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Abstract

A generalized random utility model including latent vatidy flexible disturbances and combined re-
vealed and stated preferences is considered. It is showithiaaelection distributions governing the
choice probabilities in multiple choices are outputs o#éinfilters and hence can be evaluated by the fast
Fourier transform. In the binary case and under the mostgirelchoice rule, maximization of correct
classifications is tightly related to maximum score maxatian. Parameter estimation is accomplished
by algorithms that seek the solution of a maximum number dfargset of linear inequalities. This is
extended to multiple responses under proper block iid agians on the disturbances, and provided the
random parameters are associated solely to choice invéaiztors such as individual characteristics.
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1. Introduction

Many popular discrete choice models including multinontagiit, multinomial probit and nested logit
models are built upon the random utility maximization (RUiddel (Domencich and Mc Fadden, 1975),
(Ben-Akiva and Lerman, 1985), (Ortuzar and Williumsen, @Q9Greene, 1997), (Bolduc and Ben-
Akiva, 1991),(Koppelman and Sethi, 2000), (Mc Fadden, 2000M as a behavioural model follows
the economists’ theory of consumer behaviour where prefte®are represented by utilities and choices
are made by utility maximizing calculations. Furthermautlities are treated as random rather than
deterministic. This is so because features of the tastel&tenpre heterogeneous across individuals
and hence unknown to the analyst. Likewise unobserved esp&experience and information on the
attributes of alternatives are interpreted as randomifa¢hc Fadden, 2000).

The RUM model postulates that an individuathoosing among < i < k+1 alternatives, bases his/her
decision on the random utilitids,,; associated with these alternatives. In particular thersdtéze with
the maximum utility is chosen. The most popular utility regentation is the linear in the parameters
form

Uni = Zzz'ﬁn + €ni (1)

or in matrix form
Un = Z’nﬁn + €p (2)

T denotes matrix transpose. The rows of maffix z., represent the factors that affect utility of indi-
vidualn for alternativei. 3,, designates the vector of weights individuattaches to these factors. The
disturbance term,, incorporates unobserved characteristics of attributdeoéthe individual that render
utilities unobservable, latent variables. The decisiokena chooses alternativiif

for all j in the set of alternatives faced ly The above choice is not observable by the analyst,who is
then content to assess the probabilities of choosing e&aimative; by the rule

Supposé(n) is the chosen alternative by the individual A set of measurements,,, i(n)) over a set
of N individuals provides a window through which we observe Bauid eq.(3). Parameter estimation
is then performed using the above set of measurements angtiarization criterion. The most popular
practice rests upon maximization of the log likelihood ftioie

N
L(B) =) log Pu(i(n); fn) (5)

An alternative to maximum likelihood optimisation rule ciatered in this paper, relies on maximization
of correct classifications through the most probable &ditdra rule. Since the analyst has no access to the
latent utilities due to the unobserved disturbances h&aheot deduce the winning alternatiye ) from
utility maximization (3). A reasonable guess for the antilyshe most probable choié(an) satisfying

Pn@(”)aﬂn) = lgrjr,l§3i(+1 Pn(.%ﬂn) (6)
On the basis of the most probable choice rule, a paramettrngclassifies correctly an individualin
the data set if

Po(i(n); B) = Pu(i(n); 8) ()
thatis A
Po(i(n); B) > Pu(§;8),  1<j<k+1,  j#i(n) (8)

Parameter estimation is then performed by maximizing thaber of correct classifications in a given
data set. This approach is tightly related to maximum scetienation studied and made operative by
(Manski, 1975; 1986). Both maximum likelihood and maxintiaa of correct classifications based on
the most probable alternative are discussed in subsegemiurss.
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The model capability to approximate the real choice proe@ssto improve reliability of the resulting
forecasts is enhanced if the role of the disturbances, tterfaand the measurements are further clarified.
This is done in the next section along the lines of the integiahoice model developed in (Walker and
Ben Akiva, 2002). Section 3 defines the selection distrdngi Section 4 deals with the binary choice
case. Section 5 discusses multiple choices. Conclusiensuanmarized in section 6.

2. Model specification

Model specification results from the split of roles of the arajctors involved in the choice equations.
The linear form is maintained throughout. Measurementshioerevealed preferences (RP) and stated
preferences (SP). Disturbances are split into flexible awd disturbances. Flexible disturbances are
attributed to random parameter variations. Factors alidetivinto observable and latent variables.

2.1 Combining revealed preferences and stated preferences

The generalized random utility model combines revealedsomeanent datgZ %, i%(n)) and a set of
stated preference measureme(rﬁgf,z‘sj (n)),n=12,...,N,7=1,2,...,5. Revealed preferences
indicate market behaviour. Additional surveys in the forfrstated preferences significantly enhance
the estimation process and provide information on the eatfithe unobservable elements of the choice

process. Using the approach suggested by (Morikawa, 1884}) is decomposed as

UF = ZJBn+ R +eff ©)
U;?j — ZSjﬁn_i_d)SeRS_i-e;S;j j:l,Q,...,S (10)

The single RP survey is complemented$gtated preference surveys?” is a scalar random variable
that is constant across responses for a single individtialcdounts for the correlation across multiple
responses for a given individualh* and° are deterministic vectors and account for the magnitude of
the correlation effect. The main parametgysremain the same in both utility expressions.

2.2 Factors

Factors are split into observable explanatory variableslatent explanatory variables. The latent vari-
ables are in turn divided into two groups. The first group téihé variables incorporates psychological
factors affecting utilities, such as attitudes and peiioaptComfort and convenience are typical psy-
chological factors encountered in transportation demaodetiing. Following (Walker and Ben Akiva,
2002) we assume that factors in this first group are partetlylained by observable attributes of the
alternatives and characteristics of the individual thiotkge linear additive model

why=xE N 4+el, 1=1,2,...,L (12)

nil —

The latter equation expresses each offHatent variables:},, as a function of observable explanatory
variablesx!,;;, an individual and choice invariant parameter vectoand a disturbance tersj,;,. The
superscript emphasizes the latent nature of the variable. Collectingteht variables in a single vector
we obtain

T = xITA 4 !l (12)

ni ni ni

whereA is the block diagonal matrix
A:diag()\l,)\g,...,)\L)

The second group of latent variables includes attributedtefnatives not actually chosen by the individ-
ual and for which information is gathered through possilggaate surveys. Travel times for example
exhibit random fluctuations due to varying traffic condisofor each individuat and alternative, the
set of choice specific latent attributes is given by

Xni = Xni + efn' (13)
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Xni IS the mean attribute vector for alternative he random vectas?, represents the random fluctuation
of the factorx,, from its mean. The superscript signifies the difference of the attribute erref,
from the errore,,; in the utility specification. It may occur that for certairteahativej some of the
components of the factor vect&y,; are deterministic. The travel cost of a transit mode is anmgta.
This is accommodated by assuming that the variance of thhesgmonding error component is zeg,;
can be estimated by averaging over SP data. In the absendeauiate data, it can be approximated by
means of subpopulation classes. Collecting equationd¢t 2)| alternatives we obtain the matrix form

X} =X\A+EL (14)
X andE!, are(k + 1) x L matrices. Likewise eq.(13) is written in matrix form as
X, =X, + B2 (15)
On the basis of the above discussion the factors are decetipsgollows
Zy = (X3, X5 X7) (16)

n n?

where the matrixX [° consists of the observable explanatory variables. We assiat the same latent
variables enter both the SP and RP measurements. Therefore

Zy = (X%, X0 X)) (17)
In correspondence with the above equations we partitiopanemeter vectas,, as
= (BT, BT, BT (18)

where

e (3° corresponds to the observable explanatory variables.

e 3 weighs the random and choice specific latent factors. Itdgoghinvariant and individual invari-
ant deterministic vector.

e (* corresponds to the latent variables. It is choice invargautt individual invariant deterministic
vector.

If we substitute equations (16),(17) and (18) into the mdilityiequations (9), (10) we obtain
UR = XEB + XA+ BB+ XLAG + ELS el 1 ef
Upt = X8, + X8+ BB+ XoAB" + By 5" + 0™ + e

2.3 Disturbances

Disturbances are split into flexible disturbances and castidances with distinct role assign-
ments each. In this paper flexible disturbances are geidrgitthe random nature of some of the
parameters (Brownstone and Train, 1999), (Mc Fadden arid, 2@00), (Walker and Ben-Akiva,
2002). By the previous discussion, the random parametersrabodied in the part. Hence we

consider the split
Bd
Z=(T) (19)

The blocks? comprises of individual and choice invariant determigipirameters. The remaining
block is random and individual specific with meg@nThe variation from the mean

en =07

is characterized by the probability density functjfz). In accordance with the above parameter
split, we further partition the observable explanatoryalales as

X[ = (LX)
X5 = (X2 x5

where X 4 corresponds to the deterministic parameters Xfd corresponds to the random pa-
rameters. Similar interpretations hold for the SP attebut
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2.4 Generalized utility model

Taking into account the combination of the RP and SP measameythe latent variables and the
random parameters, the main utility equation is refornadahore compactly as

UR = Xy + VR )Wl = X[y + € (20)
where
xP o= (xp xF o XE xl) (21)
AT = (BT, BT, BT (XLAGT)T) (22)
VE(y) = (v, XE 3T, 57,1) (23)
wil = (eBS efT emfil | exmBT ohT - oltT eliT) (24)

The matrix X 2 consists of observable covariates. The parameisrdirectly obtained frons.
Identifiability requires additional constraints to enstimat 5* is recovered fromX! A3*. The
generalized disturbance is factored as

=Y, (y)wf (25)

n

The matrixY;? () is deterministic and depends on the parameters as well asptanatory vari-
ables.I denotes the identity matrix. The stochastic part of the gaized error is described by the
random vectow?’ of dimensiom(3) + M + L + k + 2 where

— n(0) is the number of stochastic parameters

— M + L is the number of the two groups of latent variables

— k + 1is the number of alternatives

SP utilities are similar with R replaced by S.Thus

USi = XSy + Y5 (y)wi (26)
where
X7o= (X X2 X XL)
Vi) = (¢S, X2 6T, 6T T)
s S;T xnS;T S;T
w, = (e'{jsve,rBLT;efrCzl 7"'7eflM s lrLlTﬂ"'v lrLLT en’ )

We shall assume throughout that all blocks compriw;fgandwfj are jointly independent. Fur-
thermore each subblock vector is independent but not nadlgsglentically distributed. Thus
the generalized disturbance is decomposed into indepéhttmks of different significance. The
errore’? characterizes unobserved attributes affecting choicasmrement error and functional
misspecification. Unobserved tastes of the individuakakhimdividual variations including dif-
ferent states of mind, different consumption occasionsiatmd-personal dynamics such as state
dependence and short run preference inertia are to son® egfgured by the remaining blocks.
The same error blocks cope with inter-individual differesdn utility. 25 describes correlation
between hypothetical and actual behavior.

Using the above generalized linear choice model we deriveagressions for the choice proba-
bilities.

3. Selection Distributions

Let us first consider the error term (25). For each alterpati= 1,2,..., %k + 1 we define the
random vector

RT __ R R _R R R R _R R R R

ni (Enl T i n2 T €nive 9 i1 T €ngs Eni—}—l TR €nk+1 — € ) (27)
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Let f5%(x;~) be the corresponding probability density function afg(x; ) the probability
distribution. Note that

k+1
Y oExy) =1 (28)
=1

Consider the 'systematic’ part of the generalized utilkpession (20)

Vit =Xy (29)
with componentslf,,f"i, 1 = 1,2,...,k 4+ 1. For each alternativé define the vector of utility
differences

VELT = (anj - ‘457 AR anj - an:iifh anj - VnI?Jrl’ AR anj - VnI:I{chl )
Each vectowvZ is readily determined once the parameter vestgiven by eq.(22) is computed.
In fact,
Vi = AV = —AX Ty (30)
where
A = I 4 —1i—1 Oi—1kt1-i 7 i=1,..  k+1 (31)
Ort1—ii—1  —Llpg1—4 Tpp1—i

1, is theq x ¢ identity matrix,04x iS theq x r zero matrix and, a vector of lengtly consisting
of 1's.

With the above definitions, equation (4) takes the form

PE(i; ) = FSF(vE ) = FSF (- A X Ers ) (32)

ni
Similar expressions are valid for the SP parameters.

The probability distributiong™: andstf are referred to aselection distributionsThey are not
available as they depend on unknown parameters as well &g alistribution of the disturbances.
Additional information on the structure of the selectiostdbutions is extracted in the sequel. The
analysis is simpler in the binary case of two alternativdssTs presented in the next section.

4. Binary choice

In the binary case, the two selection distributions areteeldy X = 1 — F. Moreover the
random vectoe?, becomes the scalar random variable

o= W —fel + (x5 - x5l + T (ef, —ely) +
BT (el —ehy) + el —effy (33)

The differencee?, — e, is anM dimensional vector. It consists of the differences of the tw
entries of eacR x 1 dimensional vectoe™/, j = 1,2,..., M. e, — e, is similarly defined.

The following table summarizes the notation we shall empBiven a functionf, Ietf denote
the Fourier transform of. The first column contains the disturbance blocksvdf. The second
column contains corresponding probability density fumre$i. The third column includes the terms
of ¢ in eq.(33). The last column indicates the characteristicfion of the random terms in
column 3.

The computations make use of the following well-known fdadsn probability theory.

1. Supposé” is a linear combination of random variabl&s:

Y =) BiX;=p8"X
J

The characteristic function af’, fy(w), namely the Fourier transform of the probability
density functionf, (—z) is given by

fy(w) = foj(ﬂjw)



International Conference on Travel Behaviour Research
August 10-15, 2003

Table 1: Disturbance characteristics and notation

Disturbance pdf Terms ing Characteristic function
en’ f58 O — f)er FRS((wff — %')w)
e, j-entryofel | f/ (et~ fng)efi [T, /7 (el — 0% 5 )w)
€n1,, J-entry Ofen1 T 135 B (el —ery) H f2]( )f1g(5] w)
eiu f{j! féj BT (el —ely) H f2J( )fl](ﬂ; w)
eff’j fﬁvfgl:; efy — el f2 (—w) ff ( )

2. Pick any one of{;, say X;,. Let Fx, denote the pdf oiX}, andFXk its Fourier transform.

Then
k—1

= H fXj (6jw)ﬁbk-xk (w)
j=1
3. Consider the differencé = X; — X5. Then

frw) = fx, (@) fx,(—w)  Fy(w) = fx,(—w)Fx, (w)

The selection distribution is determined from the prodd¢he elements of the last column of the
above table and property 3. The independence assumptipaséd on the errow? imply

Efw) = (@ Hfﬁ xI . — xI Jw) x
11 75¢ fﬂjmflj(ﬂjw) x
J
1175 (=850 f1;(B;w) 51 (—w) £ (w) (34)
J

If we take the inverse Fourier transform we express the ei@sielection distribution as a convolu-
tion product. Similar expressions hold for the SP measunésne

Equations (34) and (32) together with their SP countermanshe employed in the maximization
of the log likelihood as an alternative to maximum simuldikdlihood (MSL) algorithms. It is
well known (Ben-Akiva and Lerman, 1985) that descent mazation algorithms require at each
step the valuation of the choice probabilities and the d¢ikies of the choice probabilities with
respect to parameters. For the generalized choice model endsideration, choice probabilities
are calculated via successive conditioning over the pritihattensity of the latent variables, the
flexible disturbances and the combined RP/SP disturbanatk@Vand Ben-Akiva, 2002). These
calculations involve high dimensional integrals. As a @psgence when the number of parameters
plus the number of latent variables is not small, considerebmputational burden is faced. For
this reason these integrals are simulated with sample geenghere draws are selected from the
underlying densities (Hajivassiliou et al, 1996), (Henstred Greeene, 2003). The production of
draws is based on Monte Carlo pseudo random sequences orajuadsm sequences (for example
Halton draws); for a discussion see (Bhat, 2003). A binagiadstudy is undertaken in (Walker
and Ben Akiva, 2002).

Alternatively, taking into account the special structufeéhe utilities (20) and the block indepen-
dence of the disturbances, valuation of the choice proitiabican be effected via the selection

distributionsF<, 1 — FER FEY5 1 — F$%9 and eq.(34). The passage to and from the frequency
domain is accomplished by a fast Fourier transform (FFT8 feeinstance, (Kalouptsidis, 1997).
If the densities of the elements of the disturbance vestfirhave a known parametrized func-
tional form, the characteristic functions can be precomguflhen the likelihood maximization
algorithm computes only the arguments of these functiorsmah step, in accordance with (34).

Alternatively, non parametric estimators for the chanastie functions can by used.
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Let us next consider the most probable alternative rule aaxdmization of correct classifications.
Application of the MPA rule on the revealed preference daty®lds

Pf(hﬁn) > Prjz{@;ﬁn) =1 _Pf(l;ﬁn)

if and only if
Pf(h Bn) = Fri'R(_Aer};WV) >1/2 (35)

Let 3% (,) denote the median of the selection distributigy{*:

FS?((S,E(’}/”)) = 1/2
Typically, F,ff is strictly increasing. We shall further assume that theiare constant over the
sample population. Thus (35) holds if and only if
vy > 0 (y)
or B
(X = XY+ (X — X057 B+

nl nl

— X8+ (XL — XL)T(XLAB) > 67(y) (36)

(XR nl

nl

In much the same way the stated responses of individuralconjunction with the most probable
alternative rule lead to the inequality
(Xt = X378+ (Xpf" = X3 B+

nl

(Xo] — XTB+ (XL, — XL)T(XLABY) > 6% (v) (37)

nl nl

The collection of the above inequalities for all individsial the given data set must be solved with
respect tg3?, § 3, 5* andd*(v), 6% (7).

If the random blocke*, e, e?, — eZ,, el,, — el,, ef, — el are independent and each has
a symmetric probability density function, it hold&§(y) = 0 and likewise forsi (y) and the SP
data. In this case the disturbance statistics do not infRidremost probable rule. Instead, random
utility maximization reduces to a deterministic utility mieization in the sense tha®,(1) >
P,(2)ifand only if VE > VE andV3 > V.5 where

Vi o= X X8+ X8 + X, AGT

Vii = XA+ XGE B+ XohB + XopAGT

Vnsf;, Vf; are similarly defined. The above expressions are lineau@éigs with unknownss?,
B, f and AB3*, comprising the parameter. If the above inequalities have a solution, variants
of the simplex method or the perceptron algorithm can beiegplSuch solution rarely exists.

Then we seek for algorithms that find parameters satisfyirddargest number of the given set of

inequalities. Such algorithms are described in (Manskis19986) and (Kalouptsidis et al, 2002).

5. Multiple Choice

If more than two choices occur, the selection distributiares functions of several variables and
their relationship is more complicated. This is the subjddhis section. It is established that
the selection distributions are obtained as outputs ofafiridters whose input is one of them.
Then the advantages of this interrelationship in maximkalihood as well as maximum score
computations are demonstrated.

The selection distributiod”:" is the probability distribution function of the random vect?..
¢E is obtained frong via the linear transformation

nl
&R =Lk (38)

whereL; is ak x k invertible triangular matrix.
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Let f2(w) be the characteristic function 6f.. Then

iR (w) = Bl &) = Bl Liti] = fR(LTw) (39)

nt

Letu,(t) denote the unit step function;(¢) is 1 for ¢ > 0 and0 for ¢ < 0. The multidimensional
unit step is defined as
us(tl, tQ, e ,tk) = Us(tl)’us(tg) cee Us(tk).

The above function is separable and its Fourier transform is

ﬂs(whw% ce ;Wk) = ﬂs(wl)ﬂs(WQ) tet as(wk)'
It is well known that )
As = o )
lis(w) 7w + mo(w)

whered(w) is the Dirac distribution.
Usingus(t1,to, - . ., tx ), the distribution can be obtained from the density via thevotution

F(ty,ty... t) =

+oo +oo
/ / f(tl,tg,...,tk)’us(tl781,152782,...,@@78k>d81d82"'d8k
0o —00

Passing to the frequency domain, convolution converts iotyise multiplication. Therefore,

Flwr,wa, ... ,wg) = f(wl,wg, vy W)l (wr,wa, . wE) (40)
Hence en AgR r
F>. LT
Fo (w) fnl (w) fnl (w )
Therefore

Fif(w) = I (L3) e
nj f ( ) nl

The latter equation states that séllectiondistributions are obtained if one of them ségff(w)
is filtered by a multidimensional linear filter with frequgnesponsef 6R(LT )/ fif (w). The

characteristics of this frequency response are solelymé@ted by the selection dlstrlbutidﬂfR

(w) (42)

Next we expres 1 % in terms of the disturbance statistics. Recall th4t is the distribution of the
random vectoe? . Taking into account egs (23)-(23)}, is written as the sum of 5 main terms:

51 = Al’(/)eRS —+ Aere’B + Z BjAlemj —+ Z 6;A1elj -+ Ale (43)
J J

where, the indice®?, v andn are omitted for simplicity. The five random vectors appegiim

the right hand side of the above expression are independ@deaiube they are functions of the

respective independent disturbances. Therefore theaiaisic function of % is the product of

the characteristic functions of these five random vectargthEérmore each one of them is obtained

by a linear transformation of the respective disturban@ndsé the following factorisation results.

M
fiw) = FP@TATw) (X TATw) [T /7 (847 w) x

J=1

(85 AT w) (Al w)

n'zh



International Conference on Travel Behaviour Research
August 10-15, 2003

If each of the contributing disturbance vectors is indeendthe following more refined factori-
sation obtains

fiw) = fRS<wTA1Tw>Hff< T ATw) x
M R
Hflm Zwt H n+1 ﬁjwm X
j=1

M

IT 7735 (=>"w) H Frpa (Bwm) (=Y wi) x

j=1 i m=1

H f'ren+1 (wWm) (44)

m

If a disturbance is an iid vector, further simplicationasésince the individual factors are identical:
fr=7b ful = 7, fih = fU andfel = fe.

Similar expressions are valid for the SP measurements & $pective selection distributions.
It follows from the above analysis that in analogy with thedyly case, only one dimensional
Fourier transforms are involved in the calculation of theich probabilities. The various correla-

tion and heterogeneity effects are immersed into the frecyeariables solely. This fact facilitates
computations in the frequency domain.

5.1 Equality of the selection distributions

In this paragraph we explore conditions under which thecsiele distributions coincide. As in the
previous subsection we omit the indicBs~ andn. We deduce from eq. (42) that: = F} for
all j if

filljw)=fiw) j=2...k+1 (45)
According to the factorisation formula (44) the latter rwléit is satisfied for each disturbance
factor. More specifically, consideration of the combined$HPterm yields

ST ATLTw) = fR9(yT Al w)

or
LjA = A1y

which in effect states that the RP/SP correlation veg¢tar choice invariant. This means that with
the exception of one, all componentspére equal. Consideration of the flexible disturbance term
leads to

LiA X" = A X"

This constraint states that all attributes includedif, namely attributes associated with random
parameters, must be choice invariant, such as the chasticteof indidual. The remaining three
factors, namely random attributes, latent variables aneldisturbances conform to eq.(45) if each
e%i, eli ande are iid vectors.

5.2 Most probable choice rule and deterministic reduction

The most probable rule (6) and maximization of correct d@ssions for multiple discrete re-
sponses is considered next. We shall demonstrate that tivediéd assumptions that ensure equal-
ity of the selection distributions, the most probable raduces to the deterministic maximization

rule
R _ S;
‘/;Li* (n) — 1§I?21§+1 ‘/;Lij (46)
S _ S;
‘/;Li* (n) 15?2;:_1 Vnz (47)

whereV,,; is the systematic utility given by eq. (29).
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Supposé:! = F&R — F for all alternatives. As before, we skiR, n and to simplify notation.
We shall show that R
i(n) =1i"(n)

Indeed, letX be a random vector with probability distribution functioiven by the selection
distribution F'. Such random vector always exists. llef j < k + 1. Then the event

X<vj]={weQ: Xn(w)<V; =V, m#j}
is contained in the event
[X < Vz*(n)] = {W €N: Xm(w) < ‘/;*(n) Vi, m# Z*(’I’L)}

Indeed, for anyn # i*(n), j,
ij Vi < sz*(n) = Vi

because of (47). For the same reason
Vi=Viem) SVirm) =V
Therefore
P(j) = F(v;) = PIX < v;] < PIX < vis )] = F(Vi(n)) = P(i"(n))

The latter inequality implies(n) = i*(n), proving the claim.

We infer from the above analysis that if the selection disttions coincide the most probable
rule (6) becomes equivalent to the deterministic utilityxingization rule (47). A consequence
of the above equivalence is that the selection distribuficeind hence the probabilistic structure
of the block iid disturbances has no impact on the winningratitive. The resulting situation
relates to maximum score estimation formulated in the ingrmdmpapers by Manski, see (Manski,
1975, 1986). As in the binary case parameter estimation esacbomplished by solving linear
inequalities. If a true parameter vector exists, whichislgethe case, the most probable rule leads
to the set of linear inequalities

(X — Xi vy >0 (48)
(X5 XSiTy >0 (49)

ni”i(n)
n=12...,N,jm=12....k+1,35 # ifn), m # i%i(n). Variants of the simplex
method, the perceptron algorithm and several other schearebe employed for the solution. If
no true parameters exist, maximization of correct claggifios is applicable. The parametahat
satisfies the maximum number of the above inequalities isesbel he maximum score algorithm
proposed by (Manski 1975, 1986) applies. Alternative sadware derived in (Kalouptsidis et al,
2003).

6. Conclusions

In this paper the generalized choice model including randarameters, latent variables and com-
bined RP/SP preferences has been considered. The seldidiobutions governing the choice
probabilities have been analysed in the frequency domdie. résulting expressions in conjunc-
tion with the fast Fourier Transform offer computationaladtages in likelihood maximization
algorithms. The selection distributions coincide undeckliid assumptions on the disturbances.
Then the most probable rule reduces to a deterministi¢yutiteximization problem, closely re-
lated to maximum score estimation. Deterministic utilitgximization can be approached by al-
gorithms solving linear inequalities. Analysis and assesg of the proposed methods in a proper
experimental setup is under way. Extensions dealing wilei@d choices as well as the possibility
that only a subset of the parameters is common to both RP asdr8€ys are being studied.
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