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Abstract 

Progress in activity-based modeling has recently focused on scheduling and rescheduling deci-
sions (e.g. Gärling et al., 1999). In contributing to this line of research, the authors suggested a 
comprehensive model, called Aurora, of activity rescheduling decisions as a function of time 
pressure (Timmermans, et al., 2001).  While the original paper focused on duration adjustment 
and schedule composition, later the proposed theory was elaborated and extended to include 
many different facets of activity rescheduling behavior (Joh et al., 2001, 2002).  Numerical simu-
lations supported the face validity of the model. Given the potential of the model, the next phase 
in the research project is concerned with the estimation of this complex, non- linear model. This 
paper develops and tests an appropriate estimation method for the model, using a combination 
of theory and dedicated genetic algorithms. Results of numerical experiments are discussed. 
The paper first summarizes the theory underlying the model. Next, a method to estimate the 
model is proposed.  The properties of this method are explored numerically using simulated 
data. The estimation method is tested using both perfect and noisy data. Finally, some conclu-
sions are drawn and avenues for future research are suggested. 
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1. Introduction 

Progress in activity-based modeling has recently focused on the analysis and modeling of the 
process of scheduling and rescheduling activities. An example of such research is Gärling et 
al. (1999), who addressed the problem of how activity scheduling is influenced by time pres-
sure. They suggested that when faced with time pressure, individuals will first try to compress 
the duration of activities, or try to reschedule them. If this is not sufficient, then individuals 
are assumed to prioritize activities and eliminate the one with the lowest priority. This process 
is continued until the total duration is below some threshold. 

 

Over the last few years, the authors developed a more comprehensive model, called Aurora. 
The model can be viewed as a successor of the Albatross model (Arentze and Timmermans, 
2000) and is conducted in the context of the Amadeus  research program1. The system is more 
comprehensive in that it allows modeling the dynamics of activity scheduling and reschedul-
ing decisions as a function of unexpected events during the execution of activity programs. 
The model incorporates several behavioral principles and decision styles, including risk-
avoiding and opportunistic behavior. While the original paper focused on duration adjustment 
and schedule composition (Timmermans et al., 2001), later the proposed theory was elabo-
rated and extended to include many different facets of activity rescheduling behavior (Joh et 
al., 2001a). Several numerical simulations supported the face validity of the model. 

 

Ultimately, however, the model should be derived from empirical data. The question then be-
comes how the parameters of the model can be estimated. This is certainly not a trivial ques-
tion as the researcher is faced with several problems. First, the model has no algebraic solu-
tion. Secondly, the theory underlying the model argues that scheduling decisions are state-
dependent. Finally, the model should satisfy several sets of discontinuous constraints. 

 

                                                 
1 Amadeus is a collaborative research program that aims at developing models to assess the long-term, 
mid-term and short-term implications on activity-travel patterns of multi-modal transportation sys-
tems. The program is sponsored by NWO and involves research teams from the universities of Am-
sterdam, Delft, Eindhoven and Utrecht. The scope and objectives of the program are discussed in Ar-
entze et al. (2001). 
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The present paper reports on the development and test of such an estimation method. First, we 
will summarize the theory underlying the model. Next, a method to estimate the model is pro-
posed and the properties of this method are explored. Finally, some conclusion will be drawn. 

 

2. Theory 

2.1 Activity utility function 

Central to the model is that individuals derive some utility from being involved in activities. 
This utility U is a function of the duration v of the activity.  In particular, the functional form 
can be expressed as: 
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where, 

 

α, β , γ, αx, βx and Ux are activity-specific parameters, the values of which differ between ac-
tivities; 

v is the duration of the activity; 
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T denotes the activity history, i.e. the time elapsed since the last implementation of the activ-
ity; 

Umax asymptotically determines the maximum utility of the activity, which is a function of T. 

 

Activity utility is assumed to be a monotonically increasing function of activity duration. 
Unlike previous authors  (e.g., Becker, 1965; Kitamura, 1984), we assume that the utility first 
increases at an increasing rate and then increases at a decreasing rate. That is, we assume that 
involvement in an activity first involves an unsaturated, warming-up period where each addi-
tional unit of involvement (duration) increases utility at an increasing rate. After reaching the 
maximum marginal utility at some duration (inflection point), experiences become saturated, 
and the marginal utility decreases with every additional time unit of further involvement. This 
notion can be captured in terms of an asymmetric S-shaped curve with an inflection point, as 
opposed to the commonly assumed logarithmic curve of monotonically decreasing marginal 
utility. 

 

Figure 1 portrays the model and illustrates the effect of the parameters. The α parameter de-
termines the duration at which the marginal utility reaches its maximum value (inflection 

point). A larger α-value shifts the curve to the right, implying a longer warming-up period. 

The β  parameter determines the slope of the curve. A larger β-value represents a steeper curve, 
implying that some fixed change in duration results in a larger change in utility. Thus, a larger 

β-value means that the utility is more sensitive to the duration and hence less flexible in terms 

of adaptation. The γ parameter determines the relative position of the inflection utility. If the 
value is close to 1, the curve approximates a symmetric curve, and the inflection point is in 
the middle between the maximum utility and zero. When the value approximates 0, the utility 
at the inflection level is close to zero, implying that marginal utility is diminishing at virtually 
all levels of duration. 

 

The maximum utility Umax of an activity is not fixed, but is assumed to be determined by the 
context of the current schedule. We postulate that Umax depends on the activity history, i.e. the 
time elapsed since the last implementation of the activity. When an activity has been con-
ducted a long ago, the utility of conducting that activity is assumed to increase. We postulate 
that the functional form describing the impact of history on the maximum utility is also S-
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shaped. The utility of conducting an activity when it just has been performed will be small. 
The need to conduct that activity again will then systematically increase, until a certain upper 
limit of Umax has been reached. We simplify the functional form of Umax to the symmetric case.  

 

Figure 1. Impacts of utility parameters 

 

  

The utility of an activity can then be computed, given the estimated α, β , γ, αx, βx and Ux, and 
the duration v and history T of the activity.  Note that the model can be extended by further in-
corporating into the Umax function other decision dimensions such as activity sequence, loca-
tion, transport mode, accompanying person, etc. 
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2.2 Schedule adjustment 

Faced with time pressure, an individual is assumed to proceed with a series of mental proc-
esses of schedule adjustment and implement the best schedule. In the proposed model, various 
operators are assumed to accomplish schedule adjustment s (Joh et al., 2002). The schedule 
composition operator changes the list of activities included in a schedule by deleting, inserting 
and substituting activities. Sequencing, location, transport mode and accompanying person 
operators change the means of implementing the concerned activity. The application of the 
operators leads to incremental mental adjustments of the schedule and continues until no more 
improvement is possible. 

 

2.3 Problems with estimation 

Assume that we know in advance the maximum level of utility Umax of each activity, and we 
can observe the level of utility U of each activity over time. We could then linearize the 
suggested activity utility function and, using the information of duration v of the observed 

schedule data, directly solve the equation for the parameter values α, β  and γ for each activity.  
This is unfortunately not the case because the ut ilities of the activities (U and Umax) are 
unobservable and unknown. Furthermore, unlike the logarithmic function of ever-diminishing 
marginality (e.g., Kitamura, 1984), the suggested utility function of the current research does 
not provide the algebraic solution for the optimum durations of the maximum schedule utility. 
Therefore, we cannot directly ‘solve’ the estimates but have to ‘find’ the estimates that best fit 
the observed durations by searching iteratively multiple combinations of parameter values. 
The number of such combinations would however be prohibitively large for an exhaustive 
search. 

 

2.4 Estimation method 

For the above reasons, we suggest a heuristic method that searches only part of the entire 
solution space, but at the same time, provides good, near optimum solutions. The method is 
based on the critical assumption that the marginal utility of activities in the schedule is the 
same. If this would not be the case, an individual would further adjust durations to increase 
the total utility. The duration of the activity of the higher marginal utility will be increased 
while the duration of the other activity will be decreased. 
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In principle, based on these theoretical decisions, an estimation method could be developed. 
However, the numerical value of the equal marginal utility of the schedule is unknown in real-
ity, and multiple solutions for the parameter estimates that satisfy the equal marginal utility 
across activities of the schedule could exist. Therefore, an additional assumption is required.  
To find a solution, we postulate that the level of equal marginal utility of the schedule is 
partly reflected by the amount of time pressure of the schedule, measured as the total duration 
of the fixed activities of the schedule, and the number of activities. The numerical level of 
equal marginal utility can then be approximated as a function of these variables. The rationale 
behind this assumption is that given the number of activities, higher time pressure (less avail-
able time) would raise the level of equal marginal utility. On the other hand, given the time 
pressure, a larger number of activities would raise the marginal utility for each activity. These 
assumptions seem appropriate given our theory especially for saturated activities. Equation 
(3) expresses this critical assumption. 

 

( ) kk X
v

vU δ
αβγ

αββ
γ

Σ=
−+

−
+1/1

max

)](exp[1
)](exp[   ∀a∈S  (3) 

 

where, 

 

Xk is the kth attribute of the equal-marginal-utility function (X1 = fixed duration, X2 = number 
of activities of the schedule); 

δk is the marginal contribution of the kth attribute Xk to the level of equal marginal utility, 
which is attribute-specific; 

S denotes the current schedule. 

 

By solving equation (3) for v, given each of the combinations of possible values of parameters, 
the overall goodness-of- fit of the predicted set of parameter values can be calculated as: 
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lal GG Σ=          (4) 

 

with 

 

|| p
a

o
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vvG −=         (5) 

 

where, 

 

Gl is the goodness-of- fit of the lth predicted combination of parameter estimates, where l = 1, 
…, L, and L is the number of the parameter values combinations to be examined; 

laG  is the goodness-of-fit of the lth predicted combination of parameter estimates for activity 

a; 

o
av  and p

al
v are respectively the observed duration of activity a and the duration of activity a 

predicted by the lth predicted combination of parameter values. 

 

The set of parameter values that corresponds to the best goodness-of- fit can then be identified. 

 

Still, however, some further operational problems need to be solved for obtaining the duration 
prediction vp in order to compute the goodness-of- fit of the associated set of predicted pa-
rameter estimates. First, there is no direct, algebraic solution for vp that satisfies equation (3), 
and therefore, we used an algorithm of golden section search to ‘find’ the duration instead of 
‘solving’ it. 

 

Secondly, the predicted set of parameter values may have no cross points between the equal 
marginal utility line given by the RHS of equation (3) and the marginal utility curve given by 
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the LHS of equation (3). That is, it may be the case that the predicted time pressure goes be-
yond the maximum of the marginal utility. It then has no cross points for the corresponding 
duration prediction. In reality, it may be that when the time pressure is so high, and the sched-
ule requires very high marginal utilities for activities to be included, the activities with a 
lower maximum marginal utility will not survive, and therefore, we would not observe such 
activities in the schedule. In our estimation, however, we do observe the activity that was im-
plemented in the schedule, and therefore, if the predicted parameters result in no cross points, 
that predicted solution would clearly be wrong. The predicted parameters associated with such 
‘illegality’ and their neighbors should not be visited again in the iterative solution search pro-
cedure enforced by assigning an appropriate size of penalty. To this end, the goodness-of- fit 
of an activity should be revised from equation (5) as: 

 







++−
−

=
solution illegalfor      1440|0|

solution legalfor      ||
gapv

vv
G

o
a

p
a

o
a

a
l

l
  (6) 

 

As implied by this equation, the measure of the goodness-of- fit of the illegal solution for an 
activity is the sum of three sources of differences. The first source of difference is the pure 
difference between observation and prediction. As discussed above, if the time pressure is 
much too high compared with the maximum level of an activity’s marginal utility, that 
activity should not be included in the schedule, and therefore, the predicted duration vp of this 
activity is zero. The second source of difference is a penalty for being illegal. In the current 
study, we used 1 minute as the unit of measurement for duration. The added number 1440 
then means the entire time duration of a day in minutes. Equation (6) distinguishes illegal 
solutions from legal ones by adding this big number, which makes the resulting measure of 
goodness-of- fit worse than any possible legal solution. The final source of difference for the 
illegal solutions is the degree of illegality to make the search sensitive for direction. Figure 2 
illustrates three different solutions of an activity, where the predicted parameter values of this 

activity’s marginal utility curve α, β , γ, αx, βx and Ux are the same, and only the time pressure 

parameter values δ are different. The first solution is legal in the sense that the marginal utility 
curve and the time pressure line (TP1) crosses at least one point. The second and third 
solutions are however illegal, because the marginal utility curve and time pressure lines do not 
cross. The lower part of equation (6) should be applied. The first two terms of the RHS of the 
lower part of this equation are the same for the second and third solutions, which makes their 
goodness-of- fit measure much worse than the first solution. The vertical arrows between the 
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time pressure lines and the maximum of the marginal utility curve makes a further distinction 
between these illegal solutions, which states that the third solution is even worse than the 
second. 

 

Figure 2. Illegality of the solutions 

 

  

Figure 3. Decision of predicted duration 
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Finally, the existence of the equilibrium durations at both sides of the inflection point raises 
the question of how to choose the one that is used for prediction. We let the method choose 
the one that gives the better match. This can be illustrated as in Figure 3. 

 

In the figure, the black dots are the predicted durations vp corresponding to the cross points of 
the observed level of equal marginal utility and the marginal utility curve. The white dot is the 
observed duration vo of this activity. The black dot on the RHS is chosen in this illustration 
because it is closer to the observation than the other black dot. Accordingly, the goodness-of-
fit of an activity is again revised from equation (6) as: 

 




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

++−
−

=
solution illegalfor      1440|0|

solution legalfor      |]max[|
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vv
G

o
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The proposed estimation method can therefore be summarized as: 

 

Minimize: }{ lGG ∈         (8) 

 

Subject to: '
ll aa MUMU =   Saa ∈∀ ',     (9) 

 

where, 

 

G is the goodness-of- fit of the estimated model of the best parameter values combination; 

Gl is defined as equations (4) and (7); 

MUa denotes the marginal utility of activity a, as expressed in the LHS of equation (3). 
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Solving equation (3) for v across activities of the schedule meets the  constraints of equation 
(9) and provides the prediction of activity duration used in equation (7). For each activity of 
the schedule, then the prediction error is computed, and the overall goodness-of-fit of a pre-
dicted combination of parameter values is the sum of prediction errors across activities as in 
equation (4). 

 

3. Algorithm 

Our problem thus is to estimate from schedule data the activity-specific parameters α, β , γ, αx, 

βx and Ux, given the information of duration v, history T and time pressure attribute X. A ge-
netic algorithm was applied to solve equations (8) and (9). The following operational deci-
sions were made. 

 

3.1 Representation of the solution candidates 

We employed a real coding scheme to represent the solution candidates of the real parameter 
values. The real-coding genetic algorithm (RCGA) does not binary-digitalize the real number 
information but uses real numbers directly representing the solutions with minimum and 
maximum possible values (Wright, 1991). Given m parameters to estimate for each of n ac-
tivities and p time-pressure parameters, a solution candidate is represented as an array of 
mn+p elements of real numbers, and an element of a real number represents a corresponding 
parameter. In a preliminary study, this RCGA representation scheme outperformed the ordi-
nary binary representation scheme in terms of precision and the speed. In particular, the in-
creased speed was obtained by the RCGA representation scheme, where the encoded informa-
tion (genotype) for genetic modification and the real form (phenotype) for candidate evalua-
tion are the same, and hence, a decoding process that transforms the genotype information 
into the phenotype is not required. 
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3.2 Genetic operators 

Our RCGA also employed crossover and mutation operators for genetic modification of the 
solution candidates like any other GA. The details of the operators of the RCGA are however 
different from ordinary binary GAs. After a series of preliminary studies, we chose the BLX-
0.5 crossover and Mühlenbein mutation (Herrera et al., 1998). As for crossover, assume two 

solution candidate arrays C1 = [ 11
1 ,.., pmncc + ] and C2 = [ 22

1 ,.., pmncc + ] that are selected from the 

current pool of solution candidates to be modified for the next pool. The hi of the offspring H 

= [ pmnhh +,..,1 ] is determined such that the value randomly lies in-between ω⋅− Icmin  and 

ω⋅+ Icmax , where 1 ≤ i ≤ mn+p, ],min[ 21
min ii ccc = , ],max[ 21

max ii ccc =  and minmax ccI −= . We 

chose 0.5 for ω. As for mutation, assume a randomly selected solution candidate C = 

[ pmncc +,..,1 ]. The '
ic  of the offspring 'C  = [ ''

1 ,.., pmncc + ] is determined such that 

k
k

k
iiii abcc −

=
Σ⋅−⋅±= 2)(1.0
15

0

' η , where ai and bi are the minimum and maximum values that the 

ith parameter can take, ηk is randomly determined to be 1 with a probability of 1/16 and 0 with 
a probability of 15/16, and the + or – sign is chosen with a probability of 0.5. 

 

3.3 Genetic parameters 

After an extensive study, we chose the following operational parameter values for the genetic 
procedure. 

 

- Size of the pool or Number of solution candidates for an iteration = 100 

- Stop condition = 10000 iterations after the initialization 

- Probability of choosing crossover instead of mutation for the current round iteration = 70 % 

- Number of solution candidates selected for crossover from the previous pool = 50 

- Number of solution candidates selected for mutation from the previous pool = 90 

- Selection of solution candidates for modification = Random selection with replacement 

- Probability of mutating a parameter of the solution candidate selected for mutation = 10 % 
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3.4 Overall procedure 

Overall, our RCGA works as follows. � The RCGA randomly initializes 100 solution cand i-
dates, each of which is an array of mn+p real numbers that represent m parameters of n activi-
ties and p time pressure parameters. � It then evaluates each candidate, which is a rather 
complex procedure. Each solution candidate is a prediction of parameter va lues of activity 
utility function at the current step of iteration. Given these values and the time pressure in-
formation of the observed schedules, the system finds the predicted duration of each activity 
included in the observed schedule using the relation of equality between the marginal utilities 
mathematically derived from the utility function and observed from the time pressure attrib-
utes X. The absolute difference between predicted and observed durations of that activity is 
then computed, and these differences are summed across activities of the schedule and finally 
across schedules of the entire data as a measure of goodness-of- fit of the solution candidate. 
� The RCGA selects solution candidates, and the selection probability is proportional to the 
goodness-of- fit. Better goodness-of- fit increases the chance for a candidate to be selected. The 
following probabilistic roulette wheel (Joh et al., 2001b) is used at each time of a selection. 

 

'

''

'

''

l

ll

ll

ll
l G

G

G

G
P

Σ
Σ

Σ
=         (10) 

 

where Pl and Gl are respectively the selection probability and the goodness-of-fit measure of 
the lth solution candidate (l = 1, …, 100). Note that the goodness-of-fit of a candidate is the 
sum of prediction errors across schedules, and hence, a smaller value means a better fit. The 
selection is repeated 100 times with replacement. � Among the selected candidates, the 
RCGA modifies randomly selected 50 (for crossover) or 90 (for mutation) candidates. � The 
RCGA again evaluates the new pool of genetically modified solution candidates. An iteration 
consists of the steps �-�-� and is repeated 10000 times for a run. 
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4. Model Test Results 

Before dealing with any empirical data, we examined the properties of the suggested estima-
tion method on simulated data. The purpose of this study was to investigate whether the sug-
gested method produced the correct results using a set of simulated schedule data. Furthe r-
more, we wanted to better understand the performance of the suggested approach for noisy 
data. To this end, we prepared a set of simulated activity schedule data, which assumed no 
noise for activity duration and time pressure attributes, and a set of activity schedule data, us-
ing the same value with some added amount of noise. In the following, we first examine 
whether the suggested estimation method is capable of reproducing the parameters, and then 
further examine the robustness of the suggested method against various sources of noise in the 
simulated data. 

 

4.1 Estimation results for simulated activity schedules using exact data 

The specification of the model that was used for the simulations is largely the same as the one 
expressed in equations (8) and (9). We however simulated five time pressure attributes, in-

stead of two, and hence we have five time pressure parameters, δ1 to δ5 for the purpose of 
model test. 

 

We assumed two types of activities, which suggests a total of seventeen activity utility pa-

rameters (= 2×6+5) to estimate. The simulated data consists of fifty simulated schedules of 
these two types of activities. A schedule provides information about the duration v and history 
T of each activity and the numerical values of five time pressure attributes X of that schedule. 
The observed history is simulated in the range from 1 to 30 integer values, and the observed 
time pressure attributes are observed in the range from 0 to 100 real values across cases. The 
‘true’ values for parameters were prescribed arbitrarily but reasonably representing assumed 
activities. Given these simulated observations and the true values of the activity utility func-
tion parameters (Table 1), the simulated duration observations for the activities of each 
schedule can be obtained from equation (3). As mentioned in section 3.1, the RCGA needs to 
predefine the minimum and maximum possible values to simulate. The following ranges for 

the parameter values were used: α = 10 ~300; β = 0.01 ~1; γ = 0.1 ~1; αx = 1 ~30; βx = 0.01 
~1; Ux = 50 ~500. 
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The proposed estimation method was run 30 times on the same data. Each run was terminated 
after 10000 iterations. The total of 30 runs took approximately 22 hours to complete, indicat-
ing the complexity of the problem. Table 1 shows the estimation results averaged across the 
30 runs. 

 

Table 1. Estimation results with exact data 

parameter  true value estimated 

activity 1 75 75.31 
α 

activity 2 420 421.39 
activity 1 0.15 0.15 

β 
activity 2 0.10 0.11 
activity 1 0.8 0.58 

γ 
activity 2 0.1 0.27 
activity 1 7 7.64 

αx activity 2 3 3.06 
activity 1 0.15 0.14 

βx activity 2 0.20 0.19 
activity 1 250 307.20 

Ux 
activity 2 150 173.02 

δ1  0.0125 0.01587 
δ2  0.0500 0.06253 
δ3  0.0240 0.02952 

δ4  0.0800 0.09671 
δ5  0.0100 0.01213 

GOF  - 0.09946 

 

Table 1 suggests that the parameter estimates are close to the true parameter values that were 
used for generating the simulated schedule data. This means that if our assumption that ind i-
vidual activity rescheduling behavior is based on equalizing marginal utilities is true, and data 
do not exhibit any noise, the suggested estimation method will produce fairly exact estimates 
of activity utility parameters. 

 

A more detailed inspection of the results suggest that the α, β , αx and βx values are estimated 

more precisely than γ and Ux. This can be explained by examining Figure 4 which portrays 

the marginal impacts of the parameters and shows that the impact of γ and Ux is relatively 

small. In case of γ, it is difficult to recognize the difference in the curve between different γ’s 
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under a certain level of time pressure. In case of Ux, unless the difference is very large (500 
and 100), the curves show little difference between Ux’s (500 and 450). The GA is therefore 
less sensitive to these two parameters in the estimation. In contrast,  changes in duration are 

most sensitive  to the α parameter, which is consistent with the estimation results where the α 
value has the highest accuracy. 

 

Figure 4. Impacts of parameter values on the marginal utility curve 

 

  

An additional concern when estimating these types of functions is the possible linear correla-
tion between parameter estimates. Table 2 shows the correlation between parameter estimates 
over 30 runs of estimation. 
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Table 2. Correlations between parameter estimates 

Activity 1 

 α β  γ αx βx Ux 
α 1 -.616** -.842** -.415* .493* -.567** 

β  -.616** 1 .698** .935** -.943** .899** 

γ -.842** .698** 1 .410 -.453* .654** 

αx -.415* .935** .410* 1 -.990** .839** 

βx .493* -.943** -.453* -.990** 1 -.842** 
Ux -.567** .899** .654** .839** -.842** 1 

 

Activity 2 

 α β  γ αx βx Ux 
α 1 .610** -.551** -.201 .200 -.871** 

β  .610** 1 .322 .106 -.097 -.258 

γ -.551** .322 1 .340 -.341 .769** 

αx -.201 .106 .340 1 -.921** .402 

βx .200 -.097 -.341 -.921** 1 -.424* 
Ux -.871** -.258 .769** .402 -.424* 1 

Note: * and ** denotes that the correlation is significant at the 0.05 and 0.01 levels, respec-
tively. 

 

Table 2 shows that there exist significant linear correlations between parameter estimates. 
These results suggest that when dealing with the empirical data, a sequential estimation strat-
egy may be preferable if we face substantial interaction between parameter estimates, result-

ing in unstable parameter estimates over runs. As shown in Figure 4, the α parameter is most 
sensitive to the change in the duration and is thus expected to be most accurate and stable in 
prediction, which is proven in Table 1. The sequential estimation may therefore begin with 

the estimation of α given other parameter values of averages of the initial simultaneous esti-
mations. In fact, preliminary tests suggest that indeed considerably more stable parameters 
were obtained when using a sequential estimation procedure. A detailed discussion of these 
results is beyond the scope of the present paper.   
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4.2 Estimation results for simulated activity schedules using noisy data 

Three types of noise were considered: (i) rounding of reported activity duration,  (ii) inexact 
observation of the time pressure attributes and (iii) inexact observation of activity duration. 
These sources of noise can be expressed in a single equation as: 

 

( ) n
vn

vn eX
ev

evTU
+Σ=

+−+

+−−−
+

δ
αβγ

αβαββ
γ 1/1

xxx

))]((exp[1

))]((exp[)]](exp[exp[
)

)
 (11) 

 

where, 

 

v)  is the duration rounded by  respondents ; 

en is the error term of the time pressure for the nth observed schedule; 

evn is the error term of the duration observation. 

 

The goal of the analysis here was to examine the robustness of the suggested estimation 
method in the presence of such noise for each source separately, one at a time. 

 

4.2.1 Rounding noise 

The simulated data represent activity duration to the precision of three digits after decimal 
points. Given the simulated observed T and X, a search algorithm finds the value of v based 
on equation (3) at this level of precision. Table 3 presents an example of the simulated data, 
whereas Table 4 presents the estimation results for different degrees of rounding error. 
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Table 3. Example of the simulated schedule data (no rounding, 1-minute and 5-minutes 
rounding) 

no rounding 
case v1 v2 T1 T2 X1 X2 X3 X4 X5 

1 85.616 422.797 24 25 2.62 29.41 59.2 23.3 23.68 
2 96.986 421.676 22 1 9.40 5.72 14.58 2.44 21.95 
3 88.115 421.881 17 7 44.35 0.35 45.41 12.54 63.88 
4 89.351 427.553 18 8 11.11 32.59 0.34 12.14 19.60 
5 83.345 427.412 12 23 40.48 9.26 50.68 14.46 86.35 
6 92.574 436.768 26 22 8.27 10.79 22.74 4.25 70.86 
7 93.965 438.813 23 16 1.80 5.78 39.95 3.80 22.22 
8 75.334 444.023 2 22 21.04 7.56 9.96 0.91 24.98 
9 91.649 434.218 27 15 4.65 4.73 34.40 6.20 92.67 
10 82.997 425.829 12 17 53.92 17.02 11.46 24.87 54.58 
… … … … … … … … … … 

 
1-minute rounding 

case v1 v2 T1 T2 X1 X2 X3 X4 X5 
1 86 423 24 25 2.62 29.41 59.2 23.3 23.68 
2 97 422 22 1 9.4 5.72 14.58 2.44 21.95 
3 88 422 17 7 44.35 0.35 45.41 12.54 63.88 
4 89 428 18 8 11.11 32.59 0.34 12.14 19.6 
5 83 427 12 23 40.48 9.26 50.68 14.46 86.35 
6 93 437 26 22 8.27 10.79 22.74 4.25 70.86 
7 94 439 23 16 1.8 5.78 39.95 3.8 22.22 
8 75 444 2 22 21.04 7.56 9.96 0.91 24.98 
9 92 434 27 15 4.65 4.73 34.4 6.2 92.67 
10 83 426 12 17 53.92 17.02 11.46 24.87 54.58 
… … … … … … … … … … 

 
10-minutes rounding 

case v1 v2 T1 T2 X1 X2 X3 X4 X5 
1 90 420 24 25 2.62 29.41 59.2 23.3 23.68 
2 100 420 22 1 9.4 5.72 14.58 2.44 21.95 
3 90 420 17 7 44.35 0.35 45.41 12.54 63.88 
4 90 430 18 8 11.11 32.59 0.34 12.14 19.6 
5 80 430 12 23 40.48 9.26 50.68 14.46 86.35 
6 90 440 26 22 8.27 10.79 22.74 4.25 70.86 
7 90 440 23 16 1.8 5.78 39.95 3.8 22.22 
8 80 440 2 22 21.04 7.56 9.96 0.91 24.98 
9 90 430 27 15 4.65 4.73 34.4 6.2 92.67 

10 80 430 12 17 53.92 17.02 11.46 24.87 54.58 
… … … … … … … … … … 

 

As expected, more rounding error results in less accurate estimates, in particular the γ and Ux 
estimates as discussed in Figure 4. Considering the homogeneous activity durations resulting 
from the rounding, however, the results are rather accurate and promising. 
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Table 4. Estimation results with rounded data 

parameter  true value no rounding 1 minute 
rounding 

10 minutes 
rounding 

activity 1 75 75.31 75.89 80.11 
α 

activity 2 420 421.39 421.80 422.92 
activity 1 0.15 0.15 0.14 0.18 

β 
activity 2 0.10 0.11 0.11 0.13 
activity 1 0.8 0.58 0.27 0.76 

γ 
activity 2 0.1 0.27 0.48 0.87 
activity 1 7 7.64 6.61 9.14 

αx activity 2 3 3.06 3.02 3.18 
activity 1 0.15 0.14 0.15 0.13 

βx activity 2 0.20 0.19 0.20 0.19 
activity 1 250 307.20 248.52 171.89 Ux 
activity 2 150 173.02 176.77 142.70 

δ1  0.0125 0.01587 0.01603 0.00979 
δ2  0.0500 0.06253 0.06445 0.04069 
δ3  0.0240 0.02952 0.03003 0.02402 
δ4  0.0800 0.09671 0.09735 0.07987 
δ5  0.0100 0.01213 0.01211 0.01197 

GOF  - 0.09946 0.34374 11.81063 

 

4.2.2 Time pressure attribute observation noise 

To study this effect as expressed as en in the RHS of equation (11), two scales of the error 

were introduced using a normal distribution N (0,σ 2). One has a standard deviation size of 10 
% of the average time pressure level 2.7, and the other the standard normal distribution. That 
is, en ~ N (0,0.272) and en ~ N(0,1). The results are described in Table 5. 

 

Several interesting observations can be made from Table 5. First, the estimates appear to be 
relatively robust against this type of noise. Secondly, the scale seems to affect the results. If 
the estimation method is perfect, the introduction of a random error term en in the RHS of 
equation (11) should not affect the results. Given the limited number of simulated observa-
tions and the small size of time pressure, however, the result is not very disappointing. The 
random error of scale std = 1 seems to confuse the GA too much. Increasing the number of 
observations should improve the estimation results. Optionally, a sequential estimation of the 
time pressure parameters would improve the accuracy, which takes a linear regression analy-
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sis of equation (3) with the scalar value of estimated marginal utility in the LHS of the equa-
tion. 

 

Table 5. Estimation results with noisy time-pressure data 
parameter  true value no noise std = 0.27 std = 1 

activity 1 75 75.31 77.93 80.37 
α 

activity 2 420 421.39 424.66 426.76 
activity 1 0.15 0.15 0.17 0.19 

β 
activity 2 0.10 0.11 0.13 0.13 
activity 1 0.8 0.58 0.58 0.16 

γ 
activity 2 0.1 0.27 0.19 0.18 
activity 1 7 7.64 6.93 11.16 

αx activity 2 3 3.06 3.42 3.71 
activity 1 0.15 0.14 0.16 0.12 

βx activity 2 0.20 0.19 0.16 0.27 
activity 1 250 307.20 211.23 361.45 

Ux 
activity 2 150 173.02 126.98 178.28 

δ1  0.0125 0.01587 0.01767 0.03461 
δ2  0.0500 0.06253 0.06288 0.09891 
δ3  0.0240 0.02952 0.03223 0.07479 
δ4  0.0800 0.09671 0.09972 0.09974 

δ5  0.0100 0.01213 0.00759 0.02435 

GOF  - 0.09946 4.59547 11.60373 

 

4.2.3 Duration measurement noise 

Measurement error evn is added to the duration both in the numerator and denominator of the 

LHS of equation (11) as vnev + . Errors were assumed to be drawn at random from a normal 

distribution N (0,σ2). Table 6 gives an example, where “std10% act1” means that the error is 

randomly drawn from a normal distribution of size σ, which is 10 % of the average duration 
of activity 1 in the data. The average simulated duration of activity 1 and activity 2 is 86 and 
429 minutes, respectively. Hence the “std10%” condition includes the error evn ~ N(0,8.62) for 
activity 1 and evn ~ N(0,42.92) for activity 2 added to the duration v in both the numerator and 
the denominator of the LHS of equation. The “std5%” condition results in evn ~ N(0,4.32) for 
activity 1 and evn ~ N(0,21.452) for activity 2. Table 6 gives an example of the measurement 
noise simulated in this way. 

 



10th International Conference on Travel Behaviour Research 
_______________________________________________________________________August 10-15, 2003 

22 

 

Table 6. Data with measurement error of different sizes 
error size of 10% of average duration 

original duration introduced error duration with error 
case 

activity 1 activity 2 std10% act1 std10% act2 activity 1 activity 2 
1 83.720 442.837 -16.19 -13.34 67.530 429.497 
2 84.856 423.586 -2.76 -76.64 82.096 346.946 
3 93.901 436.775 -20.59 31.91 73.311 468.685 
4 85.396 431.398 -6.86 -19.63 78.536 411.768 
5 91.466 434.846 2.93 -10.68 94.396 424.166 
6 90.889 430.142 10.94 -58.65 101.829 371.492 
7 87.401 427.610 4.53 39.37 91.931 466.980 
8 92.693 422.688 8.47 -41.10 101.163 381.588 
9 90.541 430.078 4.88 28.22 95.421 458.298 

10 89.534 431.238 -4.73 -1.59 84.804 429.648 
… … … … … … … 

error size of 5% of average duration 
original duration introduced error duration with error 

case 
activity 1 activity 2 std5% act1 std5% act2 activity 1 activity 2 

1 83.720 442.837 -8.09 -6.67 75.630 436.167 
2 84.856 423.586 -1.38 -38.32 83.476 385.266 
3 93.901 436.775 -10.3 15.95 83.601 452.725 
4 85.396 431.398 -3.43 -9.82 81.966 421.578 
5 91.466 434.846 1.47 -5.34 92.936 429.506 
6 90.889 430.142 5.47 -29.32 96.359 400.822 
7 87.401 427.610 2.27 19.68 89.671 447.290 
8 92.693 422.688 4.23 -20.55 96.923 402.138 
9 90.541 430.078 2.44 14.11 92.981 444.188 

10 89.534 431.238 -2.37 -0.79 87.164 430.448 
… … … … … … … 

 

To investigate the effect of the duration measurement noise, we tested two sets of simulated 
schedule data of different sizes. The estimation results are shown in Table 7. 

 

The following observations can be made. As for the sample size, the bigger sample (n=200) 
returns a better result than the smaller sample (n=50). As for the goodness-of- fit, the size of 
the GOF of the estimated model is almost the same with the size of the error introduced to the 
duration measurement, and the estimations are all converged. The figures of Table 8 are the 
results averaged across n cases. 
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Table 7. Estimation results with measurement noise on the data of dif-
ferent sizes 

50-cases data 
parameter true value no error std = 10% std = 5% 

activity 1 75 75.31 83.20 82.74 
α 

activity 2 420 421.39 410.46 418.40 
activity 1 0.15 0.15 0.47 0.24 

β 
activity 2 0.10 0.11 0.04 0.08 
activity 1 0.8 0.58 0.64 0.64 

γ 
activity 2 0.1 0.27 0.53 0.62 
activity 1 7 7.64 17.38 11.09 

αx activity 2 3 3.06 6.47 6.45 
activity 1 0.15 0.14 0.22 0.32 

βx activity 2 0.20 0.19 0.34 0.33 
activity 1 250 307.20 207.95 166.70 

Ux 
activity 2 150 173.02 430.42 390.40 

δ1  0.0125 0.01587 0.04447 0.04911 
δ2  0.0500 0.06253 0.01751 0.04327 

δ3  0.0240 0.02952 0.05218 0.06489 
δ4  0.0800 0.09671 0.05001 0.05607 
δ5  0.0100 0.01213 0.00807 0.01505 

GOF  - 0.09946 44.00144 22.10836 
 

200-cases data 
parameter true value no error std = 10% std = 5% 

activity 1 75 75.57 79.03 78.58 
α 

activity 2 420 421.31 421.55 423.48 
activity 1 0.15 0.15 0.18 0.17 

β 
activity 2 0.10 0.11 0.05 0.06 
activity 1 0.8 0.51 0.70 0.63 

γ 
activity 2 0.1 0.44 0.55 0.62 
activity 1 7 7.65 8.91 7.42 

αx activity 2 3 3.02 6.13 6.05 
activity 1 0.15 0.14 0.14 0.15 

βx activity 2 0.20 0.19 0.30 0.29 
activity 1 250 288.17 288.00 279.12 

Ux 
activity 2 150 174.95 326.01 271.48 

δ1  0.0125 0.01522 0.02678 0.02406 
δ2  0.0500 0.06057 0.06283 0.07522 
δ3  0.0240 0.02835 0.03579 0.04032 

δ4  0.0800 0.09343 0.09786 0.09879 
δ5  0.0100 0.01176 0.01231 0.01332 

GOF  - 0.17417 36.42288 18.13449 
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Table 8. Goodness-of- fit across error sizes 
sample size error size GOF error sum 

std=10% 44.00 47.97 n = 50 
std=5% 22.11 23.98 

std=10% 36.42 37.41 n = 200 std=5% 18.13 18.70 
Note: The introduced error sum = |e1n|+|e2n|. 

 

As for the accuracy of the estimates, the estimates are not very accurate for some parameters 
for noisy data. Moreover, the inaccuracy is amplified with the size of the introduced error 
across parameters of both activities in both data sets. The reason may be the following. When 
measurement error evn is introduced from a normal distribution, duration for the actual estima-

tion is changed to vnev + . If the estimation method is insensitive to the introduced random du-

ration error, the marginal utility (the LHS of equation) should be averaged to the true values. 

In other words, given the marginal utility )(vfMU = , ( ) 2/)()()( evfevfvf −++≈ . For exam-

ple, the marginal utility of the true duration 440 should (more or less) be the same as the aver-

age of two marginal utilities of duration 440+40 and duration 440-40. Assume that α, β , γ, αx, 

βx and Ux are 75, 0.15, 0.8, 7, 0.15 and 250, respectively, T is 15, and the average duration v 
is 86. Then, the std of the random error is 8.6 and 4.3, which are 10 % and 5 % of the average 
duration, respectively. The average of the absolute values of the error randomly drawn from 
these sizes then was 6.7 and 3.3, respectively. Figure 5 shows the error-size impacts in terms 

of the difference between )(vf  and ( ) 2/)7.6()7.6( −++ vfvf  for error size of 10% and the 

difference between )(vf  and ( ) 2/)3.3()3.3( −++ vfvf  for error size of 5%. The error-

averaged marginal utility is drawn as bold lines. 

 

The difference between the two is explained in Figure 6. In both figures, the thin, dotted and 
bold lines respectively denote the true value, the value with negative error, and the value with 
the positive error. 
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Figure 5 Average marginal utility curve with exact measurement and with measurement 
error of 10% (LHS) and 5% (RHS) of average duration 

 

  

Figure 6 Marginal utility curve with exact measurement and with measurement error of ±10% 

(LHS) and ±5% (RHS) of average duration 

 

  

The introduction of a single measurement error changes the α value, and hence, the inflection 
point of the critical point of the function. As long as the introduced measurement error is from 
a symmetrical normal distribution, however, the averaged marginal curve maintains the 

inflection point as before, which also keeps the predicted α values as before. Meanwhile, all 
other aspects of the functional curve changes as can be seen in Figure 5. As a result, the error 

introduction from a symmetric (normal) distribution implies the disruption of estimates of β , 
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αx and βx to some extent, but not α. In fact, throughout the estimation simulation, the α esti-
mate was relatively irrelevant to the measurement error size. 

 

5. Conclusions 

This paper has reported some main findings of a study, which aimed at developing an estima-
tion method for deriving the parameters of the Aurora model.  Unlike other utility models of 
time use, Aurora is based on a complex asymmetric S-shaped utility function. While we argue 
that this specification has some clear theoretical advantages, the estimation of the model be-
comes highly complex. Before applying a method to real empirical data, we felt it was impor-
tant to first study the performance of the suggested approach to simulated data. 

 

The suggested estimation uses a combination of searching the solution space, using a tailored 
genetic algorithm and some theoretical concepts. In particular, a key assumption is that an ac-
tivity schedule is the result of equalizing the marginal utilities of activities subject to time 
pressure. The method was specifically developed for the case where duration (time use) data 
are available. 

 

The results of the simulations suggest that the proposed estimation method performs well on 
the exact data, and reasonably good on the noisy data but with some exceptions of particular 
parameters. The simulated noises were time pressure, duration rounding and overall meas-
urement error in duration. Among the simulated errors, the overall measurement error in dura-
tion has biggest impacts on the accuracy of the parameter estimation, bigger than the error in 
measuring the time pressure variables and the systematic rounding in reporting the duration. 
This suggests the need to attempt to increase the quality of duration data to the extent possi-
ble.  It also shows the typical problems of non-linear models, especially the interaction be-
tween parameter estimates. Considering the latter, we recommend to use a sequential estima-
tion strategy where each parameter is estimated in turn. It did provide the most stable results 
for the present model, and these results can probably be generalized to similar models. 
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Having developed this estimation model, we can apply and test the model to real, empirical 
data. The results of that endeavor will be reported in future publications.  
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