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Introduction 

 

Activity-based approaches to travel demand forecasting are rapidly moving into practice.  

These approaches have increased the number and complexity of the typical travel 

behavior indicators (e.g., number of trips made by purpose, distance traveled, mode 

used), adding many time allocation variables such as departure from home, amount of 

time traveling, and amount of time dedicated to activities to the task of data collection 

(Axhausen, 1998) and to data analysis (Pendyala, 2003).  They also amplified our need to 

identify relatively homogenous behavioral patterns representing observed behavior.  On 

one hand, the identification of a small set of behavioral patterns is a first step needed in 

creating algorithms for the prediction of behavior (Ma, 1997, Arentze and Timmermans, 

2000).  On the other hand, forecasting can be accomplished best using longitudinal 

information about changes in the lives of persons and their households and changes in 

their activity and travel behavior patterns (Goulias and Kitamura, 1997).  These two 

aspects, i.e., concise summaries of behavior and longitudinal dependency, are combined 

in this paper using a unique database that allows us to identify activity and travel patterns 

and their temporal evolution for an unprecedented long time span, from 1989 to 2000, in 

a large American metropolitan area, using a substantially large sample (a little over 1700 

households per time point of observation).  To do this we employ a pattern recognition 

technique known as cluster analysis. 

 

Developing a finite set of activity and travel pattern types requires some kind of pattern 

recognition technique that summarizes the values of observed variables and groups them 

into clusters.  The most popular procedure uses persons from a diary survey as the 

elementary units (observations).  For each person we have the values (scores) for 

variables such as number of trips made in a day, amount of time spent traveling to work, 

amount of time spent in activity participation, and so forth.  Then, a statistical or other 

data analytic software is used to identify groups of observations that have reported values 

for these variables close to each other and classify the observations into clusters of 

similar behavior.  Closeness is decided based on some sort of difference among criteria 

variables (e.g., the values of these variables or the values of derivative variables).  Cluster 
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membership may be crisp and deterministic (each person belongs to a single cluster with 

probability equal to one) or it can be fuzzy and probabilistic (each person belongs to a 

cluster with a probability of membership that may be less than one).  The usual pattern 

recognition technique in activity analysis and travel behavior has been the k-means 

statistical technique, which is crisp, deterministic, and derived for continuous variables. 

 

In travel behavior analysis, pattern recognition for cluster development has been 

employed since the early applications of activity-based approaches.  These clusters were 

used to summarize human behavior in terms of several relatively homogeneous groups 

using statistical-mathematical algorithms designed for continuous variables (Pas, 1982, 

1983, see also Ma, 1997 for a review of others).  A subsequent step along this research 

path was to also study changes in activity and travel patterns within a day or a week (Pas 

and Koppelman, 1987, Pas, 1988) by observing changes in the selection of clusters.  

Later, building on these efforts, longer term dynamic aspects of travel behavior, using 

data from the Puget Sound Transportation Panel (PSTP), were studied, using k-means, by 

Ma and Goulias, 1996, 1997a, 1997b.  This was accomplished by separating activity from 

travel and by examining the switching among clusters from one day to the next and from 

one year to the next in the panel.  In that study, the idea of clusters emerging as the 

outcome of multilevel processes at the household, person, and other external to the 

decision making unit levels was also introduced and analyzed in more detail.  Using the 

same clusters, Goulias (1999) also developed a model system in which transitions among 

clusters over time were studied employing latent class analysis methods and 

demonstrated the existence of multiple paths of change (that he called longitudinal 

heterogeneity).  Variation among these same clusters from multiple levels was also 

examined using regression models designed to incorporate the multilevel data structure 

explicitly (Goulias and Kim, 2001).  In a parallel study, Krizek (2003), using a subset of 

the PSTP data, developed “lifestyle” clusters using the K-means statistical routine.  All 

these studies used a limited time frame and clustering methods that are designed for 

continuous variables (i.e., the k-means routine).  The cluster membership information is 

then used as a categorical dependent variable and a variety of explanatory variables are 

employed as determinants of cluster classification.  In the past few years, however, 



 
 4

substantial progress has been made in clustering and classification algorithms, aided by 

inexpensive fast computing.  In this paper we analyze all nine waves available in PSTP 

using one of these newer algorithms with the following objectives:  

 

a) derive an optimal number of clusters that summarize activity and travel behavior 

between 1989 and 2000 in the PSTP data;  

b) describe these clusters in terms of daily activity participation and travel behavior;  

c) identify social and demographic groups most likely to belong to each cluster; and 

d) identify any time effects on these clusters.   

 

Two sets of models are presented in this paper.  The first set examines the issues of 

traveling alone or with others and the second examines the time allocated to activities and 

travel.  The remainder of the paper begins with an overview of the panel and the data 

used here.  This is followed by a description of the clustering method and the data 

analysis results.  The paper concludes with a summary.   

 

The Puget Sound Transportation Panel 

 

The Puget Sound Transportation Panel (PSTP) was designed as a “general purpose” 

urban household panel survey tailored to transportation analysis.  The PSTP was also 

created as a tracking device of changes in employment, work characteristics, household 

composition, vehicle availability, travel behavior and responses to changes in the 

transportation environment, and attitudes and values (Murakami and Watterson, 1990).  

As Murakami and Ulberg (1997) state, the objectives of PSTP are:  

“to monitor changes in household composition, location and employment 

characteristics; to monitor changes in travel behavior and responses to changes in the 

transportation environment; and to examine the effects of changes in attitudes and values 

on mode choice and travel behavior.” (Murakami and Ulberg, 1997, page 163) 

The PSTP data used here are a record of travel behavior aiming to represent 

approximately 3.3 million residents (based on data from the US Census of 2000) in 

Seattle and its surroundings.  The survey started in 1989 and continues until today in the 
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four counties (King, Kitsap, Pierce, and Snohomish) of the Puget Sound region in the 

Northwest corner of the continental US.  In each wave a household questionnaire and a 

two-day travel diary are administered on essentially the same households and their 

members 15 years or older.  In this way, we accumulate households that participated at 

multiple time points.  Unlike more traditional transportation cross-sectional surveys, 

PSTP takes similar measurements (i.e., surveys) repeatedly on the same observations 

over time.  Each wave of the PSTP includes a travel survey that collects information on 

household demographics, person social and economic circumstances, and reported travel 

behavior on two consecutive days for each person in the recruited household that is 15 

years or older to capture driving age individual behavior.  The PSTP currently available 

data are from nine travel surveys in the years 1989, 1990, 1992, 1993, 1994, 1996, 1997, 

1999, and 2000.  This provides a database with unique capability for regional forecasting 

models. 

Forecasting models that use panel surveys as their source of data have the 

potential to reproduce observations much better than their cross-sectional counterparts 

because they use cross-sectional variation and they are grounded on observed individual 

and household longitudinal histories allowing us to study individual and household 

changes.  Moreover, panels allow us to test if the cross-sectional demand models are 

valid representations of behavioral trends in the region.  For example, one can estimate a 

series of models from each year of the panel and test if the relationship between travel 

behavior and demographic variables remains constant over time.  In addition, other 

models can be estimated to examine if behavior is changing in a linear or non-linear way 

with time and if trip making is most likely to increase, decrease, or even go through 

cycles while controlling for all other exogenous factors. 

Table 1 provides a summary of the evolution for a few key household 

composition characteristics in the waves 1 to 9 panel participants.  Table 2 displays a 

fairly constant sample composition in terms of number of males in each household, 

employed persons outside the home, number of drivers in the household, and car 

ownership.  Table 3 contains some key travel behavior indicators that are of particular 

importance for typical travel demand forecasting models. 
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Since 1997 the original objectives of PSTP were also enriched by the introduction of 

questions on traveler information system use and telecommunications and computer 

ownership and use.  For example, wave 7 (1997) “was specifically designed to provide 

insight into how people use data (traveler information) to make transportation decisions” 

(Kilgren, 1998).  To accomplish this, PSRC, with funding from the Washington State 

Department of Transportation and the U.S. DOT, incorporated a few supplemental 

questions about Intelligent Transportation Systems (ITS – the combination of 

telecommunications and information technology to aid transportation system 

management and operations).  A tenth wave was started in late Fall 2002 and data from 

this survey are expected in mid-2003 or soon thereafter.  The data used in this paper are 

from the first 9 waves.   

 

The tables above give us a general overview of the types of information contained in the 

PSTP and the change in the average values of key indicators.  A somewhat more 

informative overview can be obtained when relatively homogeneous groups of behavior 

can be created and then correlated to other factors.  Before moving to the analysis some 

background information about the clustering technique employed is provided.   

 

Latent Class Cluster Analysis 

 

The technique selected to identify groups of homogeneous patterns of activity and travel 

behavior in the first decade of the PSTP database is latent class cluster analysis.  This 

technique:  

 

a) includes a J-category latent variable, each category representing a cluster 

b) uses many “dependent” or clustering variables (named criteria variables herein); 

c) uses a mixture of multiple types of criteria variables (e.g., continuous, categorical, 

ordered, count); 

d) uses and tests the effect of covariates of many different types; 

e) is more flexible than many other clustering algorithms; 
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f) is a model-based clustering approach, so it  provides probabilistic membership of 

observations in clusters; and 

g) provides convenient interpretable output 

 

In this paper we use notation and model formulation similar to Vermunt and Magidson 

(2002).  Assume there is one latent variable (X) representing the time allocation of a 

person during the two observation days in the PSTP waves.  Different categories of this 

variable X denote different types of activity-travel behavior and the probability of 

belonging to each category of variable X represents the proportion of persons that choose 

that specific type of time allocation.  Using observed data we would like to identify how 

many distinct groups we have, find the proportion of persons in each group, and gain 

insights about their temporal evolution.   

 

For each person in our sample we observe M measures (indicators) of activity and travel 

behavior indicated by the symbol Y that can be used to infer membership in the 

categories of the latent variable X.  A third set of variables, which are not included as 

criteria variables in the clusters, are used as explanatory variables and for this indicated 

with the symbol Z.   

 

The probability density of the Ys given a set of Z values is: 

 

( | ) ( | ) ( | , )
x

f Y Z X Z f Y X Zπ=∑        (1) 

 where )|( ZXπ is the probability of belonging to a certain latent class given a set of 

covariate values.   

 

If the Y variables belonging to different clusters (categories of variable X) are assumed to 

be mutually independent given the latent class and the covariates, we obtain: 

 

1
( | ) ( | ) ( | , )

M

m
x m

f Y Z X Z f Y X Zπ
=

=∑ ∏       (2) 
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Since the scores on the latent variable given the covariates are assumed to come from a 

multinomial distribution, probability of belonging to a given latent class can be calculated 

as follows: 

 
|

|

( | )
X Z

X Z

X

eX Z
e

η

η
π =

∑
         (3) 

 

where the term η is a linear combination of the main effects of the latent variable ( )
jxγ   

and the covariate effects on the latent variable )(
jl xzγ defined as:  

|
1 1 1

j l j

J L J

X Z x z x
j l j

η γ γ
= = =

= +∑ ∑∑         (4) 

 

One way to visualize this model is to consider a cross-classification table underlying the 

model in which latent and observed variables are included.  This table has dimensions 

equal to the categories of all the variables when all variables are categorical.  The cell 

values of this table are the entities we are trying to estimate using formulations as in 

Equation 4.  As in many latent class models the likelihood function takes the familiar 

form shown below where θ denotes the unobserved parameters to be estimated.   

 

∑=
i

iii ZYfnLogL ),|(log θ         (5) 

 

The parameters in equation 5 can be estimated by the Expectation Maximization (EM) 

algorithm, which produces Maximum Likelihood estimates under specific conditions.  In 

the examples here we use the Vermunt and Magidson (2002) method, which is a 

combination of EM with Newton-Raphson.  Standard errors for the parameter estimates 

are computed using the Hessian matrix (matrix of the second order derivatives of the 

estimating equation).  As the number of parameters to estimate increases, the degrees of 

freedom decrease rapidly and for this reason we run into a variety of operational 
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problems such as identification (inability to compute a parameter) or lack of convergence 

(subsequent estimation step parameters are not close enough).  Most latent class models 

are also sensitive to local maxima of the likelihood function used in estimation, which 

can be circumvented by testing multiple models using different initial trial values for the 

parameters (see also Goulias, 1999).  Estimation of models of this type is in essence a 

hierarchical iterative process in which: 

 

a) We start with a one cluster assumption and a simple model is estimated; 

b) experimentation proceeds by increasing the number of clusters until identification 

is no longer possible for some parameters, the cluster sizes become too small to 

be meaningful, and the difference in goodness of fit between successive models is 

not significant; and 

c) selecting one or more models that appear to be a reasonable description of the 

observed data, we define alternate modeling options such as correlations among 

criteria variables and variances within each cluster starting another iterative cycle.  

This goes on until the addition of a more complex structure no longer yields a 

significant improvement (for nested models we can use a formal statistical step as 

a stop criterion).  

 

Within these three steps we also have two additional “mini-steps.” For each model we 

first develop starting values for the unknown parameters we are estimating that are drawn 

from a distribution of randomly selected moments.  For a given set of starting values we 

perform maximum likelihood iterations first using the EM algorithm until the values of 

subsequent iterations reach a predefined difference (or the total number of EM iterations 

reaches a maximum number).  Then, the algorithm switches to a Newton-Raphson 

algorithm until again a predetermined convergence criterion value is reached or the 

maximum number of iterations is reached.  In this way, we can exploit advantages of  

both algorithms, i.e. the stability of EM  even when far away from the optimum and the 

speed of Newton-Raphson when close to the optimum (Vermunt and Magidson, 2002). 
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In the same way as other latent class models, statistical goodness-of-fit measures for 

latent class cluster models are the typical chi-square statistics used also in the cross-

categorical data analysis.  The first measure is the likelihood ratio chi-square, G2 or L2.  It 

has a chi-square distribution with degrees of freedom given by the number of “free” 

parameters (Total number of different response patterns - the number of estimated model 

parameters – 1).  It represents the opposite of an R2 in regression because it is the amount 

of unexplained variation by the model. Therefore, higher values indicate models that do 

not fit the data well and lower values represent better fitting models.  When models are 

nested, (i.e., they differ only in the number of estimated parameters), we could create the 

difference between the G2 of the two models.  This difference is chi-square distributed 

and can be used for hypotheses testing.  This cannot be done between models that differ 

in the number of clusters because they are not nested.  Based on L2, the Bayes 

information criterion (BIC), Akaike information criterion (AIC) and the Consistent 

Akaike information criterion (CAIC) are computed to measure goodness of fit and to take 

into account model parsimony penalizing models with many parameters.  The lower the 

BIC, AIC or CAIC values, the better the model we estimate (McCutcheon, 2002).   

 

The approach followed in the analysis presented in this paper has some advantages over 

the more popular cluster analysis using the k-means and then using some kind of 

regression to identify the composition of each cluster.  First, the latent class cluster 

method for identifying clusters is designed for combinations of continuous and discrete 

criteria variables while the k-means method is defined for continuous variables only.  

Second, the method used here allows for a probabilistic membership of each observation 

in each cluster.  This provides flexibility in observation classification while the k-means 

does not allow for that.  Third, post-processing of the cluster data using regression is not 

required because the method used allows the inclusion of covariates.  There are other 

advantages of latent class methods in general and the specific implementation used here 

that are discussed in Vermunt and Magidson, 2002.   
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Data Analysis 

 

The basic ingredients of an activity based approach for travel demand analysis (Jones, 

Koppelman, and Orfeuil, 1990 and Arentze and Timmermans, 2000) are: a) explicit 

treatment of travel as derived demand; b) the household is the fundamental decision 

making unit; and c) explicit consideration of constraints.  Manheim (per Arentze and 

Timmermans, 2000), discussed the idea of travel demand as derived demand first in the 

context of a transportation system and its simulation.  In that context, participation in 

activities (e.g., work, shop, leisure) motivates travel but travel could also be an activity as 

well (e.g., taking a drive). These activities are viewed as episodes (starting time, duration, 

and ending time) and they are arranged in a sequence forming a pattern of behavior that 

can be distinguished from other patterns (a sequence of activities in a chain of episodes).  

In addition, these events are not independent and their interdependency is accounted for 

in the theoretical framework.  The second aspect is also related to this last point.  

Considering the household is considered to be the fundamental social unit (decision 

making unit), the interactions among household members can be explicitly modeled to 

capture task allocation and roles within the household.  The episodes mentioned above 

are then tasks within a larger “project” in which each person in the household is involved.  

This brings up another issue that is the relationships among household members and the 

concomitant task allocation.  In addition, relationships change as households move along 

their life cycles and the individual’s commitments (e.g., escorting a child to school) and 

constraints (e.g., need to be at a specific time at a specific place) change and these are 

depicted in the activity-based model.  These constraints in their temporal, spatial, and 

social dimensions are also receiving increasing attention in activity-based models.  For 

example, using the time-space prism idea from Hagerstrand (1970), Pendyala, (2003), 

uses regression models to model the size of the action space within the prism and Arentze 

and Timmermans (2000) insert reflections of these constraints in the form of model 

parameters and/or rules in a production system format.   

 

The inputs to these models are the typical regional model data of social, economic, 

demographic information of potential travelers to create schedules followed by people in 
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their everyday life.  Land use information could also be used when available at the detail 

required to develop individual behavioral models.  The output are detailed lists of 

activities pursued, times spent in each activity, and travel information from activity to 

activity (including travel time, mode used, and so forth).  This output is very much like a 

“day-timer” for each person in a given region.   

 

Preceding the creation of an activity-based system for forecasting is another step.  In this 

step we need to understand the formation of patterns in allocating time to activities and 

travel and the evolution of these patterns over longer periods (e.g., periods that span 

many years).  This is needed because many forecasting applications are designed for a 

twenty year horizon.  Panel data of the type described in this paper help us to develop 

this understanding as illustrated below with two examples: a) traveling alone or with 

others; and b) allocation of time to activities and travel. 
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Traveling alone and with others 

 

In activity-based approaches research is particularly needed on group decision-making 

and interactions among persons.  For example, to depict the exchange of resources in 

terms of a network of relationships among people can be depicted by using indicators of 

their interaction.  In this way one can build social networks that provide the structural 

environment within which opportunities and constraints to individual action (e.g., activity 

participation and travel) are shown explicitly.  While this conceptualization has not been 

used in data collection and modeling, the interaction among household members has been 

recognized as an important factor affecting behavior (Van Wissen, 1989, Golob and 

McNally, 1996, Chandrasekharan and Goulias, 1999, Gliebe and Koppelman 2002) and 

we build on these initial efforts in the data analysis of this section considering the 

following variables: 

 

1. Number of trips traveling alone with car/truck/sport utility vehicle (SUV) in day 1 

and day 2 

2. Number of trips traveling with relatives with car/truck/SUV in day 1 and day 2 

3. Number of trips traveling with others non-relatives with car/truck/SUV in day 1 and 

day 2 

4. Number of trips with car/truck/SUV for which others were involved, but their 

relationship with the respondent is unknown in day 1 and day 2. 

 

To derive clusters of behavior we start from a one cluster model and build in sequence 

models with more clusters until estimation is no longer possible due to lack of 

identification for one or more parameters.  The explanatory variables used here are at the 

person, household, and temporal levels.  Differences among individuals in traveling 

together are determined by personal and household characteristics and for this reason we 

use employment and age as explanatory variables.  One of the most important variables 

for household task allocation is the number of children and to reflect this we use the total 

number of children 1 to 5 years old in the household at the time of the interview as well 

as the number of children in the age group 6 to 17.  A variable that is of paramount 
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importance in traveling is car ownership and this is the third household-level variable 

used here.  The county of residence and the sample type are used to control for the initial 

selection of the households when recruited to participate.  In addition, the year of the 

wave is a covariate used to account for and study changes over time.  The year when the 

person started in the panel is also used to account for the different composition of the 

replenishment of observation units sample (refreshment samples) and possible panel 

fatigue.   

 

Table 5 provides a summary of this sequence until the solution with 5 clusters is reached.  

The six-cluster solution produced estimation problems with variables that could not be 

identified.  Subsequent refinements and additions of explanatory variables to the five-

cluster solution improved the goodness-of-fit statistics substantially as the last two rows 

of the table show. The model of the final step is the model we will examine in more detail 

here.  Table 6 describes the five clusters in terms of the persons’ behavior within each 

cluster.  The first cluster of behavior and the largest (31.6% of sample) is the cluster of 

persons that make most of their trips alone with car/truck/SUV in both days.  The second 

group of almost equal size (30.3% of sample) appears to make more trips overall with 

car/truck/SUV, and similar to the first cluster an almost equal amount of trips alone.  This 

group is also characterized by a substantial number of trips with relatives (2.1 in day 1 

and 2.2 in day 2).  The three remaining clusters have much smaller size of membership.  

The third cluster is characterized by a large number of trips with relatives (other 

household members) and a small number of other trip types.  In contrast, the fourth 

cluster is characterized by a large number of trips solo and a relatively large number of 

trips with others who are not relatives.  The last cluster has very few trips per day. 

 

Cluster composition can also be examined in terms of the social and demographic 

characteristics of the sample unit.  This is accomplished in two ways: a) examining the 

significance of each covariate in determining the probability of belonging to each cluster 

(in essence testing the significance of the γs in equation  4); and b) given that the 

covariates are significantly affecting a cluster, examining the cluster composition in terms 

of the covariate’s values.  Table 7, in essence containing estimated conditional 
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probabilities of membership, reports both aspects.  Employment is a significant factor for 

all clusters.  On one hand, employed persons most often select clusters 1, 2, and 4, in that 

order of popularity.  On the other hand, unemployed persons are spread throughout the 

five clusters with the highest percentages in cluster 3, followed by clusters 2, 1, 5, and 4.  

Interestingly, the very young participants to the survey tend to travel most often with 

others, selecting 3 and 4 as the most popular clusters for them. These are the clusters with 

the highest percentages for traveling with relatives (cluster 3; note also that persons in 

this cluster tend not to travel alone) and for traveling with others (cluster 4, which, 

however, also features more solo travel).  A substantial amount of this group (22%) 

appears to travel little using car/truck/SUV.  The next two age groups appear to be more 

likely to follow travel behavior as in cluster 1 (solo travelers) as the preferred one.  As 

expected the age group 35-44 travels the most and selects cluster 2 that contains many 

trips with relatives (presumably young children as the next portion of the table also 

shows).  The age groups 45-54 and 55-64 show a clear majority in cluster 1 with second 

in cluster 2, which again is most likely motivated by the presence of children in the 

household (e.g., the probabilities for children 6 to 17 for cluster 2 that are between 40% 

and 52%).  Older individuals populate most clusters with a dissimilar tendency to the 

very young (except for clusters 3 and 5).   

 

Figure 1 provides a depiction of changes from 1989 to 2000 using the coefficients γs in 

equation 4.  Although the figure exaggerates the overall increase in cluster 1 it is also 

indicative of a general trend away from the other clusters and toward cluster 1.  Average 

estimated conditional probabilities are reported immediately underneath the figure and 

show a clear increase in cluster 1 with a variety of interesting fluctuations over the years 

of the survey, which are not equally spaced in time.  Similar analysis was also performed 

using the year at which a person entered the panel as one of the explanatory variables.  

Very few indicators for this variable were found significantly different than zero, 

indicating that only for one or two years in each wave we may have a significantly 

different choice of clusters.  
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Time allocation to activities and travel 

 

In the second cluster analysis using the PSTP data we demonstrate another set of group 

identification using the following variables:  

 

1. total number of trips in each of the two days (Tottrip1, Tottrip2),  

2. total daily travel time to work (Wttime1, Wttime2),  

3. total daily travel time to non-work places (Nwttime1, Nwttime2),  

4. total amount of time spent in activities per day (Atime1, Atime2).   

 

Table 8 provides an overview of the model estimation results as estimation moved toward 

the final five cluster model that is selected for illustration here.  Other five cluster models 

with additional explanatory variables did not yield a converged solution that satisfied all 

the convergence criteria.  Table 9 shows that we have five types of activity-travel 

behavior.  Table 10 shows the average membership probability for employment, age, 

number of children ages 1 to 5 and number of cars in the household.   

 

The first cluster is characterized by the absence of any employed persons and it is 

populated by the very young and the seniors in our sample (see also Figure 2).  A few of 

them may work and this is reflected in the small amount of travel to work.  This group is 

also characterized by the relatively lower amount of time spent in activities outside the 

home base in both days of the survey (4-5 hours per day).  The other four clusters are 

dominated by the employed persons and there is no clear and definite trend with respect 

to the age of the panel participants.  

 

Figure 3 shows the values of the γs for the time effect on cluster membership (Equation 

4).  At first glance, this may appear to be a sinusoidal pattern.  This pattern, however, is 

not translated into a sinusoidal pattern of the probability of cluster membership as a 

function of time because of other factors affecting this probability and the values of the γs 

of the other probabilities.  In fact, Figure 4 shows a fairly stable evolution in favor of 

cluster 1 (the most popular).     
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Summary 

 

Data from a decade collected in the Seattle region have been analyzed in this paper using 

one of the latest methods in pattern recognition called latent class cluster analysis.  Both 

data and method are insightful about travel behavior and appear to provide unique 

opportunities for travel behavior research.  Using all nine waves of the PSTP that are 

currently available two types of analysis were performed and illustrated here.   

 

The first analysis examines patterns of travel interactions among persons by developing 

clusters based on the number of trips traveling alone with car/truck/sport utility vehicle 

(SUV) in each of the two days of the survey, number of trips traveling with relatives with 

car/truck/SUV in each of the two days of the survey, and number of trips traveling with 

others that are non-relatives or for whom we have no information.  The five cluster 

solution appeared to be the best using these variables.  These are made by two larger 

clusters containing approximately 30% of the respondents each and three smaller clusters 

containing 10% to 14% of the respondents each.  Analysis of the role and significance of 

covariates in cluster classification showed that as expected employment is a key shaper of 

travel behavior.  In addition, different age groups opt for a different pattern of traveling 

alone and with others in a day and the number of children in households play a key and 

important role.  All this confirms past research on travel behavior and serves as a simple 

verification.  Most important, however, is the finding of a general temporal shift to travel 

patterns of more traveling alone trips and less traveling with others.  

 

In the second analysis example time allocation is examined by first building clusters 

using as criteria variables the total number of trips in each of the two days (Tottrip1, 

Tottrip2), the total daily travel time to work (Wttime1, Wttime2), the total daily travel 

time to non-work places (Nwttime1, Nwttime2), and total amount of time spent in 

activities per day (Atime1, Atime2).  Unlike the first analysis in this case we have one 

large cluster (more than 30% of the observations) populated by unemployed persons.  

Then we have a second cluster containg approximately 23% of the sample and two 
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clusters containing approximately 19% of the sample each.  The last cluster contains only 

7% of the observations.  Three clusters (2, 3, and 4) are the clusters of the employed 

persons and the differ both in terms of activity and travel allocations as well as person 

and household characteristics.  In terms of time evolution we observe a strong stability in 

the cluster membership with a small increase in the membership of the first cluster.   

 

Both analyses did not yield major longitudinal shifts when we consider membership for 

each cluster at each time point.  The frequencies within each time point, however, are the 

sum of many possible opposing shifts (also called marginal frequencies).  As seen 

elsewhere when analyzing panel data this is the combined result of possibly a 

considerable amount of changes at the person level and it may mask a variety of 

longitudinal behaviors as illustrated in Goulias, 1999.  That type of analysis is left as a 

future task.   
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Table 1 Evolution of household composition in PSTP 

Year of 
wave 

Number of 
children 

younger than 6

Number of 
children 6 to 17 

years old

Number of 
adults (18 and 

older)
Household size

1989 Mean 0.23 0.44 1.92 2.59
 N 1712 1712 1712 1712
 Std. Deviation 0.57 0.83 0.65 1.26

1990 Mean 0.22 0.45 1.91 2.57
 N 1793 1793 1793 1793
 Std. Deviation 0.53 0.82 0.61 1.25

1992 Mean 0.19 0.44 1.90 2.53
 N 1569 1569 1569 1569
 Std. Deviation 0.52 0.84 0.61 1.25

1993 Mean 0.19 0.44 1.89 2.52
 N 1900 1900 1900 1900
 Std. Deviation 0.52 0.83 0.63 1.26

1994 Mean 0.18 0.44 1.89 2.51
 N 1750 1750 1750 1750
 Std. Deviation 0.51 0.83 0.61 1.25

1996 Mean 0.16 0.42 1.93 2.52
 N 1730 1730 1730 1730
 Std. Deviation 0.48 0.83 0.66 1.25

1997 Mean 0.16 0.41 1.90 2.47
 N 1982 1982 1982 1982
 Std. Deviation 0.48 0.82 0.66 1.27

1999 Mean 0.14 0.42 1.95 2.51
 N 1774 1774 1774 1774
 Std. Deviation 0.46 0.83 0.73 1.30

2000 Mean 0.12 0.42 1.86 2.40
 N 1701 1701 1701 1701
 Std. Deviation 0.42 0.85 0.66 1.27
Total Mean 0.18 0.43 1.90 2.51
 N 15911 15911 15911 15911
 Std. Deviation 0.50 0.83 0.65 1.26
N = number of households
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Table 2 Time evolution of key household characteristics 
Year of 
wave   

Number of persons 
employed outside 
the home 

Number of men in 
household 
 

Number of drivers 
in household 
 

Number of 
household vehicles 
 

1989 Mean 1.34 0.93 1.85 2.12
 N 1712 1712 1712 1712
 Std. Deviation 0.86 0.56 0.74 1.13

1990 Mean 1.26 0.92 1.83 2.15
 N 1787 1787 1787 1786
 Std. Deviation 0.82 0.55 0.70 1.10

1992 Mean 1.30 0.90 1.81 2.23
 N 1593 1593 1593 1579
 Std. Deviation 0.80 0.55 0.69 1.21

1993 Mean 1.20 0.91 1.82 2.06
 N 1906 1906 1906 1906
 Std. Deviation 0.82 0.58 0.71 1.08

1994 Mean 1.17 0.92 1.82 2.10
 N 1771 1771 1771 1771
 Std. Deviation 0.82 0.57 0.72 1.19

1996 Mean 1.20 0.92 1.80 2.09
 N 1755 1755 1755 1753
 Std. Deviation 0.83 0.57 0.68 1.08

1997 Mean 1.16 0.94 1.79 2.09
 N 1992 1992 1992 1990
 Std. Deviation 0.86 0.58 0.75 1.14

1999 Mean 1.24 0.92 1.81 2.13
 N 1795 1795 1795 1792
 Std. Deviation 0.95 0.60 0.78 1.15

2000 Mean 1.23 0.89 1.78 2.10
 N 1707 1707 1707 1705
 Std. Deviation 0.93 0.60 0.76 1.13
Total Mean 1.23 0.92 1.81 2.12
 N 16018 16018 16018 15994
 Std. Deviation 0.86 0.58 0.73 1.14
N = number of households
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Table 3 Time evolution of key personal travel behavior characteristics 

Year of wave   

Number of 
home 
based trips 
to work in 
day 1 

Number of 
home 
based trips 
to college 
in day 1 

Number of 
home 
based trips 
to school 
in day 1 

Number of 
home 
based trips 
to 
shopping 
in day 1 

Number of 
home 
based 
other trips 
in day 1 

Number of 
other-to-
other trips 
in day 1 

Number of 
work-to-
other trips in 
day 1 

Number of 
returning 
home trips in 
day 1 

Total number 
of trips in day 
1 

1989 Mean 0.48 0.04 0.03 0.20 0.72 1.38 0.32 1.46 4.64
 N 3390 3390 3390 3390 3390 3390 3390 3390 3390

 
Std. 
Deviation 0.53 0.21 0.19 0.44 0.86 1.76 0.59 0.85 2.83

1990 Mean 0.51 0.03 0.04 0.17 0.67 1.40 0.29 1.40 4.51
 N 3497 3497 3497 3497 3497 3497 3497 3497 3497

 
Std. 
Deviation 0.56 0.20 0.19 0.41 0.85 1.89 0.56 0.86 2.94

1992 Mean 0.49 0.03 0.04 0.16 0.71 1.19 0.25 1.41 4.26
 N 3059 3059 3059 3059 3059 3059 3059 3059 3059

 
Std. 
Deviation 0.55 0.16 0.20 0.39 0.87 1.64 0.51 0.85 2.72

1993 Mean 0.49 0.05 0.04 0.15 0.66 1.18 0.25 1.37 4.19
 N 3684 3684 3684 3684 3684 3684 3684 3684 3684

 
Std. 
Deviation 0.55 0.23 0.20 0.38 0.85 1.69 0.52 0.85 2.78

1994 Mean 0.47 0.03 0.04 0.14 0.67 1.22 0.27 1.34 4.19
 N 3461 3461 3461 3461 3461 3461 3461 3461 3461

 
Std. 
Deviation 0.55 0.18 0.20 0.38 0.84 1.76 0.53 0.85 2.85

1996 Mean 0.47 0.02 0.04 0.16 0.72 1.24 0.25 1.38 4.27
 N 3425 3425 3425 3425 3425 3425 3425 3425 3425

 
Std. 
Deviation 0.55 0.13 0.19 0.39 0.88 1.76 0.52 0.86 2.83

1997 Mean 0.50 0.03 0.04 0.13 0.67 1.23 0.24 1.36 4.21
 N 3939 3939 3939 3939 3939 3939 3939 3939 3939

 
Std. 
Deviation 0.56 0.17 0.20 0.36 0.87 1.74 0.50 0.87 2.83

1999 Mean 0.47 0.01 0.04 0.15 0.72 1.34 0.22 1.36 4.30
 N 3535 3535 3535 3535 3535 3535 3535 3535 3535

 
Std. 
Deviation 0.55 0.12 0.19 0.38 0.89 1.86 0.48 0.89 2.91

2000 Mean 0.45 0.02 0.04 0.10 0.67 1.26 0.22 1.26 4.02
 N 3259 3259 3259 3259 3259 3259 3259 3259 3259

 
Std. 
Deviation 0.55 0.15 0.20 0.32 0.87 1.83 0.49 0.82 2.85

Total Mean 0.48 0.03 0.04 0.15 0.69 1.27 0.26 1.37 4.29
 N 31249 31249 31249 31249 31249 31249 31249 31249 31249

 
Std. 
Deviation 0.55 0.17 0.19 0.38 0.87 1.78 0.52 0.86 2.84
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Table 4 Overview of the first set of dependent variables in the PSTP 

4.64 4.45 17.83 17.03 65.4789 65.9171 463.59 455.08
3390 3390 3390 3390 3389 3390 3373 3378

2.831 2.834 24.837 21.878 53.00078 55.72875 246.569 259.988
4.51 4.44 22.64 22.13 60.1068 60.0215 437.90 444.57
3497 3494 3497 3494 3494 3492 3460 3458

2.941 2.916 35.632 34.772 50.08691 48.45403 251.607 259.569
4.26 4.17 19.96 19.72 58.4881 60.8330 435.33 428.69
3059 3059 3059 3059 3059 3059 3030 3033

2.718 2.781 30.335 29.865 47.12299 54.97418 253.778 261.326
4.19 4.22 20.96 19.66 57.7212 60.2172 428.38 434.40
3684 3684 3684 3684 3684 3683 3656 3649

2.783 2.857 33.911 30.677 50.06286 55.15724 256.872 264.544
4.19 4.09 21.42 19.30 58.4331 59.4837 423.22 407.92
3461 3461 3461 3461 3461 3461 3433 3433

2.854 2.882 35.880 34.856 49.95830 52.67749 256.626 263.905
4.27 4.19 19.66 19.16 61.9828 60.8669 429.43 425.47
3425 3425 3425 3425 3424 3425 3401 3384

2.827 2.893 31.293 30.166 54.55503 53.94596 257.543 266.860
4.21 3.97 21.39 20.09 60.1165 58.0970 430.17 417.57
3939 3939 3939 3939 3939 3938 3901 3895

2.829 2.724 33.086 32.164 53.46647 50.01524 257.860 264.582
4.30 4.12 19.88 18.99 61.3950 62.0331 421.21 415.32
3535 3535 3535 3535 3532 3534 3493 3490

2.911 2.899 29.202 28.974 53.92807 57.45074 256.185 260.670
4.02 3.86 19.95 19.54 58.2782 57.3639 401.92 398.40
3259 3259 3259 3259 3257 3256 3242 3224

2.847 2.819 32.292 31.810 51.82419 51.99771 254.468 262.659
4.29 4.17 20.45 19.53 60.2262 60.5049 430.15 425.30

31249 31246 31249 31246 31239 31238 30989 30944
2.845 2.850 32.081 30.854 51.72007 53.44034 255.142 263.232

Mean
N
Std. Deviation
Mean
N
Std. Deviation
Mean
N
Std. Deviation
Mean
N
Std. Deviation
Mean
N
Std. Deviation
Mean
N
Std. Deviation
Mean
N
Std. Deviation
Mean
N
Std. Deviation
Mean
N
Std. Deviation
Mean
N
Std. Deviation

Year of wave
1989

1990

1992

1993

1994

1996

1997

1999

2000

Total

Total number of
trips in day 1

Total Number of
Trips in day 2

Total travel time
spent on work
or work related

in day 1

Total travel time
spent on work
or work related

in day 2

Total travel time
spent on

non-work in day
1

Total travel time
spent on

non-work in day
2

Total activity
time in day 1

Total activity
time in day 2
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Table 5 The sequence of models estimated for traveling alone and with others 
 
Model Type L² (or LL) BIC Number of parameters 
1-Cluster -307685 615451.8 8
2-Cluster -278165 556732.6 39
3-Cluster -264053 528831 70
4-Cluster -253793 508631.8 101
5-Cluster -247495 496355.6 132
6-Cluster* -244159 490005.3 163
5-Cluster** -243490 488511.8 148
5-Cluster*** -242526 486830.7 172
* produced possible unidentified parameters 
** added covariates (step 1)  
*** added covariates (final step)  
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Table 6 Average number of trips by type and their standard errors within each of the five clusters 
 Cluster 1 s.e. Cluster 2 s.e. Cluster 3 s.e. Cluster 4 s.e. Cluster 5 s.e. 
Cluster Size 0.3160 0.0028 0.3033 0.0031 0.143 0.0027 0.1296 0.0022 0.1080 0.0024
            
Trips Solo First Day 3.1745 0.0188 3.0992 0.0226 0.2726 0.0176 2.7029 0.0313 0.0064 0.0024
            
Trips With Relatives First Day 0.0183 0.0026 2.1351 0.0195 3.2324 0.0436 0.4594 0.0152 0.1221 0.0191
            
Trips With Others First Day  0.0113 0.0018 0.0757 0.0042 0.1072 0.0068 1.6744 0.023 0.16 0.0107
            
Trips with Unknown First Day 0.0005 0.0005 0.0014 0.0005 0.0005 0.0005 0.0162 0.0025 0.0067 0.0017
            
Trips Solo Second  Day 3.0443 0.0184 2.9746 0.0221 0.191 0.0165 2.5826 0.0307 0.0029 0.0017
            
Trips With Relatives Second 
Day 0.0126 0.0024 2.2086 0.0196 3.1214 0.0441 0.4588 0.0149 0.1481 0.0169
            
Trips With Others Second Day 0.012 0.0017 0.0613 0.0038 0.1131 0.0066 1.7628 0.0239 0.1401 0.0102
            
Trips Unknown Second Day 0.0012 0.0008 0.0015 0.0004 0.0009 0.0005 0.0172 0.003 0.0058 0.0017
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Table 7 Significance of person and household factors in cluster composition 
 
 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Employed at interview time (significant for all clusters) 
Yes 0.3838 0.3373 0.0680 0.1382 0.0727
No 0.1999 0.2450 0.2718 0.1147 0.1686
Age Group (* means not significant at 5%) 
15-17 0.0599 0.0519 0.3696 0.2954 0.2232
18-24 0.3018* 0.1730 0.1234 0.2596 0.1422*
25-34 0.3214 0.3015 0.1423 0.1295 0.1054*
35-44 0.2847 0.4278 0.1001 0.1124 0.0749
45-54 0.3940 0.3382 0.0695 0.1213 0.0770
55-64 0.3989 0.2784 0.1193* 0.1072 0.0963
65-98 0.2515* 0.2194 0.2721 0.0910 0.1660
Number of children ages 1 to 5 (significant for all clusters) 
0 0.3357 0.2853 0.1289 0.1375 0.1127
1 0.1840 0.4408 0.2106 0.0834 0.0813
2 0.1964 0.3891 0.2698 0.0704 0.0743
3 0.2531 0.2055 0.4343 0.0560 0.0511
4 0.1918 0.5020 0.2204 0.0858 0.0000
6 0.0008 0.5029 0.3488 0.0000 0.1474
Number of children ages 6 to 17 (significant for all clusters) 
0 0.3680 0.2447 0.1416 0.1286 0.1171
1 0.2338 0.4025 0.1308 0.1388 0.0941
2 0.1787 0.4684 0.1460 0.1280 0.0789
3 0.1459 0.4613 0.1866 0.1162 0.0899
4 0.0914 0.4183 0.2781 0.1198 0.0923
5 0.0801 0.5185 0.2015 0.0995 0.1004
6 0.0263 0.4218 0.3945 0.1504 0.0069
Note: Other variables included are: number of household cars, year of the survey, first year when the 
person entered panel, county of residence, and recruitment sample. 
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Table 8 The sequence of models estimated for activity and travel 
 
  LogL BIC Parameters
Model 1 1-Cluster -1185677 2371986 61
Model 2 2-Cluster -1087068 2175254 108
Model 3 3-Cluster -1055890 2113383 155
Model 4 4-Cluster -1035485 2073060 202
Model 5 5-Cluster -1029321 2061217 249
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Table 9 Average values of criteria variables within each of the five activity-travel cluster 
 
 Cluster1 Cluster2 Cluster3 Cluster4 Cluster5  
Variables used to create clusters (Y)       

 Average Average Average Average Average Total 

Trips in day 1 3.69 3.60 6.44 3.30 6.45 
       
Travel time to work related places in day 1 6.06 19.37 26.83 13.50 68.29 
        
Travel time to non work related places in day 1 62.53 40.23 80.89 44.23 107.72 
       
Total amount of time in all activities in day 1 283.89 541.70 595.32 498.02 473.70 
        
Trips in day 2 3.69 3.34 6.45 3.13 5.12 
        
Travel time to work related places in day 2 6.06 18.34 25.10 13.50 63.47 
        
Travel time to non work related places in day 2 62.22 38.92 97.15 43.86 70.49 
        
Total amount of time in all activities in day 2 277.71 531.42 602.20 498.82 451.21 
       
Cluster Size 0.318 0.2353 0.1889 0.1887 0.0691 1
Cluster Size in % 31.8 23.53 18.89 18.87 6.91 100
Number of cases 31117 BIC 2061217   
Number of parameters (Npar) 249 AIC 2059139  
Log-likelihood (LL) -1029321 CAIC 2061466  
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Table 10 Significance of person and household factors in activity-travel cluster composition 
 
 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Employed at interview time (significant for all clusters) 
Yes 0 0.3399 0.273 0.2912 0.0958
No 0.8636 0.0559 0.0446 0.0127 0.0232
Age Group  
15-17 0.7634 0.0873 0.0656 0.0765 0.0072
18-24 0.2699 0.2605 0.1884 0.2278 0.0533
25-34 0.1628 0.2956 0.2183 0.2477 0.0756
35-44 0.1342 0.305 0.248 0.2265 0.0863
45-54 0.1361 0.2952 0.236 0.2389 0.0937
55-64 0.3823 0.1973 0.1776 0.1743 0.0684
65-98 0.8105 0.0634 0.0572 0.0402 0.0287
Number of children ages 1 to 5 (significant for all clusters) 
0 0.3284 0.2307 0.1874 0.1857 0.0677
1 0.2401 0.2687 0.2068 0.2037 0.0806
2 0.2637 0.261 0.184 0.2144 0.0769
3 0.3434 0.2616 0.147 0.225 0.023
4 0.4615 0.0671 0.2313 0.2213 0.0187
6 0.5 0.0052 0.465 0 0.0298
Number of vehicles in household 
1-2 0.4183 0.2155 0.1643 0.1505 0.0513
3 0.3166 0.2411 0.1873 0.1868 0.0683
4 0.2784 0.2363 0.2038 0.2066 0.0748
5+ 0.2368 0.2442 0.2062 0.2229 0.0898
Note: Other variables included are: year of the survey, first year when the person entered panel, county of 
residence, and recruitment sample. 
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Mean values of membership probabilities per cluster and year 

Year of wave Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 

1989 .3065 .3345 .1310 .1370 .0910 

1990 .3102 .3207 .1370 .1412 .0910 

1992 .3173 .3231 .1462 .1169 .0965 

1993 .3131 .3068 .1429 .1223 .1150 

1994 .3106 .2896 .1571 .1356 .1070 

1996 .3086 .3145 .1415 .1202 .1153 

1997 .3316 .2928 .1440 .1193 .1122 

1999 .3030 .2842 .1607 .1388 .1133 

2000 .3435 .2655 .1260 .1354 .1297 

Total .3160 .3033 .1430 .1296 .1080 

 

 
Figure 1 Values of the γs and membership probabilities for each year in the panel for the joint-solo 
clusters 
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Figure 2 Average probability of cluster membership in relation to age group 
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Figure 3 Values of the γs for year in the panel for the activity-travel clusters 
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Figure 4 Time evolution of the activity and travel clusters in PSTP 


