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Abstract

Researchers and analysts are increasingly using mixed logit models for estimating responses to forecast
demand and to determine the factors that affect individual choices. These models are interesting in that
they allow for taste variations between individuals and they do not exhibit the independent of irrelevant
alternatives property. However the numerical cost associated to their evaluation can be prohibitive, the
inherent probability choices being represented by multidimensional integrals. This cost remains high
even if Monte-Carlo techniques are used to estimate those integrals. This paper describes a new algorithm
that uses Monte-Carlo approximations in the context of modern trust-region techniques, but also exploits
new results on the convergence of accuracy and bias estimators to considerably increase its numerical
efficiency. Numerical experiments are presented for both simulated and real data. They indicate that the
new algorithm is very competitive and compares favourably with existing tools, including quasi Monte-
Carlo techniques based on Halton sequences.
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1. Introduction

Discrete choice modelling is a powerful technique for describing how individuals perform a selection
amongst a finite set of alternatives. In particular, the multinomial logit and its extensions (see Bhat and
Kopelman (1999) for a review in the context of travel demand) are widely used, but the more powerful
mixed logit modelling is gaining acceptance among practioners and researchers. However, the numer-
ical cost associated with the evaluation of mixed logit models is significant. In particular the inherent
choice probabilities are represented by multidimensional integrals which can only be approximated, in
real applications, by Monte-Carlo techniques. Unfortunately, the evaluation costs can still be prohibitive,
even when using this technique, due to the required sampling sizes (Hensher and Green, 2003). As a
consequence, current research has turned to the cheaper quasi Monte-Carlo approaches: Bhat (2001) and
Train (1999) for instance advocate using Halton sequences (Halton, 1960) for mixed logit models and
find they perform much better than pure random draws in simulation estimation, while other approaches
(Sandor and Train, 2002) attempt to find better quasi Monte-Carlo methods.

This trend is not without drawbacks. For instance, Bhat (2001) recently pointed out that the coverage
of the integration domain by Halton sequences rapidly deteriorates for high integration dimensions and
consequently proposed a heuristic based on the use of scrambled Halton sequences. He also randomized
these sequences in order to allow the computation of the simulation variance of the model parameters. By
contrast, the dimensionality problem is irrelevant in pure Monte-Carlo methods, which also benefit from
a credible theory for the convergence of the calibration process, as well as of stronger statistical foun-
dations (see for instance Fishman (1996) for a general review, Rubinstein and Shapiro (1993), Shapiro
(2000) for application to stochastic programming). In particular, statistical inference on the optimal value
is possible, while the quality of the results can only be estimated in practice, for quasi Monte-Carlo proce-
dures, by repeating the calibration process on randomized samples and by varying the number of random
draws.

These difficulties lead us to reinvestigate pure Monte-Carlo methods for mixed-logit, with a special em-
phasis on numerical efficiency. We propose here a new algorithm for stochastic programming using
Monte-Carlo methods, that is based on the trust-region technique. Trust-region methods are well-known
in nonlinear nonconvex optimization, and have been proved to be reliable and efficient for both con-
strained and unconstrained problems. Moreover, the associated theoretical corpus is extensive (Conn
et al., 2000). Our efficiency objective led us to adapt the traditional deterministic trust-region algorithm
to handle stochasticity and, more importantly, to allow an adaptive variation of the number of necessary
random draws. This technique results in an algorithm that is numerically competitive with existing tools
for mixed logit models, while giving more information to the practitioner.

Our exposition is organized as follows. We briefly review the mixed logit problem and some of its prop-
erties in Section 2. We then introduce our new algorithm in Section 3. Section 4 presents our numerical
experimentation and discusses its results. Some conclusions and perspectives are finally outlined in Sec-
tion 5.

2. The mixed logit problem

Discrete choice models provide a description of how individuals perform a selection amongst a finite
set of alternatives. Let I be the population size and .A(3) the set of available alternatives for individual
i, = 1,...,I. For each individual ¢, each alternative A;, j = 1,...,|.A(¢)| has an associated utility,
depending on the individual characteristics and the relative attractiveness of the alternative, which is
assumed to have the form

Uij = Vij + €5, D
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where Vi; = V;;(B;, ;) is a function of a vector of model parameters 3; and of z;;, the observed
attributes of alternative A;, while €;; is a random term reflecting the unobserved part of the utility.
Without loss of generality, 3; may be assumed constant across alternatives (i.e. 8; = g for all 5) but the
assumption that this vector is identical for all individuals ¢ is crucial and undesirably strong.

The theory then assumes that individual ¢ selects the alternative that maximizes his/her utility. The
particular form of the choice probability thus depends on the random terms €;; in (1). If we assume
that they are independently Gumbel distributed with mean 0 and scale factor 1.0, the probability that the
individual ¢ chooses alternative j can be expressed with the logit formula

eVij (8)

Lii(6) = ST ey

)
where we have simplified our notation by dropping the explicit mention of the dependence of L;; and V;;
on the known observations z;;. Formula (2) characterizes the classical multinomial logit model.

Mixed-logit models relax the assumption that the parameters 5 are the same for all individuals, by as-
suming instead that individual parameters vectors 3(i), i = 1, ..., I, are realizations of a random vector
B. We assume then that 3 is itself derived from a random vector -+ and a parameters vector 6, which we
express 3 = B(v,0). For example, if 8 is a K-dimensional normally distributed random vector, we may
choose v = (71,¥a, - - -, Y& )» With 7 ~ N(0,1)2, and let 8 specify the means and standard deviations
of the components of 8. The probability choice is then given by

Pij(6) = Ep [Lij (v,0)] = / Lij(v,6)P(dy) = / Lij (7, 6) f(v)dv, @)
where P is the probability measure associated with v and f(-) is its distribution function.

The vector of parameters 6 is then estimated by maximizing the log-likelihood function, i.e. by solving
the program

I
1
max LL(O) = max - l:ZI In P;;, (6), (4)

where j; is the alternative choice made by the individual 4. This involves the computation of P;;; (6)
for each individual ¢, ¢ = 1,..., I, which is impractical since it requires the evaluation of one multidi-
mensional integral per individual. The value of P;;, (@) is therefore replaced by a Monte-Carlo estimate
obtained by sampling over ~, and given by

R
1
SPL(0) = 3 3 Liii(7,6),

r=1

where R is the number of random draws ~,., taken from the distribution function of . As a result, 4 is
now computed as the solution of the simulated log-likelihood problem

I
Rigy _ 1 R
max SLLF(6) = max 7 ; In SPE (6). (5)

We will denote by 673 a solution of this last approximate problem (often called the Sample Average
Approximation, or SAA), while 8* denotes a solution of the true problem (4).

2N(u, o) stands for the normal distribution with mean g and standard deviation .
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2.1 Convergence and useful estimators

Bastin et al. (2003) have shown that the mixed logit problem can be viewed as a generalization of the
classical stochastic programming problem, which in turn implies that the estimators derived from the
SAA problem converge almost surely towards the true maximum likelihood estimators as the sampling
size R tends to infinity. For a fixed population size (as is the case in most real applications), they assume
that

A.0 the random draws are independently and identically distributed, both for each individual and across
them,

A.1 the solutions 87, of the SAA problems (5) remain in some convex compact set S for all R sufficiently
large,

A.2 the utilities V;(v,-),i=1,...,I,j =1,..., N, are continuously differentiable for almost every ~,
A3fort=1,...,m, a%tvij (v, 0,2:5,), 3 =1,...,N, is dominated by a P-integrable function.

They then deduce that 8% converge, for R tending to infinity, to a vector 8* which is first-order critical
point of for the true problem (4) almost surely.

It is furthermore possible to estimate the error made by using the SAA problem (5) instead of the true
problem (4). If we consider a fixed population size and take an independently and identically distributed
sample for each individual, it is possible to show that

LL R 1 d 01'2.7'1' (0)
(0) — SLLE() = N 0, ZW (6)

as R tends to infinity, where = represents convergence in distribution and where ;5 is the standard
deviation of P;;, (6). Therefore, SLL%(6) is an asymptotically unbiased estimator of LL(6), and the
asymptotic value of the confidence interval radius is given by

I 2
1 03, (0)
€5 = a5 —— ()
I \l L R0
where a; is the quantile of a N (0, 1), associated with some level of signification 4. In practice, one
typically chooses .9 &~ 1.64 or avg.95 &~ 1.96 and evaluates e; by replacing o5, (§) and P;;, (6) by their
SAA estimators o (9) and P, (6).

Finally, the simulation bias for finite R can be approximated by the quantity

5
2a6

E[SLL%()] — LL(Y) =

Details of these derivations can be again found in Bastin et al. (2003).

3. Optimization algorithm

Solving the SAA problem (5) is very expensive even on modern computers, as pointed for instance by
Hensher and Green (2003), since I, the number of multidimensional integrals in the expression of the
objective function, can be large (usually in the thousands). Quasi Monte-Carlo methods are appealing
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to deal with this difficulty since they usually require less random draws to compute these integrals than
Monte-Carlo methods for the same accuracy. Their superiority in high dimensions is however less clear
and, at variance with Monte-Carlo techniques, they don’t allow statistical inference, which prevents
computing the accuracy of the objective approximation. We therefore choose to return to Monte-Carlo
methods and design an efficient algorithm that exploits statistical inference to limit the number of draws
needed in the early iterations, away from the solution. This algorithm is of the trust-region type (see
Conn et al. (2000) for details and an extensive bibliography on these methods).

3.1 A trust-region algorithm with dynamic accuracy

The main idea of a trust-region algorithm is to calculate a trial point by minimizing a model of the
objective function inside a trust region at each iteration. At iteration &, this region is defined as

By = {0 € R™[[|6 — 0| < Ax},

where Ay is called the trust-region radius. The predicted and actual reductions in objective function
values are then compared. If the agreement is sufficiently good, the trial point becomes the new iterate
and the trust-region radius is (possibly) enlarged. If this agreement is poor, the trust region is shrunk in
order to improve the quality of the model. In addition, if the model approximates the objective function
well compared to the accuracy of the objective function itself (which is dependent on the Monte-Carlo
sampling size), we surmise that we could work with a less precise approximation and therefore reduce
the sampling size. On the other hand, if the model adequation is poor compared to the precision of the
objective function, we increase the sampling size in an attempt to correct this deficiency.

A formal description of our algorithm follows.

Step 0. Initialization. An initial point 8 and an initial trust-region radius Ay are given. Define a max-
imum sampling size Rmax and set R = max(36, [0.1 Rmax|), Where [z] denotes the smallest
integral value not less than . Compute —SLLf(6,) and set k = 0.

Step 1. Model definition. Define in By, the quadratic model
1
mi Oy, + 8) = SLL® (8)) + (Vo SLL® (64) , s) + 5 (s His),

where Hj, is a symmetric approximation to Vg f (65). We use the symmetric rank-one (SR1)
method to obtain such an approximation, as described by Nocedal and Wright (1999), page 204.
Despite being numerically cheap, the SR1 method is known to be efficient in the context of trust-
region methods (Conn et al., 1991, 1996; Byrd et al., 1996).

Step 2. Step calculation. Compute a step s with the Steihaug-Toint method (see for instance Conn
et al. (2000), Section 7.5.1, or Nocedal and Wright (1999), page 75). Compute a new adequate
sampling size Ry,.

Step 3. Acceptance of the trial point. Compute SLL%* (6, + s) and define

. SS LA (O + sg) — SLLR(Gk)
Pk my Ok + sk) — my(6r)

If pr, < m1, compare Ry, and R. If R, > R, compute SLLF* (6;), set R = Ry, and redefine

. SSLFx Ok + ) — SLL (0r)
Pr m (O + sg) — mi(0r)
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If Ry < R, compute SLL® (6, + s;), set Ry = R and redefine

SSLR((Qk + Sk) — SLLR((Qk)
my Ok + sk) — my (k)

Pk =
If pr, > 0.01, then define 841 = 0y, + s, and set R = Ry,. Otherwise define 641 = 0.
Step 4. Trust-region radius update. Set

min (10%°, max(2sg, Ag)) if pr > 0.75,
Ap+1 = < 0.54; if pr, € [001,075),
0.5, if p < 0.01.

Increment & by 1 and go to Step 1.
The possible modification of the sampling sizes in Step 3 comes from the fact that if R, is not equal to
R, the computation of SLLT* (8, + s;,) — SLL (8;) can be biaised by the differences of precision. In
particular, SLL*(6) can be superior to SLLF (6,,) for all  in a neighborhood of 6. Our technique

ensures comparable accuracy for both functions and therefore excludes rejecting iterates due to differing
levels of precision.

3.2 Variable sampling size strategy

We now propose a variable sampling size strategy for choosing Ry, at Step 2 of the trust-region algorithm,
which is described in the following procedure, where

Amy, = mk(ak + Sk) — myg (ek)
denotes the model improvement.

Step 0. Estimate the size needed to obtain a precision on the log-likelihood function equal to the model
improvement:

R =
suggested ’V IAmk D) Z ml 0))
Compute the ratio between the model improvement and the estimated accuracy:

mk(ﬁk) — mk(ek + Sk)
€

PR =

If pr > 1.0 go to Step 1. Otherwise go to Step 2.

Step 1. Since the improvement is larger than the precision, a smaller sampling size is considered:
Ry = max (Rmina min (Rsuggested7 [05 Rmax-| )) .
Return Ry,.

Step 2. Set
max (Rmin, [0.5 Rmax]) if pr > 0.2.
Ry = )
Riax otherwise.
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A sufficient improvement during several consecutive iterations can lead to an overall significant improve-
ment, even if for one iteration it is less than the achieved precision: if the total improvement obtained
during several consecutive iterations is more important than the improvement obtained with a bigger sam-
pling size for one iteration, it can be cheaper to work longer with a smaller sampling size. Therefore we
continue to use smaller sampling sizes as long as the model improvement is superior to some threshold,
as described in Step 2.

If this variable sampling size technique is used in the trust-region method described in the previous
paragraph, we refer to the resulting algorithm as the BTRDA (for Basic Trust-Region with Dynamic
Accuracy), while we call algorithm BTR (for Basic Trust-Region algorithm) the same algorithm where
the maximum sampling size is used at every iteration, and no estimation of the log-likelihhood error is
computed or used.

3.3 Stopping tests

Classical stopping criteria usually lead to final iterations that produce objective reductions that are, for
too small sampling rates, insignificant compared to the approximation’s accuracy. We therefore relax
them by stopping the iterative process only if either the maximum sampling size Rmax is used or the
estimated log-likelihood accuracy is sufficiently small, and if

IVoSLLE(#)|| < max(0.2€, tol),

where e is the estimated log-likelihood accuracy. We also stop the algorithm if a (user preset) maximum
number of iterations has been reached without convergence, or if the norm of computed step falls under
a user-defined significativity threshold (we used 10~°).

4. Numerical investigations

We have implemented our algorithm in C, as part of a new package AMLET (for Another Mixed Logit
Estimation Tool). AMLET was tested on a Pentium IV 2 Ghz. We compared our results with those given
by Gauss 5.1 and the MaxLik module (Schoenberg, 2001). We have then used Halton sequences and
the code written by Train (1999). Due to limitations of our license, we had to use for this test the Pentium
I11 600 Mhz on which it was originally installed. In order to adequately compare computation times, we
ran AMLET on this older computer and found that it is, on this type of applications, approximately 2.7
slower than the more recent machine. As not all problems could be tested with AMLET on the Pentium
I11 due to memory limitations, we therefore report Gauss times in our comparison after dividing them
by this relative speed factor: we write these corrected timings in parenthesis next to the real timing in our
tables. We use a signification level ¢ equal to 0.9 in the estimation of standard deviations and biases.

Our numerical experimentations consider mixed logit models with fixed and normally distributed param-
eters and involve both simulated and real data. Unless otherwise stated, the starting point for optimization
procedures is defined by setting all components to 0.1. For convenience, we will use the abbreviations
Halt. and MC for, respectively, Halton and Monte-Carlo.

4.1 Simulations

In our simulations, the attribute values are drawn from a standard univariate normal distribution N (0, 1).
The coefficients of each independent variable is also drawn from an univariate normal distribution N (0.5, 1).
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The error term is generated from an extreme value (Gumbel) distribution, ensuring that the conditional
choice probability follows the logit formula (2). The individual choice is then identified for each obser-
vation on the basis of the alternative with the highest utility.

Two simulated experiments varying the number of observations and of alternatives provide the framework
of our evaluation. Both test the methodology on four separate integration dimensions (2, 5, 10 and 15).
For each of the simulated cases, we then estimated the model 10 times. We finally computed the average
optimization time, accuracy (7), simulation bias (2.1) and Euclidian norm of the standard deviations of
the found parameters (RMSE) for the ten simulations.

We first vary the number of observations over 2000, 5000, 7500 and 10000, while the number of choice
alternatives is kept fixed to 5. We limit the sample size to 1000, mainly due to memory limitations.

The results then show (Figure 1) that the optimization time increases with the number of observations, at
an approximately linear rate, while remaining manageable. The estimated error (Figure 2) decreases with
the number of observations, while at the same time the bias remains in the same order. The ratio between
the bias and the accuracy therefore increases, which makes the application of the delta method as in (6)
more dubious as the number of observations grows for fixed sampling size (as stated from the theoretical
point of view by Hajivassiliou and McFadden (1998)). The number of dimensions also produces growth
in absolute value of the estimated accuracy and bias.

Figure 1: Evolution of time and RMSE with the number of observations
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We next vary the number of alternatives in the choice model amongst 2, 3, 5, and 10 alternatives (one
of which is the null alternative); the number of simulated individuals remaining fixed to 5000, and the
maximum sampling size is set to 2000.

From Figure 3, we see that the optimization time decreases from 2 to 5 alternatives and then increases
from 5 to 10 alternatives. Note also that the RMSE increases with the number of parameters, but the slope
is decreased when the number of alternatives grows. A possible interpretation of these phenomenas is
that having more alternatives makes the discrimination of individual choices easier, leading to a sharper
maximum of the simulated likelihood function.

The estimated error grows with the number of alternatives (Figure 4), as well as the bias of simulation,
while the RMSE is smaller when the number of alternatives increases. This suggests that the stability of
the objective function is far from providing a complete view of the quality of the derived estimations, as
already presumed by Bhat (forthcoming). An important topic of research therefore remains to improve
error estimates on the parameters when using Monte-Carlo approximations.

Figure 3: Evolution of optimization time and RMSE with the number of alternatives
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4.2 Comparison of optimization algorithms

Solving (5) requires the use of numerical optimization procedures, amongst which one of the most pop-
ular algorithm for calibrating discrete choices models is the BFGS linesearch method (see Train (2003),
pages 225-226). It is therefore interesting to evaluate in this context the relevance of trust-region meth-
ods, a contending methodology. For comparison purposes, we therefore coded a BFGS algorithm, as
described by Nocedal and Wright (1999), using the efficient linesearch technique by Moré and Thuente
(1994) and associated code. We then simulate a population of 5000 individuals, facing five alternatives
associated with linear utilities with five normal distributed parameters of mean 0.5 and standard deviation
1.0. We used 2000 random draws and compared the BFGS, BTR and BTRDA for solving (5). The proce-
dure was repeated 10 times. Table 1 summarizes the optimal values found for the approximate objective
and the corresponding computation times.

Table 1: Comparison of optimization algorithms

Set BFGS BTR BTRDA
Likelihood  Time Likelihood  Time Likelihood  Time

1 -1.40529 1421 -1.40529 1103 -1.40529 722
2 -1.40532 1455 -1.40532 997 -1.40532 618
3 -1.40519 1691 -1.40519 1090 -1.40519 730
4 -1.40409 1736 -1.40409 997 -1.40409 564
5 -1.40525 1702 -1.40525 1017 -1.40525 531
6 -1.40499 1707 -1.40499 1089 -1.40499 587
7 -1.40437 1475 -1.40437 1045 -1.40437 560
8 -1.40530 1706 -1.40530 998 -1.40530 781
9 -1.40532 1701 -1.40532 1028 -1.40532 724
10 -1.40441 1729 -1.40441 1044 -1.40441 546
Mean -1.40495 1632 -1.40495 1040 -1.40495 636

While each method gives the same optimal value, BTR requires in average 63.7% of the time used by
the BFGS algorithm. The BTRDA algorithm however requires on average 61.2% of the time needed by
BTR, and 39.0% of the BFGS time. These results tend therefore to comfort our choice of a trust-region
approach combined with the variable sampling size strategy.

4.3 Comparison with Halton sequences

A major drawback of Monte-Carlo methods is their slow convergence rate. Quasi Monte-Carlo methods
attempt to speed up this convergence by being more directive in the choice of the sampling points used
to evaluate the choice probabilities. This led Train (1999) to suggest the use of Halton draws instead of
Monte-Carlo random draws. He found that when the number of random parameters is small (typically
less or equal to five), approximation of the objective function based on Halton sequences usually succeeds
to give the same results as pure Monte-Carlo sampling, with less random draws. The same conclusion
can be drawn from Table 2. In this example, we consider a simulated population of size 2000 and five
independent normally distributed parameters, of mean 0.5 ans standard deviation 1.0, with individuals
faced to five alternatives. Results reported for AMLET are averaged on ten simulations. This table also
indicates that AMLET is considerably faster than Gauss, even if larger sample sizes are used.

When the number of random parameters grows, results deteriorate, as illustrated in Table 3, where ten
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Table 2: Halton and Monte-Carlo samplings for 5 random parameters

Variable Gauss AMLET

125 Halt. 250 Halt. 1000 MC 2000 MC
P1 mean 0.4288 0.4287 0.427227 0.429323
P1 std. dev. 1.0854 1.0837 1.06264 1.06692
P2 mean 0.4489 0.4230 0.447468 0.421373
P2 std. dev. 1.1620 1.1622 1.17045 1.18612
P3 mean 0.5704 0.5697 0.567395 0.570794
P3 std. dev. 1.1212 1.1044 1.09255 1.109915
P4 mean 0.6165 0.6212 0.612949 0.617822
P4 std. dev. 1.3386 1.3677 1.33102 1. 34101
P5 mean 0.6548 0.6565 0.645011 0.648492
P5 std. dev. 1.2558 1.2360 1.21059 1.22397
Log-likelihood -1.44770 -1.44784 -1.44835 -1.44813
Bias NA NA -0.000826983 -0.000415893
Accuracy NA NA 0.00149579 0.00106076
Time (s) 959 (355) 1649 (611) 73 148

independent normal distributed parameters are considered, for a simulated population of size 2000. We
see that the pure Monte-Carlo approach then gives results that are intuitively better than those produced
by Halton techniques (AMLET gives means and standard deviations estimates that are larger than those
obtained with Gauss and closer to the parameters used for the data simulation). Moreover, AMLET
is again faster than Gauss. We also observe that the Halton sequences results deteriorate when the
number of draws increases from 125 to 250, while they seem to improve between 1000 and 2000 random
draws for AMLET. This reflects the fact that, at variance with Monte-Carlo techniques, Halton sequences
may probably be less suitable for high-dimensional problems. Indeed, the sequences associated with
successive prime numbers exhibit stronger correlations as the prime numbers grow and the space is no
longer covered as uniformly as the dimension increases.

These problems can possibly be adressed by considering scrambled Halton sequences (Bhat, 2001). It
is thus our intention to pursue the work reported here by comparing our Monte-Carlo-based results with
those obtained with such techniques.

4.4 Tests on real data

We finally validated our algorithm and tested its performance on a real data set, whose source is the
six-week diary Mobidrive (Axhausen et al., 2002), collected in the spring and fall 1999 in Karlsruhe and
Halle (Germany). The sample includes about 160 households and about 360 individuals. We only use
here data from the city of Karlsruhe itself, for which the level of service variables are available. The case
study is a mode choice model across five alternatives: car driver, car passenger, public transport, walk
and bike. The framework applied considers the daily activity chain; the individual pattern is divided into
tours, which are defined as the sequence of trips starting and ending at home or at work, considered both
to be at a fixed location. After careful data cleaning, the number of observations available for estimation
is 5799. It must be noted that the panel data contains multiple observations per day and per individual,
which induces correlation, a phenomenon that we do not attempt to tackle here. For further details on
mixed logit on panel data estimated on the same data set, see Cirillo and Axhausen (2002).
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Table 3: Halton and Monte-Carlo sampling for 10 random parameters

Variable Gauss AMLET

125 Halt. 250 Halt. 1000 MC 2000 MC
P1 mean 0.4382 0.4406 0.429475 0.47396
P1 std. dev. 0.5532 0.6336 0.707418 0.70936
P2 mean 0.3335 0.3352 0.353878 0.357928
P2 std. dev. 0.6735 0.6405 0.712054 0.72369
P3 mean 0.4232 0.4217 0.487211 0.493233
P3 std. dev. 0.7030 0.7383 0.754033 0.768334
P4 mean 0.3815 0.3672 0.391026 0.393294
P4 std. dev. 0.8519 0.8112 0.872773 0.878611
P5 mean 0.3902 0.3772 0.400395 0.405856
P5 std. dev. 0.7650 0.7774 0.830782 0.856396
P6 mean 0.3506 0.3516 0.376615 0.381124
P6 std. dev. 0.7404 0.7317 0.835979 0.845602
P7 mean 0.5321 0.5201 0.556178 0.564064
P7 std. dev. 0.8460 0.8146 0.901123 0.909371
P8 mean 0.4313 0.4229 0.448092 0.423366
P8 std. dev. 0.6720 0.5611 0.633405 0.646381
P9 mean 0.3860 0.3823 0.408147 0.413727
P9 std. dev. 0.5333 0.4264 0.555716 0.571289
P10 mean 0.3801 0.3797 0.404174 0.407996
P10 std. dev. 0.6472 0.7226 0.762068 0.776279
Log-likelihood -1.42105 -1.42283 -1.42274 -1.42248
Bias NA NA -0.000840932 -0.000422711
Accuracy NA NA 0.00150823 0.00106938
Time (s) 1312 (486) 2515 (699) 206 372

The estimated model contains 14 variables, four of which are alternative specific constants (car driver is
the base) and 3 dimensions. We estimate household location characteristics (urban location and suburban
location), individual socio-demographic variables (female and part time, married with children, annual
mileage), a tour variable (number of stops), a pattern variable (time budget) and a level of service variable.
Time budget is defined as 24 hours minus the time already spent in previous activities out of home and
in home, or travelling. The coefficients are assumed to be identical between individuals, except for time,
cost and time budget, that are expected to vary significantly and are therefore represented by normally
distributed random variables.

We have calibrated the model with Gauss and 125 Halton draws, and AMLET, with 1000 and 2000
Monte-Carlo random draws. Results for AMLET have been averaged over 10 simulations. Both packages
were started from the initial point
6o = (-1.0, —1.0, 0.0, —1.0, 0.0, —1.0, 0.0, 0.0,
0.0, 0.0, 0.0, —1.0, 0.5, —1.0, 0.5, —1.0, 0.5).
Results are summarized in Table 4. The car driver is taken as base, and the first four parameters are
specifics constants. The alternatives associated with other specifics parameters are written in brackets,

next to the parameter name. The following abbreviations have been used: CD for car driver, CP for car
passenger, PT for public transport, W for walk and B for bike.

AMLET reports solutions that are similar to those obtained with Gauss, supporting the observation
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Table 4: Tests on real data

Variable Gauss (125 Halt.) AMLET (1000 MC) AMLET (2000 MC)
Coefficient Coefficient Coefficient
Car Passenger (CD) -1.4511 -1.45104 -1.4527
Public Transport (PT)  -0.9355 -0.932594 -0.932458
Walk (W) 0.1081 0.109186 0.108793
Bike (B) -0.6355 -0.634269 -0.635217
Urban household loca- 0.560609 0.557866 0.561515
tion (PT)
Suburban  household -0.3451 -0.345403 -0.345113
location (W, B)
Full-time worker (PT)  0.2690 0.269265 0.268996
Female and part-time 0.9133 0.912925 0.913835
(CP)
Married with children 0.9716 0.970755 0.971656
(CD)
Annual mileage (CD)  0.0518 0.0518679 0.0519161
Number of stop (CD)  0.1349 0.135187 0.135817
Time mean -0.0268 -0.0268882 -0.0269985
Time std. dev. 0.0205 0.0206265 0.0208197
Cost mean -0.1683 -0.168923 -0.169365
Cost std. dev. -0.0452 0.0465829 0.0465628
Time budget/100 mean  -0.1249 -0.124816 -0.125128
(CD, CP)
Time budget/100 std. -0.1136 0.112801 0.113803
dev. (CD, CP)
Log-likelihood -1.16489 -1.16479 -1.16470
Bias Not available -0.0000911731 -0.000046262
Accuracy Not available 0.000291612 0.000208614
Time (s) 6585 (2439) 936 1549

that good results can be obtained with a small number of Halton draws when the number of random
parameters is limited. However, the optimization time of AMLET is very competitive with that of Gauss,
since they are similar for 2000 random draws and 125 Halton draws. AMLET is clearly faster for a
sampling size of 1000. Using the final SR1 Hessian approximation in the computation of the t-statistics,
we observed that these statistics are usually similar to those obtained with the exact Hessian, except
for two cases. However all simulations, less one (with 2000 random draws) report that all parameters
except the third are significant at the level 0.95. Note that the evaluation of the exact Hessian is a
very expensive task, especially when the number of parameters is high, while the approximate Hessian
is directly available. The potential time saving when using the SR1 approximation could therefore be
important: we believe that investigating more precisely when the Hessian approximation is sufficient for
computing the t-statistics is a valuable direction for further research.

The crucially beneficial effect of the variable sampling size strategy is illustrated in Figure 5, giving the
evolution of the sampling size Ry, with the iteration index k. The left graph corresponds to a maximum
sample size of 1000 while the right graph has been obtained with a maximum of 2000 random draws.
Furthermore, Figure 6 shows that the sampling size rises towards its maximum value only when the
objective function’s value is near to its maximum. The graphs correspond again to 1000 and 2000 random
draws, respectively.
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Figure 5: Variation of sample sizes with iterations
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Figure 6: Variation of sample sizes with log-likelihood value
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5. Conclusion and perspectives

We have developed a new trust-region algorithm for unconstrained stochastic programming whose ef-
ficiency is imporved by the use of stastistical inference. We have implemented this algorithm in the
AMLET package and tested it on simulated and real data for estimating mixed logit models. Numerical
experimentation shows that trust-region methods are more efficient than the popular BFGS algorithm and
that significant further gains in optimization time can be achieved with the proposed variable sampling
size strategy.

We have also shown that our package’s timings are competitive with Gauss and Halton sequences while
giving information on the quality of the Monte-Carlo approximation and not suffering of non-uniformity
in high dimensions. Moreover the proposed techniques can probably be refined to obtain further speed-
ups. Simulations suggest however that the accuracy of the log-likelihood does not completely reflect the
precision of the estimated parameters. Further research therefore remains important in order to quantify
the statistical accuracy of the simulated estimators compared to the true maximum likelihood estimators.

AMLET is still under development. Future features include allowing the user to choose non-normal
distributions and to take into account correlations when we have several observations from the same
individual.
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