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Economic Evaluation and Transport Modelling:

Theory and Practice

John Bates

Abstract
A central role for Transport Modelling is to allow alternative strategies to be assessed. Most
people involved in modelling are aware of the general principles of economic evaluation, but it
remains a specialised topic, and tends to take second place in the literature to the more
glamorous discussion of models. However, if the assessment tools are not integrated with the
models themselves, much of the model sophistication may be wasted.

It was therefore considered appropriate to commission a resource paper for the 10th IATBR
Conference. The paper has a number of aims. It begins by discussing the theoretical foundations
of evaluation in economics, and, without being excessively academic, attempts to give an
understanding of how the theory has developed. It then contrasts this with current practice,
examining the validity of the simplifications which are typically made, as well as the
developments in this area.

Continuing progress in the theory of discrete choice models, as well as the development of their
use in transport modelling, has led to some key theoretical conclusions, which serve usefully to
integrate modelling and evaluation. However, there are still some conflicts between the ideal
theoretical requirements and what is considered practical.

The paper is primarily aimed at mathematical modellers rather than at economists, most of
whom will be familiar with much of the material. It includes the essential theory of the
consumer that is available in economic textbooks, but without requiring the reader to become
too involved in general questions of economic theory. Particular emphasis is placed on practical
issues.

Finally, the paper draws attention to a number of controversial areas, where further work is
required, both theoretical and practical.

An admission is due at the outset. Part of my intention for the paper was to effect a synthesis of
the theory of modelling and evaluation in a way which I did not believe was available in an
accessible form. I had not seen the excellent paper by Jara-Diaz & Farah (1988) which does
indeed achieve such a synthesis, although I was aware of other work by Jara-Diaz et al.  I
believe that we are in substantial agreement, though there are some nuances of presentational
difference.

There remain some unresolved issues. It is hoped that, both at the conference itself and
thereafter, this paper may assist in stimulating their resolution. It is also my intention that the
final version of the paper should benefit substantially from advice and criticism received. In
particular, appropriate contributions from others involved in this area will be gratefully
received, incorporated, and acknowledged! Since the practical issues discussed in Section 3 are
rather heavily based on the experience in the UK, examples demonstrating different approaches
from other countries would also be most welcome.
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1. History of Evaluation

1.1 Consumer Surplus

The current approach has its roots in the pioneering work of the French economist Dupuit
(1844), who carefully discussed the value (“utility”, as he termed it) of public investment, taking
the particular example of a bridge. The essential reasoning is as follows:

“Suppose that all those similar commodities of which we want to discover the utilities are all
subjected to a tax which rises by small steps. Each successive increase will cause a certain
quantity of the commodity to disappear from consumption. This quantity, multiplied by the
rate of tax, will give its utility expressed in money. By thus letting the tax go up until there
are no more consumers, and by adding together all the products of this multiplication
process, we will arrive at the total utility of the goods.

Let us illustrate this formula by an example. We want to know the utility of a footbridge
which is being used free of charge at the rate of 2,080,000 crossings annually. Suppose that a
toll of 0 fr. 01 would reduce the number by 330,000, that a tax of 0 fr. 02 reduces it by
294,000, and so on. We then say that for 330,000 crossings the utility is about 0 fr. 01 and
that for the next 294,000 crossings the utility is about 0 fr. 02 and we can then draw up the
table [below].

No. of crossings
disappearing

as toll rises by
0.01 fr to:

implied utility (francs)

330,000 0.01  3,300
294,000 0.02  5,880
260,000 0.03  7,800
228,000 0.04  9,120
198,000 0.05  9,900
170,000 0.06 10,200
144,000 0.07 10,080
120,000 0.08  9,600
98,000 0.09  8,820
78,000 0.10  7,800
60,000 0.11  6,600
44,000 0.12  5,280
30,000 0.13  3,900
18,000 0.14  2,520
8,000 0.15  1,200
TOTAL
2,080,000 102,000
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Thus 102,000 francs would be the absolute utility to society of the bridge. We can find the
relative utility by deducting the costs of maintenance and the interest on the capital expended
in construction. If this latter sum were to reach or exceed 102,000 francs the construction
would have produced no utility, the difference expressing the loss which would have been
made. Such is the calculation to be made in the case where crossing is free of charge. If there
is a toll we must take only the figures below that of the charge. Thus for a toll of 0 fr. 05, for
example, the absolute utility of the bridge is expressed by the sum of the ten last figures or
66,000 francs; the utility lost, by the sum of the first five, or 36,000 francs; the product of the
toll would be 770,000 crossings at 0 fr. 05 or 38,500 francs. With this toll, then, the possible
utility of the bridge would be distributed in the following manner:

To the toll collector    38,500

Derived by those crossing the bridge (66,000-38,500)   27,500 "

Loss of utility arising from the 1,310,000 crossings
which would have been made but for the toll     36,000 "

-Total 102,000 "

This example, set out with textbook clarity, is the direct forerunner of the concept of “Consumer
Surplus”. Dupuit’s article is not merely of interest for its clear exposition, but also because of the
way it shows that many of the other suggestions for measuring benefit current at the time were
fallacious.

Using Dupuit’s figures, we can construct the (Marshallian) demand curve, as in Figure 1 below.
Note that in economic theory it is standard to reverse the normal mathematical functionality for
demand curves, and plot demand along the X-axis and cost along the Y-axis. If we write P for
the price of the toll, and T for the number of crossings, then the Marshallian demand curve can
be written:

T = f(P) (1.1)

However, given the way the figure is conventionally drawn, we deal with the inverse demand
curve:

P = f–1(T) (1.2)

representing the price at which demand for crossings would be equal to T.

The total value (willingness to pay) is seen as the area under the demand curve. When a non-zero
price is charged, the area is only measured up to the actual demand at that price, and from this
total willingness to pay at that price, we must subtract the amount actually paid, to obtain the
user benefit, or Consumer Surplus.
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Thus, at a given price P′, the total willingness-to-pay among those choosing to cross is given as:

W = ∫
′ −)(

0
1 ).(PT dTTf (1.3)

Total expenditure is given as:

E = PPT ′′).( (1.4)

and hence the Consumer Surplus is given as:

S = W – E (1.5)

Figure 1 Dupuit’s example

Figure 1: Dupuit's example
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Applying this rule allows us to express W as

W = ∫
′ −)(

0
1 ).(PT dTTf  = PPTdPPfP ′′+−∫

∞
′ ).(0).(  = ∫

∞
′P dPPf ).( + E (1.7)

Hence, when integrating with respect to price, we have an alternative formula for Consumer
Surplus:

S = ∫
∞

′P dPPf ).( (1.8)

Note that this represents the benefit of moving from a position in which there is no bridge (and
so the price may be considered infinite) to a position where crossings are permitted for a

payment of P′. More generally, we may consider the benefit of moving from a “base” position
represented by a price of P0 to a “policy” position represented by a price of P1. By analogy, the
benefit may be written as:

∆S = – ∫ 1
0

).(P
P dPPf (1.9)

“Consumer Surplus” in this form, as taken up later by Marshall (1920), assumes that the demand
curves are essentially aggregate: they relate to the population as a whole, and it is implicit that
there will be different “willingness-to-pay” among the population. If a monopolist had perfect
information about the distribution of such willingness-to-pay, then he would be able to abstract
the consumer surplus using a perfectly discriminatory pricing.

"... the price which a person pays for a thing can never exceed, and seldom comes up to that
which he would be willing to pay rather than go without it: so that the satisfaction which he
gets from its purchase generally exceeds that which he gives up in paying away its price; and
he thus derives from the purchase a surplus of satisfaction. The excess of the price which he
would be willing to pay rather than go without the thing, over that which he actually does
pay, is the economic measure of this surplus satisfaction. It may be called consumers'
surplus." Marshall (1920) ch. 6

1.2 Subsequent Developments

The classic Marshallian demand response gives the change in demand for a commodity as a
result of a price change for that commodity, assuming other prices remain fixed. Clearly,
however, it will also be affected by income . The separation of demand response into price and
income effects was originally set out by Slutzky (1915).

As we will discuss in more detail below, the essential observation was that a change in the price
of a commodity would lead to a change in utility which could be viewed as a change in income.
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More to the point, it would be possible to consider compensating the consumer for this implied
change in income. If this were done, then any remaining shift in demand could be explained
entirely by the price change. This led to the idea of “compensated demand” curves which are the
cornerstone of current consumer theory.

A further important development was the generalisation to multiple commodities first proposed
by Hotelling (1935, 1938). He showed that the one-dimensional integral for surplus S given in
Eq (1.9) above could be generalised to a line integral allowing for simultaneous price changes.

Rather than discuss these important contributions in their own right, it is more straightforward to
consider the “modern” theory of the consumer, as set out by, for example, Deaton & Muellbauer
(1980), or Varian (1992), which codifies all this thinking into an elegant mathematical form.

While as noted the Marshallian treatment is essentially aggregate, from the point of view of
development the modern standard theory deals with an individual consumer. There is then a
further requirement to develop this to consider the welfare of society at large.

2. The standard microeconomic theory of the consumer

2.1 The Key Concepts

Based on a small number of axioms relating to preferences (most importantly, that of
transitivity1), we can define an individual’s “utility function”, which is assumed to be derived
from the commodities that he consumes. For convenience, these functions are usually assumed to
be convex. Thus, if x, y and z are alternative vectors (“bundles”) of commodities, and both x and
y are “weakly preferred” to z, so that:

 U(x) ≥ U(z)  and U(y) ≥ U(z)

then U(λx + [1–λ] y) ≥ U(z) ∀ 0 < λ < 1

Further, if U is strictly convex, then the combination (λx + [1–λ] y) will be strictly preferred to

z, so that the “≥” sign becomes a strict inequality “>”.

                                                

1 This requires that if an individual prefers A to B, and prefers B to C, then he should prefer A to C
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We now characterise the consumer as attempting to maximise available utility from expenditure.
If q is a vector of commodities, with p the vector of prices, then with total available income Y,
this can be written as:

Max U(q) wrt q subj p.q = Y (2.1)

and this gives:

∇U(q*) = λ p    ⇒  q* = g(Y,p) (2.2)

Marshallian demand

However, it has become standard to work with the indirect utility function which can be written
as:

ψ( Y,p) = U(g(Y,p)) (2.3)

This represents the maximum utility that can be obtained, given income Y and price vector p.

Given indirect utility we use Roy's identity to obtain Marshallian demand:

g(Y,p) = –∇pψ /(∂ψ/∂Y) (2.4)

The derivative of ψ with respect to Y, usually denoted as λ, the "marginal utility of income", will
be positive, and the second derivative can reasonably be expected to be negative ("declining
marginal utility of money")2.

As we noted, Consumers' surplus (CS) is conventionally defined in terms of an aggregate
(Marshallian) demand curve, as the area under the (inverse) demand curve and above the current
market price. Since as just shown a corresponding demand curve can be derived for the
individual consumer, expressing the amount which the consumer would purchase at different
prices, it is clearly possible to discuss CS at the individual level as well. However, as Deaton &
Muellbauer (1980: §7.4) point out, the Marshallian concept of CS does not take into account the
income (Slutzky) effects of a change in price. This can be seen as follows.

                                                

2 However, since utility has no absolute value, these derivatives are not strictly measurable. The general theory of

preference allows for any monotonic transformation of utility without affecting the results. In other words, any

specific functional forms used are merely conveniences for mathematical tractability. Some economists have

therefore argued that the marginal utility of income is essentially a meaningless concept (eg Deaton and

Muellbauer, 1980 §5.3).
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In a multi-dimensional context, the area under the (multi-commodity) demand curve and above
the market price is given by (Hotelling, 1938) the line integral:

– ∫ g(Y,p) dp (2.5)

where the line integral is defined along a path between two positions P0 and P1, say. For this

integral to be path independent, Green’s theorem tells us that ∇g, the matrix of partial derivatives
of the vector g with respect to the vector p, must be symmetric - in other words, for any two
commodities r and s, we must have:

r

s

s

r

p
g

p
g

∂
∂

=
∂
∂

 (2.6)

We therefore need to investigate whether this condition (also referred to as the “Integrability
Condition”) holds for various demand functions. This can usefully be done by taking account of
the Slutzky impact  of price change on income.

2.2 The expenditure (cost) function and the Slutzky equation

In order to investigate this, we define the Dual problem:

minimise expenditure E = p.q wrt q subj U(q) = V (2.7)

This gives q* = h(V,p) (2.8)

where h is termed the compensated (or Hicksian3) demand function. V is the maximum utility
available given Y and p, and h shows how the demand varies with changing prices p, while
remaining at a fixed level of utility.

By substituting h back, we get the so-called expenditure (or cost) function:

E(V,p) = p. h(V,p) (2.9)

This indicates the minimum expenditure required to maintain a constant utility V, in the face of
changing prices p.

                                                

3 after Hicks (1956)
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E can be shown to be concave in p, and the derivative vector ∇pE can be shown to be equal to
h(V,p) (as long as the derivatives exist): see eg Deaton & Muellbauer, §2.3 for proof. Since this
is so, the matrix

S = ∇ph(V,p) = ∇2
pE(V,p) (2.10)

is symmetric (because the order of partial derivatives is irrelevant), and by the concavity of E, it
is also negative semi-definite.

For given p, we must have h(V,p) = g(Y,p) = q*: ie, both the Marshallian and the Hicksian
demand functions must predict the same quantity vector. Totally differentiating wrt p gives

 S = ∇ph(V,p) = ∇pg(Y,p) + ∂/∂Y[g(Y,p)]. ∇pE(V,p)T

= ∇pg(Y,p) + ∂/∂Y[g(Y,p)]. hT  (2.11)

This is the Slutzky matrix equation, usually re-arranged to give the derivative of the Marshallian
demand function g as :

∇pg(Y,p) = S – ∂/∂Y[g(Y,p)]. hT  (2.12)

The first term is the “substitution effect”, ie the change in demand resulting from the change in
prices, assuming constant utility. The second term is the change in demand from a change in
income, keeping prices constant, times the change in income to ensure constant utility when
prices change, which, by the differential property of the expenditure function, is equal to the
quantity demanded. It is easier to interpret the second term in terms of a change in price dp,
leading to an income change h.dp. Then the change in demand dg can be expressed as:

dg = ∇pg(Y,p).dp = S.dp – ∂/∂Y[g(Y,p)]. h.dp (2.13)

We know that S is symmetric. For the Marshallian integral to be path-independent, we require

∂/∂Y[g(Y,p)]. hT  also to be symmetric, in other words:

∂/∂Y[qr(Y,p)]. qs = ∂/∂Y[qs(Y,p)]. qr (2.14)

In general, this will not be the case.

Note in passing the effects of a monotonic transformation of utility. Suppose we redefine utility
as W = f(U). Then it can be shown that while this will affect the functional form of the indirect
utility and the expenditure functions, it will have no effect on the Marshallian demand function
nor on the marginal rate of substitution between commodities.
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2.3 An illustration

As a demonstration, which also illustrates the general properties of the theory, we can consider
the “Linear Expenditure System” due to Stone (1954), which can be derived from a utility
function of the form:

( ) 1:)( =∑β∏ γ−= β

k
kk kk

kqU q  (2.15)

Maximising with respect to q, given prices p and income Y gives:

k

k
kkkk

kk p
U

qsop
q

U
U

β
λ

+γ=λ=β
γ−

⇒λ−∇=
*

*
*

*
)(0 pq  (2.16)

To obtain the Marshallian demand function, we need to make q dependent on Y rather than U*.
To do this, we substitute q* in the budget:

Y = p.q* = p.γ  + 
λ

*U
∑ β
k

k , whence 
λ

*U
 = (Y – p.γ) (2.17)

Hence gk(Y, p) = γk + (Y – p.γ). 
k

k

p
β

 (2.18)

For the indirect utility function, we substitute g into the direct utility function, giving

ψ(Y, p) = ( ) ( ) ( )
( )∏

β
γ−=∏ 







 β
γ−=∏ γ−

β

β
β

k k
k

k

k
k kk

k

k

k

p
Y

p
Yg 0pp (2.19)

 

where for convenience we write β0 for ( )∏ β β
k k

k

For the current values of income and price, we have utility U* = ψ(Y, p). Since from (2.17) 
λ

*U

= (Y – p.γ), this allows us to solve for λ = 
( )∏

β
β

k k
kp

0  (2.20)

Hence, using (2.16), we obtain the Hicksian demand function:
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hk(U*,p) = γk + U*.
( )

0β
∏

β
k k

kp
 

k

k

p
β

 (2.21)

For the expenditure function we multiply h by p, yielding:

E(U*,p) = p.γ  + U*.
( )

0β
∏

β
k k

kp
 (2.22)

 (since 1=∑β
k

k )

Now consider the Slutzky equation (from (2.11) above):

∇pg(Y,p) = S – ∂/∂Y[g(Y,p)]. hT

S = ∇ph(U*,p) ; hence Skh = U*. ( )










 β
β

∏
∂
∂ β

k

kk k

h p
p

p

k

0

= U*.
( )

0β
∏

β
k k

kp
 

k

k

p
β

. ( )hhk
h

h

p
βδ−

β
/1  (2.23)

(where δkh is the “Kronecker delta”, with the property that δkh = 1 if h = k, 0 otherwise).

For ∇pg(Y,p) , we have  






 β
γγ

∂
∂

k

k

h pp
  ). . - (Y +  k p

= 






 γ
δ+γ

β
−

h
hkh

k

k

pp
) . - (Y

  .  
p

(2.24)

We note that this is not symmetrical.

For ∂/∂Y[g(Y,p)]. hT , we have ( )









 β
β

∏+γ



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h
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

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h
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k
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p
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0

(2.25)
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Adding the representative “rs” terms for ∇pg(Y,p) and ∂/∂Y[g(Y,p)]. hT , and remembering that

(Y – p.γ) = U*.
( )

0β
∏

β
k k

kp
, we have:

( )







 δ
−

β
∏ββ β

h

hkk k

h

h

k

k

p
p

U
pp

k

1.*..
0

(2.26)

which is equal to the representative term for the Slutzky matrix S, as required.

Thus in this case, the condition for Green’s theorem does not hold, and the consumer surplus
defined as the integral of Marshallian demand g is not path-independent.

2.4 Separable functions of income and price

Suppose that we postulate an indirect utility function of the form:

ψ( Y,p) = λY + f(p) (2.27)

in other words, a separable function between income and prices, with the property that the

derivative ∂ψ/∂Y is constant (and thus independent of p).

Using Roy’s identity, we obtain g = –∇pψ/λ.

We can also “invert” the indirect utility function to obtain the expenditure function:

E(U*,p) = 1/λ(U*– f(p)) (2.28)

According to the theory (see p 7 above), we can differentiate this with respect to p to obtain the

Hicksian demand function h, and this is easily seen to be –∇pψ/λ. But this is identical to the
Marshallian demand function g! Thus we derive the important result that if the indirect utility has
the separable form given above, so that the “marginal utility of income” is constant, the
Marshallian and Hicksian demand functions coincide.

Since the Hicksian demand function satisfies the condition for Green’s theorem, so, in this case,
will the Marshallian demand function, so that the line integral for the Consumer Surplus is path-
independent. This turns out to be of major importance for transport models, because most of the
forms used are compatible with the separable form for indirect utility, as we discuss later.
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Note that from Roy's identity given above, it can be seen that if λ = ∂ψ/∂Y is constant, then the

CS integral – ∫ g(Y,p) dp gives the indirect utility ψ, ie the maximum utility given income and
prices. This explains the intuitive appeal of CS.

2.5 Compensating and Equivalent Variation

In terms of the overall theory, however, it is not in general reasonable to assume that λ is
constant. To deal with this, two alternative measures have been proposed. The Compensating
Variation (CV), proposed by Hicks (1956), is the minimum amount of income by which a
consumer would have to be compensated after a price change in order to have the same indirect

utility as before. In other words, if the prime (′) denotes the "after" position:

ψ( Y +CV, p′) = ψ (Y, p) (2.28)

Note, of course, that CV may be positive or negative: it depends on the direction of the change in
price. If prices go down, this will convey a benefit, and the consumer should be willing to give
up some income to remain at the previous utility level.

The alternative definition, the Equivalent Variation (EV), is the maximum amount which the
consumer, from the standpoint of the "after" position, would be willing to pay to have the price
change reversed (assuming that income was unchanged). This implies:

ψ( Y – EV, p) = ψ (Y, p′) (2.29)

Neither of these measures is the same as CS, except in very special circumstances. As Deaton &
Muellbauer point out, the difference between CV and EV corresponds exactly to the difference
between the Laspeyres and Paasche cost of living indices. In both cases we are dealing with
alternative first order approximations, and the true measure is likely to be "somewhere in-
between". Essentially, the need to approximate comes from the desire to transform a change in
utility to a monetary value when, in general, there is no fixed conversion rate.

To derive the two measures, we formulate the Dual problem as before to obtain the Hicksian
(compensated) demand curves. Because the Hicksian demand curves compensate for the impact
of price on income, they are steeper (less elastic) than the corresponding Marshallian curve
(strictly, this is only true if the commodities in question are “normal goods”, meaning that the
elasticity of demand with respect to income is positive).

Figure 2 shows, for a single commodity, the two Hicksian demand curves associated with the
before and after positions, as well as the (standard) Marshallian curve. The initial position is D0
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(Q0 ,P0) and the new position is D1 (Q1 ,P1). The areas under the curves correspond with the three
measures CS, CV and EV. It can be seen that the CS (shaded in the figure) does indeed lie
somewhere in-between the other two measures (again, this depends on the qualification about
“normal goods”).

Note also that because the Hicksian demand curve h(V,p) is the derivative of the expenditure
function with respect to p, we can represent the measures CV and EV in terms of the expenditure
function:

CV = E(V0, p1) – E(V0, p0)

EV = E(V1, p1) – E(V1, p0) (2.30)

Figure 2 Compensating and Equivalent Variation

Figure 2 is the standard diagram used for theoretical exposition of the concepts CV and EV. In
practical terms, however, it is somewhat misleading, on two separate counts. In the first place,
the marked difference in the slopes of the Hicksian and Marshallian demand curves implies that
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a change in the commodity price will have a substantial “income effect”. But this will generally
only be the case if a significant proportion of total expenditure is allocated to the commodity in
question: for most instances of assessment in the transport field, this will not occur. Secondly, the
shift between the two Hicksian demand curves depends on the magnitude of the price change,
and once again, as we discuss later, standard assessment will be dealing with relatively marginal
changes.

The result of these observations is that both the difference between the two “variation” measures,
and the difference between them and the CS measure, are likely to be much less important than
the Figure implies. Thus, in spite of the accepted theoretical superiority of the variation
measures, it is not unreasonable to regard CS as a satisfactory measure. Indeed, some economists
have argued more forcefully for it (Willig, 1976). In addition, CV and EV require a more
detailed understanding of economic theory, and the Marshallian demand curve is an easier
concept for the layman to understand.

In conventional economic terms, the argument is presented in terms of a price change. However,
it is clear that the analysis can be taken directly across to the case of a quality improvement (or
decline), which brings about a change in utility comparable to that caused by changing prices.
This is a topic of particular interest for transport assessment, and we return to it later.

2.6 Aggregation and Welfare Measures

While the Consumer Surplus as proposed by Dupuit and Marshall was essentially conceived as
an aggregate measure, the modern neo-classical theory of the consumer has been constructed at
the individual level. Assuming that individual utility functions are known, this present no
problems for demand modelling: the individual demand functions can be straightforwardly
“added up”. In practice, of course, we do not know these utility functions, and any data which
might allow us to estimate utility functions is likely to be subject to a certain amount of
aggregation. Nonetheless, demand models which are compatible with the theory can be
developed and tested empirically.

There are far greater problems relating to the construction of meaningful indices of social
welfare. Indeed, there is a well-known theorem, due to Arrow (1951), which demonstrates the
impossibility of basing social preference on individual preferences. The general ramifications of
this are well beyond the territory of this paper. However, a simplified analysis will be presented,
based on Varian (1992).

Consider first a modified version of the aggregate demand curve taken from Dupuit. We are
interested in the impact of a price change from P0 to P1. In reality, different groups of individuals
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may have very different demand curves. In Figure 3, it is assumed that total demand can be split
between those with high income and those with low income. Low income people will not
purchase anything if the price rises above their maximum affordable price (PL, say). Above this
price, all variation in demand relates to high income people. Below this price, the total demand
curve is obtained by summing the two curves along the Q-axis, and swings away from the high
income curve as shown by the dashed line.

In the case illustrated, PL lies between the original price P0 and the new price P1. The result is
that the change in Consumer Surplus relates largely to high income people. The consumer
surplus can be calculated separately for the two curves in the standard way: it must yield the
same result as the area under the total curve since the total curve is obtained by summation.

Figure 3 Demand segmented by income groups

Figure 3: Demand segmented by income groups
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Suppose we postulate a “social welfare function” W, which is in some way related to the
separate utilities of all the members of the society. Thus we write W(U1, U2, ….. Un). Since, as
already noted, utilities are only determined up to a monotonic transform, we must assume that
we can arbitrarily fix the definition - separately for each individual. We assume for each
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individual q, that an increase in the utility for q will contribute positively to overall social welfare

(though this is not entirely uncontroversial!): this implies that ∂W/∂Uq > 0 ∀ q.

To simplify the problem, suppose that, at least for the purpose of a marginal analysis, the

differentials ∂W/∂Uq can be approximated by a set of constant weights aq. Effectively, we
linearise the social welfare function so that

W(U1, U2 . Un) = Σq aq.Uq. (2.31)

The weights {aq} can be thought of as the value judgments of a “social planner”.

Suppose we are at a market equilibrium (q, p) and are considering moving to a new allocation q′,
where q ranges over all individuals q as well as over all commodities.

Approximately, ∆W ≈ Σq aq.∇Uq(qq).( q′q – qq) (2.32)

Since the base is in equilibrium, we must have: ∇Uq(qq) = λq p, where, as usual, the Lagrangean

multipliers λq represent the marginal utility of income for individual q.

Hence, ∆W ≈ Σq aq. λq p. ( q′q – qq) (2.33)

This is equivalent to a weighted change of expenditures.

Further, if the original allocation was a welfare optimum, then it can be shown that aq = 1/λq. In
this case, therefore, the change in welfare resulting from a change in allocation is given by the
change in total expenditure (calculated at the base prices), which implies correspondingly a
change in total income.

To quote Varian, “This means that if the social planner consistently follows a policy of
maximising welfare both with respect to lump sum income distribution and with respect to other
policy choices that affect allocations, then the policy choices that affect allocations can be
valued independently of the effect on the income distribution”. The trouble with this is that it
means precisely what it says! Thus if the condition is not met, then there is no implication that
the effect on the income distribution can be ignored.

It turns out that there are simplified conditions in which more accessible results can be obtained.
These restricted cases will have correspondingly restricted application, but they can be
acceptable approximations for a range of practical problems. A particularly fruitful assumption is
that of the “quasi-linear” utility function, defined as:
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U
~

(q, a) = a + U(q) (2.34)

where a is the consumption of a particular commodity not included in q, with, for convenience, a
price of 1.

By the standard procedure we have:

max U
~

 + λ(Y – a – p.q), giving λ = 1 (wrt a) and ∇U = p

This implies that q = g(p), independent of Y. The demand for the particular commodity is given
from the budget constraint:

a = Y – p. g(p)

Hence, substituting into utility function, we obtain

ψ(p,Y) = Y – p. g(p) + U(g(p)) (2.35)

Note that we can obtain U(g(p)) by direct integration as ∫
→ )(0

.
pg
dqp , because of the absence of

income effects.

Gorman (1953, 1959) investigated the conditions under which it was possible to prescribe an
“aggregate” or “representative” utility function which would lead to an aggregate demand
function. He concluded that the only type of indirect utility function which would have the
required property was of the form:

ψq(p,Yq) = aq(p) + b(p).Yq (2.36)

for each individual q

Under this assumption, the individual demand function becomes (Roy’s identity):

qq = gq(p,Yq) = –(∇aq + Yq. ∇b)/b(p) (2.37)

and the aggregate demand function is therefore

q = Σq qq  = – Σq (∇aq + Yq.∇b)/b(p)

=  – [Σq ∇aq + ∇b. Σq Yq]/b(p) = g(p, Σq Yq) (2.38)
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It is clear that this aggregate demand function could be generated by a “representative consumer”

with an aggregate income of Σq Yq

It can be seen that the indirect utility function corresponding to the quasi-linear utility is of the
Gorman form, in which (adding subscripts for individual q)

aq(p)  = Uq(gq(p)) – p. gq (p)  and  b(p) = 1 (2.39)

It can also be seen that aq(p) is the Consumer Surplus CS for individual q.

Hence, associated with the quasi-linear utility, there is an aggregate form for the indirect utility if
the “representative consumer” from which the aggregate demand curve can be derived. The
functional form is:

ψ (p, Σq Yq) = a(p) + Σq Yq (2.40)

where the term a(p) corresponds with the sum of the individual CS, and this is also the CS that
would be derived from integration of the aggregate demand curve. Thus, in the special case of a
quasi-linear utility function, the aggregate CS is an appropriate measure of aggregate welfare. It
can also readily be shown that in this case CS coincides with the two “variation” measures, since
the marginal utility with respect to income is constant..

2.7 Contributions from Discrete Choice Theory

The primary contribution here is from McFadden’s path-breaking though relatively inaccessible
theoretical analysis (McFadden, 1981), itself a major elaboration of the discussion in Domencich
& McFadden (1975, reprinted 1997). Further theoretical points are made in Small & Rosen
(1981), while a useful description is provided in Glaister (1981).

McFadden begins by extending the continuous analysis given earlier to allow for discrete
alternatives. Suppose that in addition to the consumption of commodities q, there is a set of

discrete alternatives {i ∈ I} with the characteristic that one and only one will be chosen by an
individual consumer. The characteristics of alternative i are represented by a vector xi, and the
cost is ci.

The discrete choice formulation leads to the notion of conditional indirect utility depending on
the alternative actually consumed. If the individual chooses alternative i, then only Y – ci is
available as the budget for the consumption of commodities q. With this modification, the
analysis goes through as before for the derivation of the conditional indirect utility functions
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ψ i(Y – ci, p). Since the total utility will reflect the additional utility from the consumption of the

discrete alternative, we write it as ψ i(Y – ci, p, xi).

On this basis, the alternative which will in fact be chosen will be that which affords the

maximum indirect utility, ie alternative i such that ψ i(Y – ci, p, xi) > ψj(Y – cj, p, xj) ∀ j ≠ i.
Hence the unconditional indirect utility can be written as:

ψ*(Y, c, p, X) = maxi ψ i(Y – ci, p, xi) (2.41)

In order to effect a generalisation to a population rather than a single individual, we introduce a
random element to the individual’s utility. There are a number of ways in which this can be
motivated. In Domencich & McFadden we read (§4.3):

“In principle, the theory of individual utility maximization provides a complete model of
individual choice. However, within the framework of economic rationality and the
postulated structure of utility maximization, there will be unobserved characteristics, such as
tastes and unmeasured attributes of alternatives, which vary over the population. These
variations may induce variations in observed choice among individuals facing the same
measured alternatives. A specification of a distribution for the unobserved factors then
generates a distribution of choices in the population.

To clarify the conceptual issues involved in this construction, we consider the textbook
model of economic consumer behavior. The individual has a utility function u = U(x, s , ε),
representing tastes, where x is the vector of observed attributes of an alternative, s is a vector
of observed socioeconomic characteristics, such as sex, education, and age, and ε  is a vector
of unobserved characteristics of alternatives and unobserved factors, such as intelligence,
experience, childhood training and other variables determining tastes. The utility function is
maximized subject to a "budget constraint" x ∈ B at a value x given by a system of demand
functions,

x = h(B, s; ε).  (4.1)

The econometrician typically observes the budget constraint Bn, socio-economic
characteristics sn and chosen alternative xn for a cross-section of consumers n = 1, ..., N. He
wishes to test hypotheses about the behavioral model (4.1).”

McFadden (1981) expands on this:

(§5.2) “The idea of taste variation in a population influencing aggregate demand behaviour is
an old one. Many of the classical demand studies [refs…] consider this as a nuisance to be
eliminated by assumption…. More recently analysis of econometric models with random
parameters has been motivated by the presence of unobserved variations among economic
agents.”

An individual’s utility function U is defined on the vectors q (consumption of non-discrete
commodities) and x (attributes of discrete alternatives). To indicate the individual-specific nature
of the resulting indirect utility functions, McFadden (1981) includes U as an argument, thus:
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ψ i(Y – ci, p, xi: U) [this is a variant of McFadden’s eq (5.5)]. He then treats U as a random
element, conditional on population (socio-economic) characteristics s.

If now we suppose ψi has the form 
)(

)U:,(cY ii

p
xp

β
α−−

[this is a variant of McFadden’s eq

(5.12)], it is readily seen that this is of the Gorman form. McFadden then considers the function

V  = EU|s [ψ*] = 







β
α−−

+
β )(

)U:,(c
maxE

)(
Y ii

i|U p
xp

p s (2.42)

and shows, with rather sparse explanation, that a) this has the characteristics of an indirect utility

function, and b)  the choice probabilities Pj can be obtained by applying Roy’s identity to V  - ie,

Pi is the negative ratio of the partial derivatives of V  with respect to ci and Y. As can be seen, V

is the expectation over the population variation in U of the maximum, over the alternatives, of
the conditional indirect utilities. Given a valid social indirect utility function, “the demand
distribution can be analysed as if it were generated by a population with common tastes, with
each (representative) consumer having fractional consumption rates for the discrete
alternatives…”

Ignoring the scale factor β(p), which merely ensures that function α is scaled in money units, it
can be seen, by analogy with the continuous exposition given earlier for the quasi-linear utility,

that the term [ ]))U:,(c(maxE iii|U xps α−− , which McFadden writes (allowing for notational

changes) as ),,,,(G sBxpc , where B is the set of alternatives, has the characteristics of a “surplus

function”. Further, since by assumption the marginal utility of income is constant, Pj is also given

by –∂G/∂cj . This is the critical property for what McFadden defines as the “AIRUM” ( Additive
Income Random Utility Maximizing) form.

In more detail, he defines the conditions in which G will be termed a social surplus function, and
concludes that “the presence of discrete choice places no new restrictions on the validity of
consumer surplus methods”. This needs to be seen, however, in the context of the assumed
simplification associated with AIRUM. As Small & Rosen (1981) point out, there are  some
additional complications associated with discrete choice, due essentially to local discontinuity of
the derivatives of the expenditure (or cost) function, which is the standard way of deriving the
compensated demand functions. This issue does not arise in the simpler case to which the
Gorman form applies.

A key point is made at the end of §5.7: “It should be noted that the utility structure (5.12) yields
choice probabilities that are independent of current income. However, tastes (the distribution of
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U) may depend on individual characteristics that are correlates of current income such as
historical wage rates, income levels, or occupation. Then these variables may enter the PCS
[Probabilistic Choice System]”.

This is a potential source of confusion, and we will discuss it later in the paper.

Before leaving this section, we will briefly allude to some of the issues faced in the general
discrete choice case for defining welfare measures, following some of the arguments of Small &
Rosen (1981), McFadden (1999) and Karlström (1998, 2000).

Suppose individual k faces a choice from a set of alternatives j ∈ J, and has a conditional indirect
utility function for each alternative of the form:

Vkj(pj, ….) + εkj

To keep the illustration simple, assume that the price of only one alternative changes, and

without loss of generality take this as the first: ie p1 → p′1. Again for the purposes of illustration,
we assume that this is an increase.

It will be seen that the compensating variation will depend on the individual’s choice in the
before and after situations. If individual k chooses alternative 1 both before and after the price
change, then his reduction in utility4 is given as

Vkj(pj, ….) – Vkj(p′j, ….). (2.43)

This then needs to be converted into the equivalent amount of income, which we write as µ11.
This is straightforward if the marginal utility of income is constant, but in other cases may be
more complex to evaluate (see Section 4.?): nonetheless the relationship will be monotonic.

Correspondingly, if individual k does not choose 1 before the price change (increase), he will
certainly not choose it after, and therefore is unaffected by the price change. In this case, the
compensating variation is zero.

As Karlström (2000) notes, the difficult case is when the individual chooses alternative 1 before
the price change but a different alternative j after the price change. The implication is that:

Vk1(p1, ….) + εk1 ≥  Vkj(pj, ….) + εkj ≥  Vk1(p′1, ….) + εk1 (2.44)

                                                

4 This assumes, as would generally be reasonable, that the random element εk1 is not affected by the price change
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so that the utility loss is lower, and correspondingly the compensation will be less than µ11. In

this case, however, the reduction in utility is stochastic, because of the elements  εk1, εkj: in fact it
is given as

[Vk1(p1, ….) + εk1] –  [Vkj(pj, ….) + εkj] (2.45).

In addition, the distribution of the difference (εk1 – εkj) is truncated, since we know that it cannot
be less than [Vkj(pj, ….) – Vk1(p1, ….)], otherwise alternative 1 would not have been chosen
before the price increase.

For this case, therefore, we can only calculate the expected compensation, based on the
appropriate distribution for the error terms.

This argument shows that we can calculate the (expected) compensation, conditional on the
choices made in the before and after situations. Overall, we require the unconditional
compensation, and this will be in some sense a weighted average of the conditional values. As
indicated earlier, this calculation turns out to be straightforward when dealing with an AIRUM
form: it is much less straightforward for other cases, as we discuss in Section 4.

2.8 The evaluation of non-price changes

So far, both the continuous and the discrete exposition have been entirely in terms of price
changes: the concern with the demand response and the welfare implications of changing prices
of defined commodities or alternatives. This is, indeed, the standard application of the theory.
However, particularly in the field of transport, most policies are concerned with other aspects of
the travel experience. Foremost among such aspects is the travel time associated with the
journey, but other aspects, relating to comfort, reliability etc. are also of interest.

Figure 4 below, based on the EVA Manual (1991), shows the impact of a quality change. A

standard demand curve is given (D1) together with a price reduction from P to P′ which increases
demand and generates consumer surplus in the usual way. To quote from the EVA Manual:

[The diagram] shows what happens when instead of a price change, we have a quality
change, such as a change in the travel time. The demand curve shifts outward (in the case of
a time saving), so that the trips at the basic price P (unchanged) increase from T1 to T2. The
increase in consumer surplus is given by ABD2Dl. The same effect on the number of trips
would have been achieved by reducing price from P to P′, without altering the travel time.
The measure of consumer would then be PACP′.

PACP′ is not necessarily equal to ABD2Dl. (It will be if the demand curve shifts in a way
parallel to the original curve.) But it is a reasonable approximation for practical purposes to
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make the two equal. In this case, it is possible, and usual, to redefine the demand curve as a
function of a linear combination of price and quality variables such as travel time, known as
user cost, generalized cost or sometimes disutility. This curve would be drawn in exactly the
same way …, but with the vertical axis measuring user cost instead of price.

Figure 4 Change in Demand for Travel through Improved Quality

Reinterpreting this in Discrete Choice terms, if we have a conditional indirect utility function
which is linear in price, we can effect a direct conversion between quality variables in the utility
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function and price: effectively this is an extension of the “generalised cost” concept introduced
by McIntosh & Quarmby (1970). If price does not enter linearly, then, although we can still
calculate benefit in units of utility, there will be problems converting these to money units.

3 THE PRACTICE OF EVALUATION

3.1 The practical context

The role of supply and demand are crucial in transport modelling. In line with the theoretical
discussion, we may characterise a model of demand as one which estimates what travel would
take place, given an estimate of travel costs for all possible journeys, where by costs we refer not
only to money costs but other components of travel “utility” such as travel time: generalised cost.

However, if, at a given generalised cost, the predicted travel were actually realised, the costs
might not stay constant. This is the function of the supply model.

In classical economics the supply curve gives the quantity T which would be produced, given a
market cost C.  However, in transport it is more convenient to define the inverse relationship,
whereby C is the unit generalised cost of meeting a demand T.

Thus, we use the supply curve to answer the question: what would the generalised cost be if the
estimated demand were “loaded” on to the system? The best known ‘supply’ model is the
conventional traffic assignment reflecting inter alia the deterioration in highway speeds as traffic
volumes rise.

Moreover, in terms of transport policy, our most frequent interest is in changing the supply curve
(eg by providing new capacity, or modifying prices). In this case, we are interested in the
comparison of two or more alternative supply curves, representing different policies. Very often,
we wish to compare the effects of a policy with the “Do-Minimum” option.

Since both demand and supply curves relate volume of travel with generalised cost, the actual
volume of travel must be where the two curves cross - the ‘equilibrium’ point.  Using the
principles of Consumer Surplus , we measure the area under the demand curve between the two
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equilibrium points, (T, C) and (T′, C′): this is illustrated in Figure 5. The consumer surplus is the

area bounded above by the line “generalised cost = C”, below by the line “generalised cost = C′
”, and to the right by the (downward-sloping) demand curve.

Figure 5 Asessment of Benefit from New Policy

Figure 5  Assessment of Benefit from New Policy
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3.2 The “Rule of a Half”

By assuming as an approximation that the demand curve is linear between the two equilibrium
points, we obtain the well-known “Rule of a half” [RoH] expression of benefit:

Benefit =  ∆S ≈ – ½ (T′ + T)(C′ – C) (3.1)
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(NB: As a general rule, it is highly advisable to adopt a notational convention which clearly

distinguishes the points (“before” and “after”), and we will consistently use the prime symbol (′)
to denote the “after” position. We will also, as in this formula, maintain the order “after / before”,

making use of minus signs where necessary, and  we will define the difference operator ∆ to
mean “after minus before”.)

This implies that to carry out an appraisal, we require only the equilibrium demand with and
without the policy to be tested, and the components of cost compatible with the two demands.

An intuitive rationale for this measure is as follows. Existing travellers (T) obtain the full value

of the reduction in C. New travellers, on the other hand, (T′-T), are assumed to get on average
only half the benefit, since it is argued that while some of them were, in the 'before' situation, on
the verge of travelling and therefore get almost the full benefit, others in the 'after' situation are
on the verge of not travelling, and therefore get almost zero benefit.

However, this straightforward rationale loses its simplicity as soon as we consider the demand
for more than one type of journey. Within general transport evaluation we cannot confine
ourselves to journeys between a single pair of zones, by  a single mode, etc., because of the
interconnectedness of the transport system. For instance, if we introduce a new link into a road
network, the demand for travel on some links may fall, while for others it increases. There may
be a redistribution of travel between origins and destinations, and new road traffic may be
attracted (either from other modes or 'pure' generated traffic). The graphical representation of this
interconnectedness quickly becomes impossibly complex.

In addition, the simple example suggests that we can distinguish between 'existing' and 'new'
travellers, thereby introducing an element of asymmetry between the before and after situation.
As soon as we consider the demand for more than one type of journey, this can quickly lead to
confusion. It also implies that the benefits can be unambiguously allocated to different groups of
travellers: this is in fact far from being the case, and while we may from time to time wish to
make such an attempt, it is important to bear in mind that the ultimate attribution of benefits
remains controversial. We return to this point below.

Hence, although the figure treats transport as a one-dimensional commodity, when we consider
the problem in a general transport context, we are not interested in single elements of demand,
but rather a matrix of elements: the domain of the demand model is essentially the i-j pair ie
between an origin and destination.

Additionally, the transport problem is complicated by the supply domain being that of a network
of links, while the demand for travel relates to the inherent value of being at j, given a current
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location at i, and not to the particular paths used to reach j.  Changes to the generalised cost of a
single network link will typically impact on a number of i-j pairs.

This means that the one-dimensional formula needs to be generalised to the case where the costs
of all transport alternatives can change simultaneously. Assuming base costs C and changed

costs C′, the resulting formula is, as discussed earlier, the (Hotelling) line integral

∫−=∆
′→CC

CT d.S (3.2)

Provided that the demand function T(C) derives from a model which is consistent with AIRUM,
this line integral will be path independent.

Although in most cases of transport appraisal there will be an explicit demand function T(C), the
problems of calculating the multi-dimensional integral are potentially serious. Fortunately,
however, the linear approximation (RoH) form is also appropriate in this case, along the lines of:

Benefit =  ∆S ≈ – ½ Σξ (T′ξ + Tξ)(C′ξ – Cξ) (3.3)

where ξ indicates members of the set of transport choices. For the purposes of illustration, we

shall consider a model which allows ξ to range over origin i, destination j, mode m and time of
day t, in which case the benefit formula becomes:

∆S ≈ – ½ Σi Σj Σm Σt (T′ijmt + T ijmt)(C′ ijmt – C ijmt) (3.4)

3.3 The accuracy of the RoH Approximation

It can be shown that the RoH is a very good approximation to the true surplus provided the
change in cost can be regarded as "marginal". Suppose we have a choice model for the
proportion pi choosing alternative i of the logit type:

pj  = exp (-? Cj) / Sk exp (-? Ck) (3.5)

with a total demand given by T.
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We wish to consider the change in consumer surplus from a policy which changes the values of

{Ck} to {C′k}. As is well known, with a logit model, there is a closed form solution for the
integral under the demand curve, and in this case the formula for benefit becomes

?S = –T (C*′ – C*) (3.6)

where C* is the so-called "composite cost" (the negative of the maximum expected utility)
defined as the “logsum”:

 C* = –1/?  ln Sk exp (-? Ck) (3.7)

We wish to compare the true results using (3.6) with the approximation formula in (3.8):

∆S ≈ – ½ Sk (T′k + Tk).(C′k - Ck ) (3.8)

A simple example will suffice. Suppose we have five choices k. Total demand T is 1000, and we
assume ? = .02, which is a typical value for choices ranging over mode and destination when
cost is measured in minutes. The results are set out in the Table below:

Table 1

Base Strategy ∆S

Option k costs Ck demand
Tk

costs C′k demand
T′k

RoH calculations approx True

1 20 225 15 237 –½(237+225).(15–20) 1155

2 25 204 22 206 –½(206+204).(22 –25)   615

3 45 137 35 159 –½(159+137).(35– 45) 1480

4 15 249 18 223 –½(223+249).(18 –15) –708

5 30 185 30 175 –½(175+185).(30 - 30)       0

* (Σ) –54.48 1000 –57.02 1000 1000. (–54.48 + 57.02) 2542 2539

There are a number of things to note about this example. In the first place, the RoH
approximation involves summing over what may appear to be elements of benefit calculated
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separately for each alternative. Note that cells in the RoH formula where the costs do not change
(eg option 5 above) do not contribute to total benefit, even though the demand has changed.
There is no equivalent calculation for the true integral result: the benefit integral is not
decomposable.

Secondly, it will be seen that the composite costs are negative  (in this instance). This causes
some presentational difficulty, and some practitioners have been reluctant to accept the measure
for this reason5. However, it is easily shown that it does not influence the evaluation outcome: it
is only the difference between the before and after situations which is material.

Thirdly, according to the exact formula, consumer surplus has increased by 2539, whereas the
RoH formula gives 2542, which differs from the true value by 0.1%. Note that, given the
fundamental convexity of the demand curve, the RoH will always give an overestimate of
benefit: as this example shows, however, the error is (normally) very small, with the exception of
some pathological cases which we shall investigate below.

As a further example, suppose now further that total demand is elastic, and responds to the
change in composite cost. Specifically, write

T = T0 exp (-aC*)where a = 0.01

Then, with the same changes in cost, because these result in a change in C* of -2.539, T will
increase to 1025.72, and hence the values of the individual cells after the change are increased
(the changed cells are indicated in bold):

                                                

5 Various proposals have been made to normalise the measure. It can be shown  that if all the individual costs are

positive, the addition of γ/λ to the composite cost, where γ is Euler’s constant (= 0.577216…), will generally

correct for this, but not in all cases. For further discussion see eg Williams (1977)
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Table 2

Base Strategy

Option k costs Ck demand
Tk

costs C′k demand
T′k

elastic

∆S approx integral

1 20 225 15 243 –½(243+225).
(15–20 )

1170

2 25 204 22 211 –½(211+204).
(22 –25)

  622

3 45 137 35 163 –½(163+137).
(35– 45)

1500

4 15 249 18 229 –½(229+249).
(18 –15)

–717

5 30 185 30 180 –½(180+185).
(30 - 30)

      0

* (Σ) –54.48 1000 –57.02 1026 (integral - see
below)

2576 2572

With such a simple total demand curve, we can easily derive the total change in consumer
surplus analytically - it is

]e T.[ 1/a  =  dCeT  - *C
*C

aC-
0

aC-
0

*C

*C

′
′

∫ (3.9)

Substituting, we obtain an increase in consumer surplus of 2572, whereas the rule of a half
approximation gives 2576, which differs from the true value by 0.2%.

Quite generally, the “composite costs” obtained from a (possibly hierarchical) logit model,
appropriately scaled, represent a measure of (negative) consumer surplus per trip, and the change
in composite cost is an indicator of benefit. If the total demand at some level is fixed at T, then

the benefit is given by ∆S = −T.(C*′–C*) = −T.∆C*, where C* is the composite cost calculated
at the level of T.
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Where demand is not constant at any level within the model, the simple RoH approximation can

be used: B ≈ −½ (T′ + T). ∆C*. In practice, it is usually acceptable to apply RoH to the
composite cost at a lower level, and we discuss this further in the following section.

Although the “composite cost” methodology is specific to a demand formulation relying on
hierarchical logit, this is generally in line with most modelling practice, though the burgeoning
interest in more complex error structures (in particular, the “mixed logit” formulation) is likely to
change this in the foreseeable future. It may be noted, however, that closed form solutions are
available for all members of the Generalised Extreme Value (GEV) family of random utility
models.

3.3 Applying the RoH at different levels in the hierarchy

In the case of a hierarchical logit model, whether we can appropriately apply the RoH at any

particular level relates essentially to the magnitude of the term λ.∆C, where ∆C is the change in

cost, and λ is the “scaling parameter” for the  given level. If it is “large” (which for practical
purposes we might define as > 3), then the RoH will start to present problems. However, because

the parameters λ decline in absolute magnitude as we go to higher levels, the problems of
inaccuracy in the RoH can generally be avoided by carrying out the approximation at a
sufficiently high level. We shall produce some specific examples below.

It is useful to take a hierarchical logit choice model as a reasonably general example. For the
purposes of illustration only, we will assume a structure in which time of day is conditional on
mode, mode is conditional on destination, and destination is conditional on origin, as illustrated
in Figure 6. Although this is an intuitively reasonable structure, the results will be indicative of
any such structure, and indeed of more complex assumptions about the error structure of the
various choices.
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Figure 6 Illustrative Hierarchy of Discrete Choices
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At the bottom level we have a demand model of the form:

pt|ijm  = exp (–?T  Cijmt) Σt ′ exp (–?T  Cijmt′) (3.10)

with an associated composite cost over t, which we write as Cijm*, given, as usual, by the
formula:

exp (–?T  Cijm*) = Σt ′ exp (–?T Cijmt′) (3.11)

Corresponding relationships apply to the higher level choice models, with a set of scaling
parameters which we write as ?M , ?D , ?O, where the superscripts M D and O refer, respectively,
to mode, destination and origin choices. Note that with the hierarchy illustrated, it would be a

structural requirement that ?T  ≥ ?M ≥ ?D
 ≥ ?O.

Then, the following set of calculations will generally all give approximately equivalent results

for ∆S:

– ½ Sijmt (T′ijmt + Tijmt).(C′ijmt – Cijmt ) (3.12a)

– ½ S ijm (T′ ijm* + T ijm*).(C′ ijm* – Cijm* ) (3.12b)

– ½ S ij (T′ ij** + T ij**).(C′ ij** – C ij** ) (3.12c)

– ½ Si (T′ i*** + T i***).(C′ i*** – C i*** ) (3.12d)

Furthermore, if total demand T**** is fixed, then all these estimates will be a good approximation

to the true integral result:  T**** (C′ **** – C **** ).

3.4 Link-based formulae

Although the theory is perfectly general, in practice it has most often been applied in the context
of highway appraisal. As indicated earlier, this leads to some interface issues with the link-based
nature of the supply network. In this section, we discuss some of the relevant issues.

Suppose we have a demand matrix Tij, a set of links {l}, and appropriate formulae for deducing
the components of link cost, based on various fixed items (eg link capacity). In the more general
case, certain components, typically link travel time, will depend on the flow on the link Vl, (and
possibly flows on other links).

An assignment model will require a criterion for choosing the best path(s) between i and j: a
standard criterion is to minimise "generalised cost" . This implies a formula for combining the
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components of link cost into a value Cl, which might be, for example Cl = f(dl, tl, ...) where t and
d are respectively the time and distance on the link.

We write the proportion of those choosing a particular path p as πp|ij. If we define a “link-path
incidence matrix” (see eg Bell & Iida (1997)) as δpl with the value 1 if link l is on path p, 0
otherwise, then we can combine these to create:

eijl = Σp πp|ij. δpl (3.13)

and we can work on a link basis by means of the set {eijl} interpreted as "the proportion of the
total travel between i and j Tij which uses link l". 6

As is well understood, the quantity eijl is used to produce the link "loads" Ql, using the formula

Ql = Si Sj Tij eijl (3.14)

The same quantity will also provide the matrix of average generalised cost between zones i and j:
this can be written as

Cij = Sl eijl Cl (3.15)

If a Wardrop equilibrium has been assumed for the assignment, and the process has adequately
converged, then it should be the case that this average generalised cost will be the same as the
minimum, since all allocated paths should have the same cost according to the equilibrium
conditions.

Applying the RoH at the O-D level, we have

∆S = – ½ Sij (T′ij + Tij).(C′ij – Cij ) (3.16)

Substituting for Cij, this becomes:

∆S = – ½ Sij (T′ij + Tij).( Sl e′ijl C′l – Sl eijl Cl )

      = – ½ Sl [ Sij (T′ij + Tij).( e′ijl C′l – eijl Cl )] (3.17)

As is well-known, if the matrix is fixed, then the benefit can be obtained by calculating the
change in the product of the flow and cost on each link, including any new links brought about
as a result of the scheme, and summing over all links. This approach has generally been favoured
in the UK, because the information can be directly derived from the assignment model.

Since in this case T′ij ≡ Tij, the formula becomes:

                                                

6 In the simpler case of a single best path (“all or nothing” assignment),  eijl  = 1 if link l lies on
the best path between i and j, and = 0 otherwise
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∆S = – Sl [ Sij (Tij).( e′ijl C′l – eijl Cl )] = – Sl [  Q′l C′l – Ql Cl ] (3.18)

However, a link-based benefit calculation is not legitimate with "variable" matrices, since there
are “cross-product” terms involving the “before” matrix assigned to the “after” paths etc..
Although some assignment routines may be able to carry out such procedures, there is no
inherent advantage in proceeding on a link basis.

Note also that even if demand is constant at a “higher” level (eg when summing over time of
day, or modes, or destinations), cross-product terms will still occur. Hence, the benefits can only
be calculated on a link basis when there is no change in demand at the level at which the paths
are determined.

3.5 Some difficulties with the RoH

As noted, in transport evaluation we are generally concerned with the changes in generalised
cost, and their impact on demand. However, the form of the composite cost implicitly involves
other components of utility, and in particular the alternative-specific constants which are often
estimated as the “intrinsic” utility associated with particular alternatives.

The RoH approximation is commensurate with the assumption that the benefit of switching
between alternatives is related only to the cost changes associated with the alternatives, and can
ignore the underlying attractiveness of the alternatives, since this does not change. However, the
validity is critically dependent on the scale of the cost change relative to the random process
assumed to underlie the choice process.

It is of interest to discuss this in relation to time-period choice, where we may argue that the
implicit attractiveness of travelling at one period rather than another remains constant, but
variations in relative generalised cost could bring about a shift in demand.

Suppose we have two periods 1 and 2, with respective generalised costs C1, C2. We assume a
simple binary logit model, and translate these into utility units by means of the scale parameter –

λ. As is well known, λ (≥ 0) is inversely related to the standard deviation of the random
component of utility.

In addition, we may postulate that there are "schedule utilities", which connote the inherent
advantage of travelling in the given periods. Assume that their average values, scaled to cost

units, are α1, α2. Hence travellers facing a choice between periods 1 and 2 have average utilities:

V1 = λ (α1 – C1) : V2 = λ (α2 – C2) (3.19)
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Now consider a transport improvement whereby the generalised cost in period 2 reduces from

C0
2 to C′2. We do not expect any changes in the average schedule utilities α1, α2. As a result of

the change V2 → V′2 > V0
2.

As usual, we can measure the benefit of this change as the scaled increase in composite utility (ie
the expected maximum utility from the choice set). Using the logit function, this gives

B = 1/λ [ln (exp V1 + exp V′2) – ln (exp Vl + exp V0
2)] (3.20)

The conditions under which the RoH approximation will hold are essentially dependent on the

size of [(V1 – V′2) – (Vl – V0
2)], ie (V0

2 – V′2), relative to the standard deviation of the random

element in utility. If V0
2 – V′2 is relatively small, then the approximation will hold, and it is

generally possible to measure the benefit from a time shift without knowing the schedule
disutility.

However, it is reasonable in this case to expect that the randomness will be related to the size of
the time period, particularly if it relates largely to the schedule utility. As the benefit
approximation breaks down, either because the cost change is too large, or because the random
variance is too small, we are no longer able to avoid taking account of schedule utility, either in
the evaluation or in the modelling.

We illustrate this in Figure 7, using the example given. Measure cost in units of minutes, and

assume that the improvement in period 2 is equivalent to 30 minutes (ie C0
2 – C′2 = 30). Consider

three base cases, where it is sufficient merely to define the difference in utilities between the two

time periods: a) Vl – V0
2 = 50λ; b) Vl – V0

2 = 10λ; c) Vl – V0
2 = –10λ. The Figure shows the

estimate of benefit for different levels of randomness, measured by λ.
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Figure 7 Effect of scale parameter on Benefit
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It can be seen that for all three base cases, the benefits tend to 15 (ie half the improvement) for

small values of λ, but for larger values the outcome depends strongly on the base case. In case a),
the improvement is insufficient to overcome the superiority of period 1, so the benefit tends to
zero. In case b), the improvement converts period 2 to the superior alternative: hence the benefit

tends to the value of V′2 – Vl, ie 30 –10 = 20. In case c), period 2 was the superior alternative in
any case, and the benefit tends to the full value of the improvement: 30 minutes.

The generalisation of the result for high λ is

)a-C( - )a-(C = C i
0
i

1,2=i
ii

1,2=i
* min'minLim ∆

∞→λ
(3.20)

To re-state the conclusions, the Rule of a Half (RoH) approximation implies that the benefit of
switching between alternatives is related only to the cost changes associated with the alternatives.
Where the RoH is not appropriate, we cannot ignore the constant components associated with the
implicit attractiveness of specific alternatives (in this example, the scheduling benefits brought
about by travelling at different times).
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It is of some interest to relate these general conclusions to two well known circumstances in
which the RoH is inappropriate: it will be seen that they are both manifestations of the conditions
just described.

The first case is where the set of available choices is different between the Do-Minimum and Do-
Something, and the most commonly encountered example within general urban transport
appraisal is the problem of new modes, where the "before" cost of the new mode is effectively
infinite. Thus this is an example where the change in cost is too large, relative to the random
component, for the RoH to be valid. We discuss this further in Section 4.2

The second case is where the choice between two options can be considered to be made entirely
on deterministic grounds, as is commonly assumed for the choice of route. Suppose, as in
Section 3.4, we have a demand matrix Tij, a set of links {l}, and appropriate formulae for
deducing the components of link cost. Assume that there is a finite set of possible paths {Pij}
between each origin and destination, and that the proportion of those choosing a particular path p
as πp|ij. Combining the “link-path incidence matrix” δpl with the link costs, we obtain the path
costs:

Cijp = Σl Cl. δpl (3.21)

Because the choice of paths is deterministic, we cannot calculate the RoH at this level. In other
words,

∆S ≠ – ½ Sij Sp [(π′p|ij.T′ij + πp|ij.Tij). Sl δpl (C′l –Cl )] (3.22)

We may reasonably ask why the RoH is not valid in this case, given that it is typically legitimate
when a total travel matrix is segmented by mode . To give a simple example, if paths 1 and 2
have costs 20 and 30 respectively in the base, and 18 and 15 respectively in the "after" situation,
then the benefit cannot be calculated as

½ [ Q (20-18) + Q′ (30-15) ]

where Q is total flow on the best path in the before situation, and Q′ is total flow on the best path
in the after situation. The cost of path 2 in the base is irrelevant, as is the cost of path 1 in the
after situation. Effectively, the evaluation has to be done at a higher level, so that the correct
application of RoH is given as

½ [(Q0 + Q′)(20-15)] (3.23)

This second case has come about because the choice between alternatives is assumed to be non-

random (corresponding to the case of a logit model with scale parameter equal to ∞). In this
case, the costs of inferior alternatives are irrelevant. It may be noted that while All-or-Nothing
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assignment is an obvious case, the conclusion applies to (Deterministic) Equilibrium assignment
as well, in which all paths actually used must have the same minimum cost (for a given "user
group").

3.6 Partitioning the benefit

Having established the principle that the “true” surplus based on the demand curve is (generally)
acceptably approximated by the RoH, it then becomes attractive to “decompose” the surplus, in
various ways.  The most informative decomposition is by the components of “utility” or
generalised cost.

As an illustration, assume generalized cost (C) is expressed as a linear combination of money
cost (c) plus time required (t). Thus

    C  =  a.c + ß.t (3.24)

In this form, the units are arbitrary, and it is conventional to set one of the coefficients a or ß to
unity, while maintaining the ratio v = ß/a, where v is the value of time. If a is set to one, the
generalized cost is in money units,  while if ß is set to one, it is in time units. Of course, within
the demand model itself, this distinction is neutralized by the choice of scaling parameter (though
there is an issue for forecasting - see Gunn (1983))

The outcome is that the typical terms (T′? + T?).(C′? - C? ) = (T′? + T?). ∆C? in the RoH formula
decompose to:

a. (T′? + T?). ∆c? +  ß. (T′? + T?). ∆t?

so that we can assess how much of the benefit accrues in money savings and how much in time
savings. This decomposition into generalised cost components is not possible when using the
exact (composite cost) formulation.  Hence, for general reasons of clarity and disaggregation,
there is an interest in carrying out the calculation at the lowest level in the hierarchy where the
generalised costs are defined and hence, of course, the cost is not composite. From what was
said in the previous section it will be appreciated that it is, nonetheless, necessary to ensure that
the level. used is compatible with the validity of the RoH approximation.

The process of making the components of surplus explicit also opens up a further possibility, that
of weighting the components in a way which is believed to represent a social evaluation. This
has become a widespread practice, particularly in relation to values of time. In other words,
regardless of the way in which that the modeller has combined the components in the demand
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model, for evaluation purposes there is a presumption that a different, typically standard, weight
should be used. The implications are wide, and will be discussed in Section 3.8.

In considering what further disaggregations of the surplus are appropriate and useful, we need to
reflect on the scope of an Economic Evaluation, and the circumstances under which Cost-Benefit
Analysis (CBA) is normally applied. The rationale for CBA is to assist in decision making where
market forces do not apply or are inappropriate. Corporate bodies that can be assumed to follow
market rules (eg oil companies) can be omitted from the CBA, since they are assumed to be able
to adjust to any change in demand etc. through normal market processes. If, for example, bus
operators are considered to be acting under normal market conditions, then they are outside the
scope of CBA, and all costs and benefits for this mode must be excluded.

There is room for changes in definition here, but it is probably necessary to recognize the
following key "sectors": on the one hand, the "users" of the transport system (the people and
goods that move around), and on the other those parties who are involved in the supply,
regulation and financing of the system (essentially this consists of the transport operators, the
parking (and possibly a toll) authority, and finally Government). We use the term Government in
the widest sense, in its potential role as provider of highways, health services, subsidy, etc.. In
traditional terminology, these other parties are referred to as "non-travellers".

According to the scope of the Economic Evaluation, the key output is the net value of all costs
and benefits of the relevant parties. The question then arises as to what should be done about so-
called "transfer payments" between parties within the framework. Should these be explicitly
recognised, or should they be ignored, on the basis that they will net out in the final evaluation?

Within the field of UK urban transport evaluation in the 1980s, a practice developed whereby
travellers' money benefits tended to be ignored in the cost-benefit analysis of public transport
schemes. In particular, the result of a change in fares was argued to be that travellers incur a loss,
or gain, which is exactly compensated for by an increase, or reduction, in operators' revenue. In
such a case, it appears unnecessary to take this element of benefit into account. A similar
argument has been raised in respect of the tax elements in, for example, fuel prices.

However, this simplification is in fact only valid in restricted cases. In the general case it can be
shown that there are money benefits to travellers who change their behaviour which do not
cancel out "on both sides". There is in any case a more important principle involved: the benefits
to travellers should represent all the benefits associated with a given transport proposal. If a large
amount of the benefits are subsequently cancelled out by corresponding elements on the cost side
(non-travellers), this should of course be reflected in the final balance. Since fares changes
should be treated on a consistent basis with any other transport changes, it is essential to define



5

benefits in a way that does not prevent this. And we reiterate the point made earlier, that such
practice is in line with the true (integral) benefit formula, which does not indicate how money
benefits should be distinguished.

This approach also applies to the treatment of taxation, where the "transfer payments" are
between travellers and the Government. A pound saved in petrol represents a pound saved to the
traveller, regardless of the fact that much of the cost of petrol represents fuel tax. However, in the
final cost-benefit calculus, the corresponding loss to the Government needs to be offset against
the money benefit enjoyed by the traveller. The recommendation is therefore that both elements
should be distinguished and reported explicitly, rather than netted out from the start.

Strictly speaking, it is also necessary to make allowance for the different incidence of elements
of indirect taxation, such as VAT, fuel duty etc.: it is also conventional to make different
assumptions according to whether the travel is considered to be “leisure” (including the journey
to work) or “employers’ business”). In practice, this is a marginal correction, and likely to be
well inside the error margin of the calculations. Nevertheless, it has become conventional
practice to make the correction.

A correct treatment of taxation requires a clear definition of units and an analysis of the flow of
resources between sectors. A reasonable approach is to measure all benefits and costs net of any
indirect taxation which applies outside  the scope of the evaluation (ie, in the remaining part of
the normal market economy). For non-private sector travellers (ie travel made on behalf of
corporate bodies) the correction can be ignored, since (most) indirect taxes can be reclaimed. It is
therefore only necessary to adjust the benefits accruing to non-business travel to take account of
the average level of indirect taxation in the rest of the economy.

In passing, we should note that, inasfar as values of time are usually based directly on
willingness to pay calculations, these will be expressed in terms of "normal market economy”
units of currency, and therefore will also need to be adjusted, if the convention just set out is
adopted7.

A final form of partitioning is to return to the original arguments in Section 1 whereby S can be
decomposed into the elements W (total willingness to pay) and E (actual expenditure). Hence,

using the RoH approximation, the change in surplus ∆S can be written as:

                                                

7 In this respect, the UK Department for Transport has recently changed its practice. Previously benefits were

calculated in “factor costs”, with indirect taxation netted out: this is consistent with the convention outlined here.

However, since 1999, all benefits are given in market prices.
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∆S ≈ + ½ (T′ – T)(C′ + C) – [T′.C′  – T .C] (3.25)

(∆W)        –      (∆E)

Note that only the first term is an approximation: the change in expenditure can be exactly
calculated from the demand model outputs.

In setting out the overall incidence of money flows, this form of partitioning can be useful to
make explicit the nature of “transfer payments”. In the context of current UK practice, it has an
additional advantage in relation to “cost misperception”. It has been traditional to argue that car
travellers do not “perceive” the non-fuel costs of car operation (eg tyres, maintenance, wear and
tear etc), and therefore these costs should not enter the “willingness to pay” calculations.
Nevertheless, a change in expenditure will be experienced, and may also have tax implications,
so that it cannot be ignored. The current UK methodology is equivalent to omitting the non-fuel

costs from the ∆W calculation but including them in the ∆E calculation.

3.7 The attribution of benefits

There are numerous cautions within the literature about the disaggregation of the overall
consumer surplus measure. Thus, for example, Jones (1977) says: It may be noted that for
presentational purposes the over-all benefit measure can be disaggregated by types of benefit,
although these types of benefit should not be taken as a final measure of incidence". The general
principle is that while disaggregations of the total benefit may be indicative, only the total is
theoretically unambiguous.

The question about 'final incidence' referred to in the quotation from Jones is one of the reasons
for this caution. Transport investment may bring about a number of changes -for example, in
property prices -which are not directly related to travellers. In the first UK Value of Time report
(MVA et al, 1987), it is suggested that the reduction of overall transport costs may to a
considerable extent represent windfall gains to existing owners of land, given the relative
inflexibility of supply and demand in the urban housing market (para 4.13.15).

Clearly, the more a given change in transport cost can be confined, the more reasonable it is to
attribute benefits to specific groups. For instance, if a particular road was restricted in its access
to certain groups, then it would be reasonable to attribute the benefit of an improvement to those
groups. Correspondingly, the more we can clearly identify the users of a improved facility after
the improvement with those before the improvement, the more confident we can be in attributing
the benefits.
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The problems emerge when an improvement results in a substantial change in travel patterns. As
soon as we have more than two travel options, whether discussing mode, destination, route or
whatever, the logical attribution of benefit to 'changed' travellers depends on their previous
behaviour. A simple example of this is given in the Appendix, which demonstrates the basic
point that while the overall benefit calculation is independent of the details by which individuals
change between the before and after situation, the attribution of benefits to particular groups of
'changers' is not.

To this must be added the observation that even where current models provide a mechanism for
considering what kind of changes take place, very little credibility can be attached to such

estimates: the models provide estimates of Tijm and T′ijm but they do not attempt to describe the
details by which individuals or groups move between cells of these two matrices. Indeed, given
the evidence from panel surveys about the high degree of day-to-day variability in people's travel
behaviour, it would not be reasonable for them to do so.

A strong caveat must therefore be made against the disaggregation of benefits whenever there is
a significant proportion of travellers changing behaviour. What appears less objectionable is to
disaggregate the benefit by the source of the saving. Thus, a reduction in generalized cost on a
particular i-j-m link gives rise to an identifiable amount of benefit, using the standard RoH
formula. This precise amount of benefit does not, however, necessarily accrue to the final users
of the link. It clearly also fails to take account of benefits generated elsewhere due, for example,
to the relief of congestion on other links.

Despite all the above, it is accepted that there will be many instances when attempts will be made
to ‘trace the beneficiaries'. In particular, there will be a presumption that the benefits in respect of
a particular link or set of links do accrue to the users of those links. We can only repeat the
caveat that the extent to which this is acceptable depends crucially on the amount of changing
between different parts of the system.

3.8 “Re-engineering” the weights of the components of utility

As noted, in the practice of evaluation it is often decided to pre-specify the weights of
components, regardless of the assumptions made in the demand model. While there may be
compelling “political” reasons for doing this, it does lead to potential incompatibilities. In
particular, changing the weights interferes with the  composite cost calculation. Since, more or
less by definition, the composite cost is compatible with, and encapsulates, the demand changes
among the alternatives to which it relates, re-calculating the composite cost post hoc with the
revised weights is not an option.
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A particular case relates to the value of time, which is one of the most “visible” items in the
evaluation procedure. The adoption of “standard value” of non-working time8 for cost-benefit
analysis has been a feature of UK appraisal practice since the 1960s and a similar approach is
found in a number of other countries.  Two arguments have traditionally been advanced for using
a standard value.

• in principle, the same values for non-working time savings on all locations and modes
should be applied, irrespective of the willingness to pay of the particular group of
consumers who get the benefits;

• using a single standard value is a practical procedure to follow given the difficulty of
acquiring relevant market information (incomes etc.) on which case-specific values
would need to be based.

This practice has been widely criticised. For example, Sugden (1999) called for an end to the use
of the standard value of non-working time on the grounds that it is “incompatible with the logic
of CBA”.  It is useful to set out the argument in a formal way, drawing on work by Mackie et al
(2001).

Return to the social welfare function W  =  W (U1,  U2….Uq) discussed in Section 2.6. Now
consider a change in a particular travel opportunity whereby both time and cost change, by ∆ t
and ∆ c.  This results in a change in utilities ∆ Uq for each q and hence a change in overall
welfare ∆ W, given by

∆ W  ≈  Σq   
qU

W
∂
∂

  ∆ Uq  =  Σq  Ω q ∆ Uq (3.26)

where Ω q are the relative weights attached to the utility of the different groups q.

For small changes, it is acceptable to linearise the utility function so that, with an implied value

of time Vq  =  α q/λ q:

∆ Uq  =  α q t∆  +λ q c∆ (3.27)

Hence combining (3.26) and (3.27),

∆ W  =  Σq Ω q  (α q t∆  + λ q )c∆ (3.28)

                                                

8 for time savings in working time, a different approach is normally used, based on the value to the employer as

deduced from marginal productivity theory. This value is sometimes modified to account for other aspects of

working conditions while travelling, following the arguments of Hensher (1977).
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Note in passing that this implies that the values of time Vq are a separate matter from the set of
social weights to use, Ω q.  Although in practice these have often been run together, there is no
reason in principle to do so.  Moreover, the choice of welfare weights should come as a matter of
cross-sectoral Government policy, whereas the value of travel time savings will be a transport
specific matter.  There are therefore attractions in keeping them separate.

Now, let us consider some interesting cases.  If we assume that Ω q  = 1/λ q,  we imply that a unit
change in income bears equally on all q.  In this case, the social benefit is given as the sum of
individual willingness to pay for benefits.

∆ W  =  Σq  (Vq )ct ∆+∆ (3.29)

This is the Harberger approach to cost-benefit analysis – unweighted adding up of willingness to
pay (wtp).  Arguments for this are of the following kind:

• It is what happens with normal market commodities in a commercial appraisal context,
and in particular, it is how revenues and costs are typically treated in transport appraisal;

• If the existing income distribution is considered optimal, it is the optimal social
weighting scheme;

• Even if the existing income distribution is not considered optimal, it is not the business of
transport policy to put it right.

These are the arguments of those who see cost-benefit analysis as an analogue to commercial
appraisal, but accounting for external effects and consumer surplus as well as producer surplus.
But there are some difficulties concerning the treatment of safety and environmental impact
within such a framework.  The third argument is particularly weak, since if the income
distribution is sub-optimal, it is possible for public policy to take account of this at sector level
without explicitly trying to correct the income distribution.  Policy dimensions such as ‘social
exclusion’ make sense in this context.

In the wtp approach, Ω q  =1/λ q where λ q is the marginal utility of income for group q.  Since
we know that this declines with income, it follows that wtp weights in favour of the richer q.
Reflections such as this have led to the exposition by Galvez and Jara-Diaz (1998).  This argues
that the most attractive option is to set the Ω q factors equal to each other (e.g. unity) so that
individuals’ utility is weighted equally.  Relative to the willingness to pay approach this rescales
the benefits towards the lower income groups.
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One possible way of implementing the Galvez and Jara-Diaz model is to standardise on time
rather than income.  In other words, assume that a small change in travel time bears equally
heavily on utility terms on all groups q.  Then the benefit is given as the sum of individual time
equivalences and is in time units.

W∆   =  Σq  ( t∆  + 1/Vq ∆c) (3.30)

To convert this to money units for the CBA, we require a single value of time V which can be
considered equivalent to the standard value.  So then, in money terms,

W∆   =  Σq  (V ∆ t + 
qV

V
 ∆c) (3.31)

Here we are effectively saying that time savings/losses are equally weighted among the different
q but that costs are differentially weighted by the ratio of the standard value to the individual or
group value Vq.

Suppose for a moment that the cost term ∆c is zero.  This may be roughly considered to be the
case under which the standard value (originally termed “equity value” in the UK) was conceived
– to appraise time savings from road investment without direct payment.  The individual values
of time Vq do not enter the evaluation formula (except indirectly since V is a weighted average of
Vq), and the equity argument is directly reliant on the assumption that time savings are equally
weighted for all q.

But this could also easily be a poor assumption, even if perhaps preferable to assuming that cost
savings are equally weighted for all q.  Tastes could easily vary across q.  People on higher
incomes might tend to work more hours so that their marginal utility of non-work time might be
higher.  The old argument that “we all have twenty four hours a day available” is too general to
provide a rigorous defence of the single standard value of time.

Also, there is another difficulty.  Appraisal practice in Britain and elsewhere has been to use
neither (3.29) nor (3.31), but a mixture,

W∆   =  Σq  (V ∆ t + ∆ c) (3.32)

So, comparing with (3.29), time savings are rescaled by the ratio of V/Vq, but cost savings are
not rescaled.  This is inconsistent and has led to criticism.  As Pearce and Nash (1981) point out,

“This inconsistency could lead to misallocation of resources; for example a scheme which gives
the poor time savings at an increased money cost of travel could be selected in circumstances in
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which they would rather forgo the time savings for the sake of cheaper travel” [p 182].  A similar
example, but from the opposite end of the income spectrum is given by Sugden (1999), para 7.2.

From the perspective of principle, therefore, we may conclude that:

• The standard value of non-working time is an incomplete approach to social weighting
and introduces problems of inconsistency between time and costs;

• Specifically, it leads to the relativities between time and costs being different in
modelling and evaluation, and this introduces problems where users are paying for benefits
through fares or charges;

• The standard value relies on the strong assumption of equal marginal utility of time
across groups;

Ideally, appraisal should:

• Discover the willingness to pay for all the costs and benefits accruing to all relevant
social groups q;

• Use those values consistently in modelling and evaluation;

• Re-weight the costs and benefits according to some social weighting scheme which is
common across sectors.

The weighting scheme should apply consistently across all impacts (time, money, safety risk,
environment…).  There is no particular reason to expect that the outcome would be a social
value of time which is equal for all q.  We therefore conclude that the argument of principle for
the standard value of time falls.
In spite of this, on practical grounds it must be conceded that a full distributive weighting
approach to appraisal is very ambitious for most transport applications.  We can mention the
following difficulties:

• Obtaining the relevant data on the pattern of usage by income and social group q at the
scheme level;

• Defining the final incidence of costs and benefits to groups q – especially difficult for
working time and revenue effects;

• Treating the non-monetised elements in the appraisal consistently with the monetised
ones within the social weighting scheme;

• Agreeing the set of social weights.
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3.9 Practical Problems

In the previous section we developed a strong case for using the utility weights in the demand
model for assessing welfare changes for particular segments, and then facing up to the
distributional consequences of that - effectively a political re-weighting. Nevertheless, we
suspect that on practical grounds this will often be resisted, and that as a “second best” solution,
we may be forced to live with externally imposed weights on the components of utility. The
purpose of this section is to discuss the practical implications of the second best solution. A
particular issue is in the specification of generalised costs derived from networks.

As before, we have a demand matrix Tij, a set of links {l}, and appropriate formulae for deducing
the components of link cost. After carrying out the route choice calculations, we derive the
matrix of minimum (strictly, average) generalised cost between zones i and j:

Cij = Sl eijl Cl (3.33)

Typically, this matrix Cij, based on the route choice criterion underlying the formula for Cl will
be used for carrying out further (“higher”) demand calculations. However, if it is decided to re-
weight the components for the purpose of evaluation, we will in general have an alternative
"evaluation" version of the generalised cost, which we can write as Cu

l. 9

It follows logically that the appropriate cost matrix for evaluation is given as

Cu
ij = Sl eijl Cu

l (3.34)

where the paths are, as before, decided on the basis of a "behavioural" formula Cl, but the link
costs are subsequently calculated according to an "evaluation" formula.

Now if the formula for Cu
l is linear in the link cost components, for example

Cu
l =  a.tl + b.dl (3.35)

then the evaluation matrix Cu
ij may be constructed on the basis of the appropriate component

matrices: in this case, tij and dij. In other words, we can calculate

                                                

9 A similar approach might be required for the demand model if the route choice criterion was for some reason

different from the general definition of generalised cost used in the demand model. Although this is not

theoretically “respectable”, it is often done in practice.
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tij = Sl eijl tl (3.36)

and correspondingly dij, and then compute

Cu
ij =  a.tij + b.dij (3.37)

In practice, however, this is not usually done, largely, it appears, because of restrictions imposed
by assignment software.  When there is only a single path between any origin and destination,
the practical problems are slight. However, greater difficulty is encountered in cases of multiple
routes. The calculations presented in the equations above, which are based on the average times,
distances etc, by means of the eijl terms, can only be calculated if all the allocated paths are
known. But most assignment programs discard the paths once they have been used to assign (a
proportion of) the demand.

Hence, rather than calculate the generalised cost matrix as an average (Eq 3.33), it is taken as the
cost along the (current) minimum cost route. If we are using an “equilibrium” assignment and it
has adequately converged, the resulting matrix should be effectively identical. However, if the
component matrices tij and dij are taken, correspondingly, as  the matrices of time and distance
along the minimum cost route, they are likely to have quite different values from those using the
formula in (3.36).

In any case, with a non-linear formula for Cu
l this "component matrices" approach cannot be

used at all: the evaluation matrix must be calculated on the basis of Eq (3.34): in other words,
skimming the evaluation cost formula along the actual paths used. A good example of this is the
standard vehicle-operating cost formula

Xl = (a + b/vl + c.vl² ). dl  where v is the link speed10

The standard solution to equilibrium assignment of a fixed matrix Tij takes the results of
successive “all-or-nothing” assignments and combines them along the following lines. Define
e(n)

ijl as representing the minimum cost paths found at iteration n. At the start (iteration 0) we set
the link flows Q(0)

l to zero, and choose an appropriate set of link cost components (typically free-
flow), yielding link generalised costs C(0)

l. At each iteration we assign Tij to the  minimum cost
paths to give "auxiliary" flows

                                                

10 Note that although vl is given by dl/tl, it is not generally appropriate to write the formula in
matrix terms treating Vij as if it can be derived as dij/tij, though this is by no means always
respected in practice.
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F(n)
l = Si Sj Tij e(n)

ijl (3.38)

We then calculate "average" flows Q(n)
l using the formula

Q(n)
l = (1 - f (n)).Q(n-1)

l + f (n).F(n)
l (3.39)

where 0 ≤ f (n) ≤ 1, and f (1) = 1

The link costs are then updated based on Q(n)
l to produce new costs C(n)

l, and the process is
repeated until convergence is achieved on either C(n)

l or Q(n)
l.

Since Q(n)
l is of the form of a recurrence relation, it can be shown that

Q(n)
l  = Sr ?(r) F(r)

l   r = 1....n      (3.40)

where    ) - (1 .  = 1)+s-(nr-n=s

1=s

(r)(r) φΠφλ

so that Q(n)
l is a weighted average of the set of auxiliary flows {F(n)

l}.

This allows us to write the formula for the averaged flows at iteration n as:

Q(n)
l = Sr ?(r) Si Sj Tij e(r)

ijl   r = 1....n

or, changing the order of the summations,

Q(n)
l = Si Sj Tij Sr ?(r) e(r)

ijl   r = 1....n   (3.41)

From this it is clear that each cell of the matrix is distributed among the separate paths identified
in each iteration r according to the fractions ?(r). In line with the notation in Section 3.4, we write

eijl
n = Sr ?(r) e(r)

ijl   r = 1....n   (3.42)

where  eijl
n is "the proportion of the total travel between i and j Tij which uses link l", as

estimated after n iterations .

Now, by assumption, the costs C(n)
l associated with these flows are dependent entirely on the

levels of Q(n)
l. Hence, if we assumed the multi-routeing pattern implied by eijl

n, and loaded the
matrix Tij accordingly, we would obtain the same set of link costs, since the same flows Q(n)

l

would result.

Provided convergence is satisfactory, it should be the case that the average generalised cost over
the routes actually used, which we may write as

C *(n)
ij = Sr ?(r) Sl C(n)

l e(r)
ijl = Sl C(n)

l ε ijl
n (3.43)
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will be equal to C*(n)
ij, the current minimum cost at iteration n, thus satisfying the Wardrop

criterion. For general demand modelling, the Wardrop criterion ensures that the generalised cost
matrix is independent of the actual routes used and, as noted above, for ease of calculation we
would normally use C*(n)

ij. However, if the generalised cost criterion Cl is to be re-weighted for
evaluation purposes, ie using Cu

l instead, then it will not generally be the case that the same
evaluation cost will be found along each path.

Despite the computational attraction of obtaining the evaluation cost matrix Cu
ij merely by

“skimming” the evaluation generalised cost function Cu
l along the final set of paths e(n)

ijl, this is
unlikely to be a satisfactory approach, for two main reasons.

Firstly, if the matrix Tij was actually assigned to the paths e(n)
ijl, it would not produce the

equilibrium costs and flows: these require the averaging process taking explicit account of multi-
routeing. Secondly, the very process of equilibrium assignment aims to produce a number of
alternative paths through the network with the same minimum cost. As the process converges,
there will be more and more candidate paths, and the actual paths chosen by the all-or-nothing
assignment for iteration n will be an arbitrary selection, typically based on the details of the
minimum path algorithm. Inasfar as alternative paths imply very different combinations of the
link cost components, using the set from the final iteration could be quite misleading.

For these reasons, therefore, it would seem far more sensible to use the paths actually predicted

by the algorithm, represented by the array ε ijl
n. These are  compatible with the assignment of the

matrix Tij, in that they generate the equilibrium link flows and costs. Though the paths are not
guaranteed to be unique, even at convergence, the approach of using the paths actually generated
to calculate the evaluation matrix Cu

ij must be preferred to any other straightforward proposal.
While the extent to which this can be achieved will be software-dependent, the current trend
towards path-based algorithms will facilitate the approach being recommended here.

Stochastic assignment methods

It seems likely that rather more care is needed when multi-routeing is generated on stochastic
grounds. The feature of stochastic assignment is that not all travellers use the apparent minimum
cost route(s), and in line with discrete choice theory, the general assumption is that there is
variation in the perceived generalised costs.

In principle it would seem wrong to make use of either the minimum cost paths as delivered by
the algorithm (based on, say, the mean generalised cost function) or the actual routes predicted
by the stochastic algorithm. From a demand point of view, it will be appropriate to make use of a
composite cost formulation, effectively incorporating the stochastic effects. It is much less clear
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what to do about the evaluation matrix, assuming that a different Cu
l function is considered

appropriate.

In practice, using the average cost over the routes actually used (as with the non-stochastic
equilibrium assignment above) may be acceptable in many cases. However, it is likely to lead to
problems if there are major shifts in route choice, and a fortiori in the case of a new link leading
to new routeing possibilities.

3.10Other practical requirements

We have concentrated entirely on user benefits, which is certainly the item which relates most
directly to modelling, as well as involving the greatest level of theoretical complexity.
Nevertheless, it is appropriate to note that other considerations apply to carrying out a cost-
benefit analysis, and although these are largely uncontroversial, they may give rise to practical
difficulties.

In addition to user benefits, we are also interested in:

• • value of total resources consumed,

• • change in financial position of non-traveller groups.

It is worth noting that the estimates associated with the capital costs of infrastructure schemes are
subject to considerable uncertainty. In addition, it has to be recognised that there are items that
cannot easily be included in the CBA, which are no less important for that reason: this applies in
particular to environmental effects. It is therefore important to avoid forms of presentation which
increase the chances that the non-quantifiable elements are neglected.

Economic evaluation has mainly been applied to highway investment, usually with the implicit
assumption that no direct user charge will be levied. However, for public transport, an essential
element in the 'scheme' is the level of fare which it is proposed to charge. The costs and benefits
will of course vary according to the level of fare proposed. An identical argument applies to the
case of tolled roads. In addition, for public transport, the proposed level of service has an
important effect on demand, and on operating costs.

As general practice, therefore, it is important to relate the evaluation of a proposed 'scheme' to
the full set of policy assumptions associated with it. A new rail scheme, for example, cannot be
evaluated without explicit reference to the proposed frequency of service and the fares to be
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charged. It should also be appreciated that nothing restricts the application of the CBA to capital
schemes: it is equally appropriate for the testing of fares policy or changes in the level of service
frequency etc.

There are a number of questions relating to units which do not affect the nature  of the
presentation of the results but are essential to interpreting them correctly. The main questions
are:

• • the year to which the price levels relate

• • the period to which the demand forecasts relate (eg whole day, peak hour etc.)

• • the year to which the demand forecasts relate

• • whether the results have been factored up to a larger period (for example, a full
year)

• • whether the results for several years have been combined, using appropriate growth
and discount rates

All these assumptions need to be made clear.

Provision of output on an annual basis for a forecast year means that a single year evaluation can
be carried out for that year on the basis of the information provided and a conversion of the
capital cost into annual terms using a standard amortization formula. However, it is more usual to
provide all quantities as Present Values, using Discounted Cash Flow (DCF) techniques over a
time horizon of, say, 30 years. To carry out proper Present Value calculations requires a number
of further assumptions which we briefly note.

Difficulty chiefly arises in estimating the stream of benefits, which will be affected by:

• • changes in total levels of travel (demographic factors etc.)

• • changes in values of time and operating costs (rising incomes, fuel prices)

• • changes in modal propensities (car ownership levels)

In the urban strategic context it is largely this last item which causes problems: with increasing
car ownership, we can expect the modal choice to become more weighted against public
transport even if the quality of service remains unchanged. In practice, of course, declining
patronage is likely to lead to reduced services for financial reasons.
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4 Current Topics in Evaluation

4.1 Introduction

In this Chapter we introduce a number of topics where the resolution is currently uncertain: these
are generally issues which are either ignored in practice, or where the existing practice is in need
of substantial development.

The first topic we deal with, in Section 4.2, is that of “new modes”, or, more generally, a change
in the set of available travel opportunities. This is a particular instance where the RoH breaks
down, while at the same time, partly because of the inherent demand modelling problems, there
is a reluctance among practitioners to adopt the composite cost approach.

In Section 4.3, we turn our attention to Land-use changes, and the problems which they cause for
evaluation. The standard application of the RoH dealing with generalised cost changes implicitly
assumes that land-use is fixed.

Although much of the methodology for land-use evaluation has centred on the “gravity model”,
the particular case of the “doubly constrained” model raises further issues about potential
“shadow prices”, and some discussion is provided in Section 4.4.

In Section 4.5, we turn to the vexed question of Income effects, which has been a dominant topic
in the work of Jara-Diaz, and has recently been taken up in contributions by McFadden and
Karlström. This leads naturally on to questions of aggregation, and some further remarks are
made on this in Section 4.6.

4.2 Dealing with New Travel Opportunities

The introduction of ‘new modes’ (or, more generally, new alternatives within a discrete choice
framework) remains a difficult area where little progress has been made.  A review of the general
issues is given in Bates (1992): the problems relate both to demand modelling and evaluation.
For evaluation, the problems occur when an option which is available in the before case is not
available in the after case, or vice versa.

For the sake of illustration, we can revert to the simple logit example used in Section 3.2, where
we had five choices k, Total demand T of 1000, and we assume ? = .02. Reverting, for
simplicity, to the non-elastic example, suppose that option 5 is removed in the after case. The
results are then:
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Table 3

Base Strategy

Option k costs Ck demand
Tk

costs C′k demand
T′k

∆S approx integral

1 20 225 15 287 –½(287+225).
(15–20 )

1280

2 25 204 22 250 –½(250+204). (22
–25)

  681

3 45 137 35 193 –½(193+137).
(35– 45)

1650

4 15 249 18 271 –½(271+249). (18
–15)

–780

5 30 185 ∞ 0 –½(0+185). (∞ -
30)

      ?

* (Σ) –54.48 1000 –47.37 1000 1000. (–54.48 +
47.37)

2831... –7108

Thus, according to the exact formula, consumer surplus has decreased by 7108. As we shall see,
this change has been largely brought about by the removal of option 5.

For the first four options, the RoH formula gives a total of 2831, but the term for the fifth option
cannot be evaluated. Although we could assume a finite value of the cost for option 5, the
resulting estimate of consumer surplus is far too sensitive to the value assumed. Neither can we
ignore the contribution of option 5, since the composite cost calculation shows that the true value
for benefit is a large negative number.

The conclusion is, as before, that the RoH cannot be used in those instances where large changes
in cost take place, and this is always the case when the availability of options changes11. The
problem can, as usual, be circumvented by returning to the exact formula for the total benefit at
some level above. The benefit associated with the new mode can then in principle be calculated
by subtracting the benefits for all other modes, calculated by the standard RoH formula. It must

                                                

11 unless the options which are removed capture a negligible market share when they are in fact available
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be noted, however, that, as is always the case with the composite cost approach,  this estimate of
new mode benefit will not be broken down into components (for example, time and money). In
the example, the benefit associated with the removal of option 5 can be calculated as the
difference between the total benefit (–7108) and the existing mode benefit (+2831), giving –
9939.

In terms of demand modelling, the first question to be addressed is: under what circumstances
should an alternative be recognised as a ‘new’ option?  IN the case of mode, this relates both to
the similarity of and key differences between alternatives and the identification of modal
constants within the utility function.  A further question is the position of a new mode within the
model hierarchy: even if we are confident about measuring utility for the new mode, there is
considerable variation in the market share prediction depending on the hierarchical assumptions.
But in reality, we cannot be in any way confident about the utility of the new mode because a
major element in the utility of existing modes is the modal constant. We therefore need to
examine the possibilities of estimating such a constant for the new mode.

There are three methods for consideration:

• revealed preference studies in situations where the new mode has actually been introduced;

• attempting to ‘decompose’ existing modal constants into attribute effects and thereby to
deduce the likely value for the new mode; and

• stated preference approaches which describe the new mode to existing travellers.

All these methods involve considerable difficulty. In principle, the revealed preference approach
offers the most reliable way forward, since, as well as providing a direct estimate of the modal
constant for the new mode, it also provides evidence about the appropriate hierarchical structure,
as discussed earlier.  However, there are major impediments.  In the first place the new mode
may not actually have been introduced anywhere, or at least not in a form sufficiently close to
the proposed introduction to offer reasonable guidance.  Even if it has been introduced, the
expense of surveying in a different area may be prohibitive.  In addition, there are well known
requirements for successful revealed preference studies of discrete choice (in particular those
relating to the proportion of ‘genuine’ choices relative to cases where one alternative is clearly
dominant) which require careful design and are not easy to satisfy. Finally, even after
overcoming these problems, the fundamental issue remains of the interpretation of the modal
constant and its scope for transferability.

The safest approach is to define as a ‘reference’ mode that existing mode considered to be ‘most
similar’ to the new mode.  As a default, the constant for the new mode is assumed to be the same
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as that for the reference mode - any departures from this would need to be specifically justified
such as a 5 minute advantage on grounds of comfort, reliability, image and so on.

Nonetheless, the fact that a typical outcome is that a substantial proportion of the benefits is
associated with the constant term (more strictly, the provision of a new alternative which is
conceptually distinct from other existing alternatives) has made practitioners reluctant to accept
the theoretical outcome, especially in cases where the new mode does not in fact offer substantial
improvements in terms of time and money benefits.

4.3 Land-use changes12

As noted earlier, the development of the logsum formula makes it clear that all the changes in
“cost” which affect demand must be taken into account in the approximation formula. In
particular, if there is an implied change in the “destination” utility, then a failure to include this to
include this will invalidate the approximation. It is because such changes are typically associated
with land-use effects that the convention has developed that the RoH approximation is only valid
when the land-use is constant. More strictly, however, we can deduce that a rule of a half benefit
calculation based only on transport costs is only valid when the land-use is constant.

In this section we seek to go beyond this restriction, to allow for land-use changes. This is an
area which has been relatively little explored in recent years, though a notable exception is the
work of Martinez (see, for example, Martinez & Araya, 1998). However, the work reported here
has been developed independently of Martinez’ contribution: at the time of writing, it is not clear
whether the two approaches can be reconciled.

Although there may be practical difficulties, as we discuss later, the rule of a half will in general
remain a valid approximation, under the usual conditions relating to linearisation of the demand
curve, even when there are land-use changes, provided that the costs associated with the land-
use change are included. The key point is that

• if only transport costs are changing, with no land-use changes, then changes in Cijmt

account for all the changes in Tijmt and there are no other transport users’ benefits to
consider;

                                                

12 Much of the work in this section is the result of a recent collaboration with David Simmonds, and his contribution

is hereby gratefully acknowledged
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• if on the other hand land-use changes are occurring, whether induced by the transport
cost or due to other effects, then factors other than the changes in the Cijmt may be
affecting the Tijmt and the influence of those other factors on user benefits must be
considered.

The rest of this section deals with the latter case, where land-uses are changing. To simplify the
exposition, we omit any discussion of mode or time of day choice. Although in practice the
demand Tij and costs Cij may need to be “composited” over lower level of choice, we ignore this
in the notation.

We assume for convenience that we are dealing only with home-based travel, with all travel
being “produced” at home and being “attracted” somewhere else. If we first consider the choice
of “attraction” zone (conventionally “destination choice”) by means of the standard logit choice
model:

( )
( )∑ λ−

λ−
=

j
ij

D
j

ij
D

j
ij C.exp.W

C.exp.W
p (4.1)

where Wj is the measure of the (relative) attractiveness of zone j, then the composite cost or
expected utility of all trips from production zone i is given by

( )∑ λ−
λ
−

=∗
j

ij
D

jDi C.exp.WlnC
1

  (4.2)

The values of Wj are related to the relative utility (net of any terminal costs) of reaching or
visiting destination j.  They can be transformed into units of generalised cost by defining

( )jDj Ww ln
1

λ
=   or  ( )j

D
j wW .exp λ=   (4.3)

Substituting, we obtain

        [ ]( )∑ −λ
λ−

= ijj
D

D*i CwexplnC
1

(4.4)

The benefit of changes in transport cost and zonal attraction can now be evaluated -exactly by
the change in composite cost if the origin totals are unchanged, or more generally by the Rule of
a Half approximation. However, because we have now allowed for a change in the destination
utility, we have gone beyond the “pure transport” case, and we can write, for the RoH version:
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(4.5)

This suggests that we can estimate the benefits which arise in transport and in relative
attractiveness by

converting relative attractiveness into units of generalised cost;

carrying out a rule of a half calculation using the changes in converted attractiveness and
the numbers of trips attracted;

adding the result of step 2 to that of conventional rule of a half calculation on changes in
transport generalised cost and the number of trips.

For convenience we define the change in surplus associated specifically with changes in

attraction as )Att(S∆   and the corresponding term based on transport  generalised cost as

)Tp(S∆ , so that )()( AttSTpSS ∆+∆=∆   (4.6)

It is critical to note, however, that the calculations have (once again) been partitioned for

convenience: it is not the case that the )(TpS∆ term represents that part of the benefit “due to

transport” nor that )(AttS∆ represents the benefit due to the destination land-use. The total

transport demand reflects both changes.

As our terminology tries to emphasise, it is important to consider all this in terms of production –
attraction matrices rather than origin – destination matrices. For conformity the Cij terms should

also be defined on this basis. Although the transport term )(TS∆ will still be valid if calculated

on an O-D basis, the land-use term )(AttS∆ will not, and confusion is likely to arise if the

conventions are different.

Further thought needs to be given to the treatment of trips not modelled on a production –
attraction basis, and, related to this, the implications of modelling more complex tours.

We must also consider the possible benefit associated with changes in (residential) location, i.e.
travellers changing the zone in which they produce trips.  Suppose again that we use a logit
model to predict residential location, so that
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where Zi is related to the utility of locating in zone i, exclusive of the expected (dis-) utility of

travel, and, again, net of “terminal costs” (eg rent)13
i, and λL is the coefficient for production

zone (eg residential) choice. The expected utility of location is given analogously by

( )∑ λ−
λ

= ∗∗∗
i

i
L

iL C.exp.ZlnC
1

(4.8)

Following the same procedure as for attractions, we define

( )iLi Zz ln
1
λ

= (4.9)

obtaining

[ ]( )∑ −λ
λ−

= ∗∗∗
i

ii
L

L CzexplnC
1

  (4.10)

By defining analogously the change in “location surplus” as

( )( )∑ −′+′=∆
i

ii*i*i zzTT)(S
2
1

Prd

the overall benefit of change in transport, attraction and production-zone location is now given
by

)Prd(S)Att(S)Tp(SS ∆+∆+∆=∆ (4.11)

The proviso about not interpreting the partitioning into components too literally applies in this
case as well.

This suggests that we can in principle obtain a complete evaluation of user benefits, including
those that occur from changes in location, by deducing the net change in origin (location) utility,
over and above that due to transport and attraction changes, which explains the predicted

                                                

13 Note that if one tried to implement this, one would have to address the problem of expressing Zi in appropriate

units, probably per trip.
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changes in location, and carrying out an additional set of rule-of-one-half calculations. It is not
necessary that the location choice process should be of the form assumed in (18); providing the
probability of locating at i is in equilibrium with Ci*, and we can assign an appropriate value to

Lλ− , then in theory we can deduce a set of Zi.

One approach to evaluation of user benefits in land-use/transport planning is therefore to add to
the conventional transport benefits

an evaluation of changes in attraction, and

an evaluation of  changes in location,

both measured in terms of transport generalised cost and, if necessary, deduced from the
otherwise unexplained changes in travel patterns. The attraction and location benefits will be
measures of net benefit to users.

4.4 Constraints in evaluation – shadow prices

The exposition in the previous section assumed that the “costs” faced by travellers, including the
attraction and production components, were the appropriate values to use. However, in some
cases there will be constraints present, and these are often treated as shadow prices. It therefore
needs to be discussed how these impact on the evaluation.

The most discussed case in the transport modelling field is that of the doubly constrained
distribution model, and there are various alternative interpretations of this. We will begin with a
particular interpretation which builds on the discussion so far, and then attempt to show how the
same conclusions apply to the standard interpretation.

In line with the earlier discussion, the singly-constrained distribution model can be interpreted as
a destination choice model in which the total trips from each origin i were fixed at Ti*., with

ijC as the (possibly composite) transport cost of reaching j from i and wj as the inherent

destination utility (in cost units).  Such a model can also be embedded in a higher level model for
the choice of origin (residence), postulating an inherent origin utility of zi (again, in cost units).

The product of pi and the conditional destination choice pj|i can then be regarded as a distribution
model assuming a fixed total of trips T**.
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This structure is hierarchical (assuming DL λλ < ). However, transport models usually assume
(implicitly) that the two parameters are equal. Under these circumstances we obtain the
unconstrained “gravity” model with negative exponential “deterrence function”:

Tij = T**  pij = T** 
( )
( )∑ −+λ

−+λ

ij
ijji

D
ijji

D

Cwz.(exp

Cwz.(exp
(4.12)

The gravity model is more usually written in the form:

Tij = Ai Oi Bj Dj exp (−λD Cij) (4.13)

essentially consisting of an origin factor, a destination factor, and an “interaction” term.

If we now allow for constraints on the number of origins and destinations in each zone, it is well-
known that this can be represented mathematically by modifying the values of zi, wj. However,
since we wish to keep open the possibility of changing the intrinsic utilities, we will not do this,
but follow the general approach of Neuburger (1971) in dealing with shadow prices. We define

ρi as the origin shadow price and σj as the destination shadow price. In the unconstrained case,
these are both identically equal to zero.

In the constrained case, however, the doubly constrained “gravity” model with negative
exponential “deterrence function” can be represented as:

Tij = T** ijp~  = T** 
( )
( )∑ −σ+ρ++λ

−σ+ρ++λ

ij
ijjiji

D
ijjiji

D

Cwz.(exp

Cwz.(exp
(4.14)

where the symbol ijp~  is used to denote the constrained model.

If we now define Hij as:

Hij = λD [zi + wj + ρi +σj – Cij] (4.15)

then Tij = T** . ijp~   = T** . exp (Hij)/Σrs exp (Hrs) (4.16)

Defining for convenience the “composite” H** by the usual “logsum” formulation:

exp (H**) = Σrs exp (Hrs) (4.17)

allows us to write
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ijp~  = exp (Hij−H**) (4.18)

For this to be equivalent to Eq (4.13) we must have

exp (Hij) = [exp (H**)/T**]Ai Oi Bj Dj exp (–λDCij) (4.19)

Taking logs, this implies that

λD [zi + wj + ρi +σj] = H** + ln [(1/T**) Ai Oi Bj Dj] (4.20)

Although, as is well-known, there is an element of indeterminacy here, it is clear that values of zi

and wj, ρi and σj can be chosen to make the two formulations equivalent. Suppose we set:

 λD [zi + ρi] = ln [Ai Oi] (4.21a)

λD [wj +σj] = ln [Bj Dj] (4.21b)

Then exp Hij = Ai Oi Bj Dj exp (–λDCij) = Tij so that exp H** = T**.

One level of indeterminacy relates to the balancing factors Ai and Bj. Multiplying each value of
Ai by an arbitrary x and dividing each Bj by the same x will have no effect on the outcome. This

means that each term [zi + ρi] may have an arbitrary constant ω added, and each term [wj +σj] the
same constant subtracted. However, provided that these terms always appear additively, the
effect will cancel out.

A second, associated, level of indeterminacy relates to the overall H**. Suppose now we merely

add ω to each term [zi + ρi] as defined, but do not subtract it from the corresponding terms [wj

+σj]. Then we will have:

exp Hij = exp (ω) Ai Oi Bj Dj exp (–λDCij) = exp (ω) Tij

Hence exp H** = exp (ω) T**, and H** = ln (T**) + ω

The upshot is that the term [λD (zi + wj + ρi +σj) – H**] is uniquely defined.

For convenience, we write Gij = zi + wj – Cij (4.22)

as the generalised utility attributable to the origin and destination utility and the cost between
them. We can re-write

Hij =  λD [Gij + ρi +σj] (4.23)
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Taking now the differential of H**, we have

dH**

= Σij λD (1/ Σrs exp [λD (Grs + ρr +σs)]). exp [λD (Gij + ρi +σj)]. (dGij + dρi + dσj)

= Σij λD pij. (dGij + dρi +dσj ) 4.24)

Provided Green’s theorem relating to the symmetry of the Jacobian is satisfied (which applies
straightforwardly in this case), we can therefore evaluate H** as the line integral with respect to
the elements of the matrix G:

H** =  λD ∫
∂

σ+ρ∂
∞−

G
dG

G
p

][
.~T  + λD ∫

∞−

G
dGp .~T   +constant. (4.25)

Note that the shadow price Jacobians are non-zero, since the values of the shadow prices will be
affected if the costs change or origin and destination utilities change. There is no general

functional relationship between the elements c, z and w, so that the integral of p~ with respect to

G can be evaluated as the sum of the integrals with respect to the component elements14.

Hence, in the general constrained case, the value of H** can be written:

H** =  λD ∫
∞−

v
dzp .~T   +λD ∫

∞−

w
dwp .~T   −λD ∫

∞−

c
dcp .~T  + λD ∫

∂
σ+ρ∂

∞−

G
dG

G
p

][
.~T  +constant

 (4.26)

The overall Consumer Surplus per trip for a “representative traveller” CSRT at a given level of
the vi, wj and cij elements can be written as

 −λD ∫
∞−

c
dcp .~T  +λD ∫

∞−

v
dzp .~T  +λD ∫

∞−

w
dwp .~T

and thus, expressed in cost units, is given (up to an indeterminate constant) by

1/λD H** − ∫
∂

σ+ρ∂
∞−

G
dG

G
p

][
.~T (4.27)

                                                

14 though the incorporation of explicit transport impacts on land-use may lead to a more complex treatment
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Note therefore that, in general, 1/λD H** does not represent the consumer surplus – it must be
adjusted for the contribution of the constraints. This is consistent with the conclusion of Williams

and Senior (1978) and Neuburger & Wilcox (1976). If the constraints are not present, then ρ  and

σ are zero, and no adjustment is required.

We can simplify the Jacobian integral ∫
∂

σ+ρ∂
∞−

G
dG

G
p

][
.~T . The integrand is

∑ ∑
∂

σ+ρ∂

ij rs
rs

rs

]ji
ij dG

G
[

p~ =   ∑ ∑ 







∂

σ∂
+

∂
ρ∂

ij rs
rs

rs

j

rs

i
ij dG

GG
p~

which can be written as:

∑ ∑ 

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G
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G
p~ (4.28)

Hence, the summations over i and j can be taken outside the integrals. Note that for the doubly

constrained model, ρi and σj are dependent on the entire  matrix c and the vectors v and w, not
merely the related rows or columns.

Hence we obtain:

∑ ∫ σ+∑ ∫ ρ=∑ ∫
∂

σ∂
+∑ ∫

∂
ρ∂

=∫
∂

σ+ρ∂ σ

∞−

ρ

∞−∞−∞−∞− j
jj*

i
i*i

j

j
j*

i

i
*i

T p~p~p~p~
][

.~ dd
GGG

dG
G

dG
G

dG
G

p

= Σi pi* ρi  + Σj pj* σj (4.29)

Note that this can be written as Σij pij [ρi  +  σj], and can be viewed as the “shadow expenditure”
per trip.

Thus the consumer surplus for a “representative traveller” may be written

CSRT = 1/λD H** − ∫
∂

σ+ρ∂
∞−

G
dG

G
p

][
.~T  = 1/λD H** − Σij ijp~  [ρi  +  σj] (4.30)

and the total Consumer surplus, given a constant T**, is
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S = T**.CSRT = 1/λD Σij Tij H**  − Σij Tij [ρi  +  σj]

We can substitute for H** (from Eq 4.18) noting that

H** – Hij = H** – λD (Gij + [ρi  +  σj]) = – ln ( ijp~ ),

so that

S = Σij Tij (Gij – 1/λD ln ( ijp~ )) (4.31)

We noted earlier that the total area under the demand curve, W, is the sum of S and an

“expenditure” or “consumption” term E. It can be shown that the term Σij Tij Gij (which is

negative in transport cost terms) is the (negative) consumption term, while the term – 1/λD Σij Tij

ln ( ijp~ ) represents W. Hence, as usual, when we are comparing two situations, the measure of

benefit, ∆S, can be calculated as ∆W – ∆E.

Now consider a general change brought about by G → G′, involving a change either or both of

transport costs (C → C′) and land-use effects (z → z′ and/or w → w′). Assume that constraints
continue to apply, but not necessarily with the same values. As a result we obtain a new demand

T′ij and a new set of shadow prices ρ′i  +  σ′j.

The term ∆E is straightforwardly calculated as:

∆E = (T′.G′ –  T.G)

      =  Σij (T′ij. ( c′ij – [z′i + w′j ] ) – Tij. ( cij– [zi + wj])) (4.32)

NB This excludes the contribution from the shadow prices.

When T** does not change (ie T′** = T**), then ∆W is given exactly by:

∆W = – 1/λD [Σij T′ij ln ( ij
~′p ) –Σij Tij ln ( ijp~ )] (4.33)

However, this formula is not valid if T′** ≠ T**, because we need to take account of the shape of

the (overall) demand curve between T** and T′**.

In this more general case, we can, as before, use the RoH approach to approximate the change in
W, giving:

         ∆W ≈ ½ Σij (T′ij – Tij).( c′ij – [z′i + w′j + ρ′i +σ′j ]+ cij– [zi + wj + ρi +σj ]) (4.34)
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From this we deduct the change in “expenditure” ∆E  as in Eq (4.32). Quite generally, therefore,
provided the linear approximation is appropriate, we can calculate the overall change in transport
and land-use benefits as:

∆S ≈ ½ Σij (T′ij – Tij).( c′ij – [z′i + w′j + ρ′i +σ′j ]+ cij– [zi + wj + ρi +σj ])

– Σij (T′ij. ( c′ij – [z′i + w′j ] ) – Tij. ( cij– [zi + wj])) (4.35)

By the usual algebraic re-arrangement, we can write this in two alternative forms:

a)  –½ Σij (T′ij + Tij).{( c′ij – [z′i + w′j + ρ′i +σ′j ]) – (cij– [zi + wj + ρi +σj ])}

– Σij (T′ij. (ρ′i +σ′j) – Tij. (ρi +σj)) (4.36a)

b) –½ Σij (T′ij + Tij).{( c′ij – [z′i + w′j ]) – (cij– [zi + wj])}

– ½ Σij (T′ij – Tij).( ρ′i +σ′j + ρi +σj ) (4.36b)

Form a) applies the RoH formula to all cost/utility elements including the shadow costs, but then
has to correct the result for the “shadow expenditure”: this is commensurate with the earlier
discussion about H**.  Form b) applies the rule of a half to the “true” cost elements (the

components of G), and has to correct with a ∆W RoH formula involving only the shadow prices.

We can now note the following:

a If there are no changes in the origin and destination utilities, then there is no contribution to
the benefits from these terms;

b If the origin and destination constraints are unchanged, then from formula b) it can be seen

that the shadow price contributions vanish. This is because they only occur in the second (∆W)

term, and the ρi terms are constant over j, while the σj are constant over i. Hence this term can be
written:

– ½ Σi (T′i* – Ti*).( ρ′i + ρi)  –½ Σj (T′*j – T*j).( σ′j +σj ) = 0

since (T’i* = Ti*), (T’*j = T*j) ∀ i,j

A variant of this approach is set out by Neuburger (1971), which concludes that because of the

constraints and the assumption of no change in origin and destination utilities, ∆S is given by the
standard rule of a half.
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Alternatively, in the simpler case where only the transport costs change, we can return to the
earlier general formula:

S = Σij Tij (Gij – 1/λD ln (pij)) (4.37)

and substitute for ln (pij) = ln [(1/T**) Ai Oi Bj Dj] –λD Gij , so that

S = – 1/λD Σij Tij (ln [(1/T**) Ai Oi Bj Dj]) (4.38)

If the constraints continue to apply, the quantities Oi, Dj and T** will not change, and this can be
used to give:

∆S = –1/λD [Σi Oi ln (A′i/Ai) + Σj Dj ln (B′j/Bj)]

which corresponds with the result by Williams & Senior (1978): the change in user benefit can
be obtained from the changes in the “balancing” factors. Note, however, that if the constraints
change, so that, while still constrained, the values of Oi, Dj do not necessarily remain constant,
then a different result is obtained. The Williams & Senior result assumes that the constraints
remain the same.

In the more general case, we can always evaluate the first term in formula (4.36b) as we know c,
v, and w in the two alternative scenarios. In the case where the constraints are not equal, we have

to deal explicitly with the terms [ρi +σj] in the two scenarios. From the earlier equations (4.21a)
and (4.21b), we have:

λD [zi + ρi + wj +σj] = ln [Ai Oi Bj Dj]

Since we know v and w, we can estimate the required values for [ρi +σj] making use of the
balancing factors in the doubly constrained procedure.

The general approach is well summarised by Neuburger & Wilcox (1976):

either

The surplus function .. for the unconstrained case [is].. used to evaluate surplus, but with the
shadow prices added to the actual prices... the change in shadow price revenue [is] added to
arrive at user benefits

or



33

..the shadow prices are added to the [costs in the rule of a half] and the shadow price revenue is
added....[s] ince [it] is not actual expenditure

In the case of the doubly constrained model, therefore, there is no need to correct for the shadow
prices if the rule of a half is used, provided the constraints do not change and the origin and
destination utilities are kept constant. However, this is a special case of a wider evaluation result.

Note also that there is no mathematical way to distinguish between the shadow prices and the
intrinsic utilities. If the constraints remain the same, then a change in the intrinsic utilities v and
w will have no effect on the final constrained trip pattern.

4.5 Income effects

We have emphasised throughout that the theory applying to welfare measures is greatly
simplified by the assumption of a constant marginal utility of income, and that the “linear in
income” formulation for the indirect utilities used in most transport models is compatible with
this assumption. In this section, we consider some of the implications when this assumption is
not considered appropriate.

McFadden (1999) has investigated the computation of the average Compensating Variation
when indirect utility is non-linear in income. As well as developing a theoretical treatment,
which involves considerable complexity, he shows with a simple example that the impact of non-
linearity can be severe, especially (as might be expected) when price or quality changes are large.
He also provides computable bounds on the average CV which in some cases may deliver
sufficient accuracy to be directly usable. He concludes that “an analytical solution is generally
unavailable”, and outlines a simulation approach for the practical calculation.

In an impressive contribution, Karlström (2001) clarifies some of the underlying difficulties, as
well as illustrating how an exact solution can be obtained when the random utility model is of
the GEV (“Generalised Extreme Value”) type, based on an earlier paper (Karlström (1998)). He
notes that the existence of the problem has been recognised for some time, and that various
approximations have been proposed (eg Jara-Diaz & Videla (1990)). Effectively, the problem
stems from the fact that “the compensation … itself will affect the choice probabilities when the
marginal utility of money is not constant”.

Karlström is able to show that the “compensated choice probability” pc
i(µ) can be calculated in

terms of the model assumptions, and implies “the probability that an individual will choose i

before and after being compensated” with income µ. Hence he derives an exact formula for the
expected income required to restore the base level of utility, given as:
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Being a one-dimensional integral, this is quite tractable for cases where the compensated
probability can be directly evaluated (close form), as applies to the GEV model.

Thus, for the class of GEV discrete choice models, a exact solution for the CV is available even
when the AIRUM condition does not apply.

4.6 Aggregation (again)

Although the treatment outlined in the previous section is perfectly general, it is important to
distinguish two separate effects, which are in danger of being confounded in the theoretical
literature. The issue relates to the nature of the non-constancy of the marginal utility of income.

It has generally been argued that for a given individual, the impact of any practical change in
transport conditions is unlikely to have a significant impact on income (see eg Glaister, 1981). In
this case, the straightforward (Marshallian) consumer surplus calculation will be acceptable at an
individual level, and the problem becomes essentially an aggregation issue. Against this, the
considerable corpus of work by Jara-Diaz and associates (eg Jara-Diaz & Videla, 1989) has
made a strong case that the assumption of constant marginal utility of income is not appropriate
in Third World conditions, where a substantial proportion of expenditure may be required for the
journey to work. In such cases, the Karlström formulation has direct application.

In terms of interpersonal comparisons, however, we should expect, as a default presupposition,
to find income variation in terms of willingness to pay for transport improvements. An obvious
case is the so-called “value of time” - ie the willingness to pay for a unit change in travel time,
where there is now a wealth of evidence relating to a positive relationship between the value of
time and income. Indeed, it would be reasonable to conjecture that where income effects are not
found, it is probably because the sample size is insufficiently large to reveal it.

This brings us back to the question of the “representative consumer”. It is of some passing
interest that questions have been raised as to whether Gorman, in setting out this concept, was
trying to suggest a theoretically acceptable simplification or, on the contrary, making it clear that
the conditions were so severe that they were unlikely to be satisfied! If there is no representative
consumer, then we are forced to confront the questions relating to the social welfare function -
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explicitly, the weights to be allocated to different members or groups of the population -
discussed in Sections 2.6 and 3.8. On practical grounds, it is likely that this will be done on the
basis of relatively coarse assumptions.

It was noted in Section 2.7, while recalling McFadden’s views on taste variation in the utility
function, that as long as the AIRUM form was maintained, additional dummy variables could be
added into the indirect utility functions to allow for variations between persons. In practical
terms, this has normally been taken as a licence to estimate separate demand models for different
segments, particularly in the case of journey purpose, without needing to consider the
“weighting” consequences when aggregating up to an overall measure of benefit. While this is
probably acceptable in most cases as a practical procedure, it might in fact be quite difficult to
validate it within a general model estimation context.

However, of all aspects which may cause the utility function to vary between
consumers/travellers, it is the income variation which is critical, because this underlies the basis
in which changes in utility can be converted into money terms. Moreover, with increasing
attention to pricing as a major topic in transport policy, variations in willingness to pay (as for
example with proposals for tolled roads) are critical for demand forecasting. The upshot is that
model estimation is going to be more directly focussed on income variation than was generally
the case in the past. Against this, however, the fact that income data is usually collected in a
relatively aggregate manner (eg, using a small number of income “bands”) means that the
opportunities for detailed formulation will still be restricted.

Hence, aside from the particular case addressed by Jara-Diaz et al in which the assumption of
constant marginal utility of income for a particular individual (or group of individuals) is
unreasonable, there would seem to be a practical solution along the lines discussed in Section
3.8. In other words, we should build demand models which allow explicitly for income variation
in different population segments, but nonetheless maintain the AIRUM form: this appears to be
what McFadden (1981) implied in the quotation cited at the end of Section 2.7 of this paper. This
allows the benefit for each segment to be expressed in terms of that segment’s willingness to
pay.

What is then required, over and above this, is an explicit grappling with the distributional
consequences of variations in willingness to pay, principally because of variations in income.
The practical treatment can range from, on the one hand, the “laissez-faire” assumption that the
existing distribution is equitable, so that there is no need to apply any kind of weighting, to, on
the other, some kind of re-distributive calculus which attempts to re-weight in favour of persons
or groups with a higher marginal utility of income.
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Since these are essentially political judgments, there would seem to be considerable virtue in
making them explicit, rather than having them internalised in the mathematics of benefit
calculations.

5 Summary and Conclusions

This paper has tried to cover a large amount of ground, and some topics haves perhaps been
better covered than others. However, it has tried to link an impressive theoretical basis, which
has been constructed over a period of more than 100 years, with the practical requirements of
evaluating transport policies and schemes with the aid of (relatively conventional) transport
models.

As implied at the outset, there is a danger in the “leading edge” departing too far from
conventional practice. Although the Rule of a Half approximation, and the basic concept of
Consumer Surplus, are simplifications of the underlying theory, they do retain substantial appeal,
in terms of their relative ease of application, reasonable interpretatability, and acceptable general
accuracy (certainly in the face of the general uncertainty which surrounds all forecasts!).

That said, there are certainly cases where the RoH is inappropriate, and there are others where
there is a danger of it being misapplied. Both policy requirements and modelling ability is
moving towards greater complexity, and this will bring further problems for evaluation in its
wake. It is therefore timely to consolidate existing understanding, and it is hoped that this paper
has made an initial contribution in this respect.
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Appendix

A simple example about the Attribution of Benefit to specific alternatives

In this section we provide a simple example demonstrating the problems caused by attempting to
attribute benefit in cases where there has been a change in travel demand. We consider a
simplified situation where there are three choices facing travellers: these could relate equally to
modes, destinations or routes. For the sake of simplicity we will assume that no new traffic is
generated.

Suppose that in the before situation the generalized cost for choices 1, 2 and 3 are as the second
column of the table below, while the demands are as in the third column. With these costs, there
is no demand for choice no. 3.

Now we assume that an improvement is made to choice 3, which reduces generalized cost from
80 to 30: because this now attracts demand away from the other choices, we assume that, in the
case of choice 2 only, there is also a reduction in generalized cost (as with congestion relief, for
example). These new costs, and the corresponding demand, are shown in columns 4 and 5.

Before After

Option
k

costs
Ck

demand
Tk

costs
C′k

demand
T′k

∆S approx

1 30   70 30   25 –½(70+25).

 (30–30 )

      0

2 40   50 20   35 –½(50+35).

 (20 –40)

  850

3 80     0 30   60 –½(0+60).

 (30– 80)

1500

* (Σ) 120 120 2350
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First, we calculate the benefit components purely in terms of the source of the savings, using the

basic consumer surplus formula ∆S = -0.5* (T′ + T)(G′ -G). For choice 1, there is no change in
generalized cost, and hence no contribution to benefit. For choices 2 and 3,  we obtain a
contribution of 850 and 1500, respectively, as shown in the last column, giving a total benefit of
2350.

Suppose now that we felt able to assume that the 60 'new' travellers on choice 3 had been derived
as follows: 45 from choice 1, and 15 from choice 2. This implies that the travellers remaining on
choices 1 and 2 in the after situation have not changed. We then calculate the benefits as follows:

a. Remaining travellers on choice 1 : no benefit

b. Remaining travellers on choice 2 : 35x20 = 700

c. Travellers on choice 3:

original : none

changers from choice 1 : 0.5x45x[0+50]=1125

changers from choice 2 : 0.5x15x[20+50]=525

thus, for all choice 3 : 1650

giving a total of 2350, as before.

Note that changers get half the benefit appropriate to their original choice, and half the benefit for
their final choice.

The implication is thus that of the total benefits of 2350, 700 accrue to final travellers on choice
2, and the remainder to choice 3.

Now suppose that we were somehow able to ascertain that what had in fact happened is that of
the 45 travellers leaving choice 1, only 30 had in fact moved to choice 3, and the remaining 15
had moved to choice 2. For those originally on choice 2, 30 had moved to choice 3. Thus, while
the final positions are the same (and hence the overall benefit is not affected), the 'paths' are
different. This affects the attribution of benefits, in the following way.

a. Remaining travellers on choice 1 : no benefit

b. Travellers on choice 2:
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original : 20x20 = 400

changers from choice 1 : 0.5x15x[0+20]=150

thus, for all choice 2 : 550

c. Travellers on choice 3:

original : none

changers from choice 1 : 0.5x30x[0+50]=750

changers from choice 2 : 0.5x30x[20+50]=1050

thus, for all choice 3 : 1800

giving a total of 2350, as before.

As a result of this new information about the more detailed movements of the various groups, the
benefit associated with final users of choice 2 is reduced from 700 to 550, while that for choice 3
is increased correspondingly from 1650 to 1800.

But, in general modelling terms, there is no way in which this detailed information about
changes can be made available. The conclusion is thus that the disaggregation of the overall
benefit figure to the users of specific 'choices' is in general indeterminate.


