcomes. Lehrer & Smorodinsky (2000) presented conditions 

that determine whether a Bayesian agent will eventually learn to optimize. 

Providing dynamic information only for route B, as in Example 4, may be sufficient, and even 

slightly better than providing information about both routes. It can be seen from Figure 4 that 

the learning process is somewhat faster when dynamic information is provided only for route 

B, instead of both of the routes.  

Providing dynamic information only for route A, as in Example 3, results in a learning proc-

ess which is faster than in the situation where information is acquired by travellers only 

through their own experience (Example 1). This tendency changes after about 100 trials, and 

the learning process becomes faster for the case where dynamic information is not provided.  

One may wonder why providing information about route A (as in examples 3 and 4) results in 

a larger propensity to choose it, compared with the situation where there is lack of informa-

tion about route A (as in examples 1 and 2). This may be explained by the hypothesis the 

learning can be represented as a sequential sampling process. In such a process, learning 

modifies the sampling rate of the alternatives (by changing behaviour) which in turn changes 

the outcomes. By shifting sampling from inferior to more superior alternatives, the process 

improves the choice. However, reducing a sampling rate reduces the ability to accurately 

measure the alternative, which could be disadvantageous for high variance returns (March, 

1996). Having some good results of a choice leads to a high propensity to choose this choice 

again and again. Thus, it might reduce the sampling rates of alternatives which may be good 
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ones. Small sample learning with respect to risky alternatives is quite likely to be misguided. 

Route B, which is usually fairly good but occasionally very poor, is likely to be interpreted as 

worse than it really is.  

Based on the assumption of sequential sampling process, risk "preference" can be interpreted 

as a learned response. The greater is the variability of one of the alternatives, the more pro-

found is the effect. In this simple binary route-choice problem, the more risky choice (route 

B) is likely to be more rewarding, which translates into a propensity to choose it. The joint 

probability of choosing the route A and being rewarded for it becomes smaller and smaller. 

But in the domain of losses (as in travel times), sampling is more self-correcting. Many 

choices of route A result in a smaller loss than most choices of the route B, which reduces the 

learning process rate to prefer route B (i.e., reduces the utility maximization rate). This result 

is that learners tend to oscillate between the two alternatives, which bring the overall behav-

iour closer to risk neutral, i.e. choices are close to the predictions based on the assumption of 

utility maximization.  

Another aspect of representing learning as sequential sampling process is the travellers’ sensi-

tivity to travel time variability: The higher the variance in travel times, the lower is travellers’ 

sensitivity to travel time differences. Specifically, it was found in route-choice laboratory ex-

periment (Avineri & Prashker, 2003) that in some cases, increasing travel time variability of 

a less attractive route (such as route A) could increase its perceived attractiveness.   

The representation of learning as sequential sampling process may be relevant to the designer 

of cost-effective ATIS. This better understanding of travellers' behaviour may help in ATIS 

design, such as in which routes to assign VMS. Providing dynamic information about routes 

with high-variance travel times influences significantly the propensities to choose routes, even 

when travellers have much experience. On the other hand, providing dynamic information 

about routes with low-variance travel time may slow down the learning process of experi-

enced travellers. 

It appears that the learning effects described in this section will be generated by any learning 

process in which information about the alternative routes can only be gained from choosing 

them and in which choice depends on experience with alternatives.  

The above discussion and results follow some of the principals of limited human information-

processing capacity. However, one of the principals that were not considered in the simulation 
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experiments is the limited memory of humans. Travellers have a real difficulty processing 

dozens and hundreds of past travel times. Also, travellers are not necessarily utility maximiz-

ers, neither rational learners. In the next section, route-choice decision-making under uncer-

tainty is examined in laboratory experiments. 

 

4. Route-Choice with Static Information: A Laboratory 
Experiment 

The main limitation of the models discussed in the previous section is that their assumptions 

do not have much psychological bases. People’s rationality is restricted by their cognitive 

limitations (Simon, 1957). In order to make "good" choices, people must come to know the 

environment in which they live. However, time constraints (e.g., the need for a speedy deci-

sion), memory limitations1 (e.g., the limit on sample size imposed by working-memory capac-

ity), or simply the unavailability of more information, often force people to use sample data 

(statistics) to infer population characteristics (Kareev et al., 2002). Usually, travellers are 

faced with large-scale route-choice decision problems, with many alternative routes to be 

evaluated, and to make their decisions in an uncertain environment and under time con-

straints. This directly implies that travellers' perception of travel time characteristics are 

wrong. Even if travellers do behave according to the concept of utility maximization, they can 

not remember all the travel times experienced in the past, nor to compute travel time frequen-

cies. 

Experiments in behavioural studies often find the predictions of utility maximization to be 

violated. A principal contribution in this area is the fundamental work of Tversky & Kahne-

man (1974, 1979 & 1981). They have provided extensive empirical, laboratory-based, evi-

dence of instances in which human decision making deviated from Bayesian logic, and con-

cluded that biases, errors and misconceptions typify much of human decision making in the 

                                                 

1 For example, t was found that humans are able to process only about 7±2 items of information effectively at 

any one time (Miller, 1956). 
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presence of risk. Kahneman & Tversky (1979) showed that changing the ways in which op-

tions are framed could generate predictable and dramatic shifts in preference. Their experi-

ments capture a pattern of risk attitudes which differ from utility maximization: risk aversion 

when lotteries are framed as gains, and risk seeking when lotteries are framed as losses.  

Moreover, a traveller does not necessarily minimize travel time when choosing a route, but 

rather adopts some other simple rules (for discussion and examples, see Lottan & Kout-

sopoulos, 1993; Mahmassani, 1996; Gärling, 1998; Nakayama et al., 1999). 

 

Route-choice experiments were conducted to evaluate the effect of the feedback mechanism 

on decision-making under uncertainty, in two scenarios: (1) static travel time information is 

provided on each of the routes; (2) Information acquired by travellers only through their own 

experience.  

The basic task in both scenarios was a choice between two alternative routes from work to 

home. In the first scenario, route A yielded an average travel time of 33 minutes and route B 

yielded an average travel time of 30 minutes. These average travel times were chosen since 

the average travel time per trip from work to home in Israel was 29.1 minutes in 1996 (Cen-

tral Bureau of Statistics, 2001).  Routes A and B travel times were normally distributed with 

standard deviations of 1 minute and 7.5 minutes respectively. At the first scenario, subjects 

received no prior information about the experiment’s travel time distributions. At the second 

scenario, subjects were provided with the average travel times on both routes, at the beginning 

of the experiment (static information). Travel time distributions for both scenarios are de-

scribed in Figure 3.  

4.1 Participants 

The experiment subjects were 46 Israeli men and women, holding a driving license for 12 

years on average. The first scenario's data was taken from Avineri & Prashker (2003). 

4.2 Apparatus 

The experiment was programmed and ran on Windows 98/ME environment. This system was 

installed on Pentium 3 computers with Super VGA 17’’ screens. 
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4.3 Procedure 

The subjects were introduced to a simple network problem shown in Figure 5. Each subject 

was seated (alone) in front of a computer screen. No calculation aids such as calculators were 

allowed. On each trial, each participant was asked to choose one of the two alternative routes 

to travel home from work, by clicking on one of the two routes represented by “radio but-

tons”. Following a choice, the travel time (in minutes) simulated from the distributions de-

fined earlier was displayed. The participants had to wait (a delay function was used) and view 

the assigned travel time for at least 2.5 seconds before they were allowed to make a route 

choice for the next trial. In order not to “help” the participant to have precise information of 

the history of travel times, only the last travel time was presented. The experiment interface is 

displayed in Figure 6. 

 

Figure 5 Experiment instructions 

(Translated from Hebrew) 

            You are about to participate in a route-choice decision making experiment. 
There are two alternative routes, A and B, to get from your work to your home.  
 
Scenario 1:  
“You have no information about the travel time, the distance or the travel speed on either  
of the routes.” 
 
Scenario 2: 
“Route’s A average travel time is 33 minutes; Route’s B average travel time is 30 minutes.” 
 
 

 

                                   

 

 
 
During the experiment, you will be asked to perform 100 daily trips. Every time you will be asked to  
choose one of the routes (A or B) in order to get from work to home. After a choice is made, you’ll be  
informed how long your trip was (in minutes). 

 

Work Home 

A 

B 
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Figure 6 Screen display in scenarios 1 & 2 

 

 

 

5. Experimental Results 

Figure 7 presents the experimental results, described as the proportion of route A choices 

(PA) at both scenarios. For simplicity, the results are arranged in 5 blocks of 20 trials each.  

As predicted by the learning models, subjects that were not provided with information about 

travel times, tended to choose route B more than route A (on average 35% of the choices in 

scenario 1 were route A choices). In the last 20 time periods of scenario 1 the proportion of 

route A choices was 32%. Figure 7 shows this learning effect.  
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Figure 7 Proportion of route A choices, presented in blocks of 20 time periods each, for both 
scenarios (with and without information) 
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Many models studied by Avineri & Prashker (2003) capture this learning effect. These mod-

els include the Reinforcement Learning Model (Erev et al., 1999), SFP model (Brown, 1951; 

Robinson, 1951; Cheung & Friedman, 1998; Fudenberg & Levine, 1998; also discussed by 

Horowitz, 1984), and the Cumulative Prospect Theory Learning Model (CPTL), a dynamic 

generalization of the static Cumulative Prospect Theory Model (Kahneman & Tversky, 

1979; Tversky & Kahneman, 1992), introduced by Avineri & Prashker (2003). Model 2 in 

Figure 3, where information is acquired by travellers only by their own experience, fit well 

these experimental results. 

Assuming risk-natural behaviour, travellers were supposed to choose route B when provided 

with the travel time information. However, it looks like providing this information made 

many of the travellers to be risk-prone.  

It can be seen from Figure 7 that the proportion of route A choices in scenario 2, where sub-

jects were provided with static information about the routes travel times, are higher than the 

proportion of A choices in scenario 1.  

At the first trials, subjects provided with static information about travel time, tended to follow 

this information. It is difficult to explain why these subjects tended to choose route A (the 
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longer one) more than subjects in the group that was not provided with static information (on 

average 46% of the choices in scenario 2 were route A choices, versus 35% of the choices in 

scenario 1). Furthermore, in the last 20 trips this difference comes to 16% (frequencies of 0.48 

versus 0.32, respectively). These results do not the static information model introduced in sec-

tion 2.4, regardless of the parameters values. 

Looking at Figure 7, one may conclude that the learning rate with static information provided 

does not converge to the utility maximization based prediction (PA<0.5), and wonder if there 

is an evidence to learning process involved in this situation: after gathering much information 

(last block of 20 trials), the proportion of both routes is about the same, PA ≈ PB ≈ 0.5. To bet-

ter understand what have happened during the route choice process we need to investigate the 

behaviour of individuals during this process, rather than looking at the aggregated results. 

Depending on their route choice behaviour, subjects may be roughly classified into five 

classes:  

 

(1) Highly Risk-Averse travellers: those who would like to decrease the risk by 

(almost) always choosing route A (0.95≤PA≤1 at the last 20 travel periods). 

(2) Risk-Averse travellers: those who would like to decrease the risk by usually 

choosing route A (0.65≤PA≤0.85 at the last 20 travel periods). 

(3) Indecisive travellers: those who are neutral between alternatives, choosing 

route A in about the same proportion as route B (0.4≤PA≤0.6 at the last 20 

travel periods)  

(4) Utility-Maximization travellers: those who would like to increase their utility 

by usually choosing route B (0.1≤PA≤0.35 at the last 20 travel periods). 

(5) Highly Utility-Maximization travellers: those who would like to increase their 

utility by (almost) always choosing route B (0≤PA≤0.05 at the last 20 travel 

periods). 

 

The distribution of travellers by the above definitions of behaviour types is presented in Fig-

ure 8. The graphs represent the proportion of route A choices (PA) in the last block of 20 time 

periods (81≤t≤100), with and without providing static information. 
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Figure 8 Distribution of traveller types, by the proportion of route A choices in the last block.  
(a) Scenario 1: Without prior static information;  (b) Scenario 2: Prior Static information 
provided 
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It can be seen, that when static information was not provided (see Figure 8a), about 33% of 

the subjects may be considered as indecisive travellers. When static information was provided 

for both routes (see Figure 8b), the proportion of indecisive travellers was dropped to only 

9%. Thus, the static information provided did not reduce their learning rate. On the contrary: 

learning rate of the travellers is higher, but their behaviour became less homogenous.  Thus, 

we distinguish the learning process from the utility maximization process.  

Furthermore, the proportion of highly risk-averse travellers is 26% in the scenario where 

static information was provided. No subjects are classified as highly risk-averse travellers in 

the scenario where subjects were not provided with static information. 

We may explain the empirical results by a Classification Effect: providing static information 

to a traveller assist him/her to adopt a certain behaviour pattern such as risk aversion or utility 

maximization, thus the proportion of indecisive travellers is reduced.  

Another way to represent the non-homogeneity in travellers' behaviour is displayed in Figure 

9. Each point of this graph represents the standard deviation of PA (the proportion of route A 

choices) between subjects, at time period t. It can be seen, that when static information was 

not provided (scenario 1), the standard deviation of PA was lower than in the case where static 

information was provided (scenario 2). Thus, the behaviour of subjects provided with static 

information is less homogenous. An explanation of the large non-homogeneity in individual 

behaviour of choices in scenario 2 may be explained by the classification effect which occurs 

during the choice process when information is provided. 
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Figure 9 Standard deviation of PA, for both scenarios (with and without information) 

                             

 

 

6. Summary and Conclusions 

In this work we have conducted simulation experiments and laboratory experiments to evalu-

ate the effect of providing information about route-choice decision-making under uncertainty.  

Common route-choice models usually ignore the travellers' perception of uncertainty. The 

common paradigm about providing travel times information to travellers is that it will lead 

them to make better route-choice decisions, i.e. increase their utilities. We argue against this 

general statement, and bring forward some criticism about it. The results of the simulation ex-

periments show that, in some situations, providing additional dynamic information does not 

have a significant effect on route-choice. In other situations, observed in the simulation as 

well as in the laboratory experiments, the propensity to choose the more efficient route is de-
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creased (instead of increased) when static/dynamic information about travel times was pro-

vided. 

We conclude that the availability of information about travel times is not sufficient to lead 

route-choice behaviour toward maximization. In some cases it may even affect choice to be 

less efficient. One of the interesting findings of the laboratory experiments described here 

concerns with the Payoff Variability Effect: high payoff variability seems to move choice be-

haviour toward random choice. The Payoff Variability Effect, which was observed in a sce-

nario where information was not provided, is replaced by the Classification Effect: when 

static information about the expected travel-times is provided, individuals become faster 

learners, but not necessarily better utility maximizers.  

The better understanding of travellers' sensitivity to uncertainty when information is provided 

may help transportation systems planners and designers in several aspects:  

First, it may improve predictions of travellers' response to ATIS. Since travel time variability 

and travellers' perception of travel time characteristics under different types of information 

provided have a great influence on route-choice behaviour, development and application of 

descriptive models of behaviour is an issue of great importance 

Secondly, the design of better cost-effective ATIS may benefit as well. For example, it was 

found in the simulation experiment, that in some cases, additional dynamic information pro-

vided to travellers does not have a significant effect (and may even make the choices some-

what worse). Awareness of such effects, ATIS designers may make better decisions, such as 

where to locate VMS's and where not to locate them, and to predict the expected benefit of an 

ATIS. 

Finally, an individual, who is faced with a routine route-choice problem, may also benefit 

from this better understanding of the information acquisition process. In order to reduce the 

modal bias, which causes the Payoff Variability Effect, he/she may better try a two-stage in-

formation acquisition process. At the first stage, a "sample" of each of the alternative routes 

should be collected. Only when having a certain size of samples, the traveller may start the 

second stage, which may be a typical Stochastic Fictitious Play. Such an information acquisi-
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tion process will make the travellers' learning rate much faster, and may be considered as a 

component of a future in-car individual ATIS. 

Much more empirical and methodological research should be done in order to support the 

findings of this work and to formulate a general route-choice model, based on the assump-

tions discussed here. Although a full-pledged route-choice model is not achievable, we may 

benefit from a descriptive model which will capture better the information acquisition and 

learning process. 
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