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Abstract

A generalized random utility model including latent variables, flexible disturbances and combined re-
vealed and stated preferences is considered. It is shown that the selection distributions governing the
choice probabilities in multiple choices are outputs of linear filters and hence can be evaluated by the fast
Fourier transform. In the binary case and under the most probable choice rule, maximization of correct
classifications is tightly related to maximum score maximization. Parameter estimation is accomplished
by algorithms that seek the solution of a maximum number of a given set of linear inequalities. This is
extended to multiple responses under proper block iid assumptions on the disturbances, and provided the
random parameters are associated solely to choice invariant factors such as individual characteristics.
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1. Introduction

Many popular discrete choice models including multinomiallogit, multinomial probit and nested logit
models are built upon the random utility maximization (RUM)model (Domencich and Mc Fadden, 1975),
(Ben-Akiva and Lerman, 1985), (Ortuzar and Williumsen, 1996), (Greene, 1997), (Bolduc and Ben-
Akiva, 1991),(Koppelman and Sethi, 2000), (Mc Fadden, 2000). RUM as a behavioural model follows
the economists’ theory of consumer behaviour where preferences are represented by utilities and choices
are made by utility maximizing calculations. Furthermore,utilities are treated as random rather than
deterministic. This is so because features of the taste template are heterogeneous across individuals
and hence unknown to the analyst. Likewise unobserved aspects of experience and information on the
attributes of alternatives are interpreted as random factors (Mc Fadden, 2000).

The RUM model postulates that an individualn choosing among1 ≤ i ≤ k+1 alternatives, bases his/her
decision on the random utilitiesUni associated with these alternatives. In particular the alternative with
the maximum utility is chosen. The most popular utility representation is the linear in the parameters
form

Uni = z
T
niβn + εni (1)

or in matrix form
Un = Znβn + εn (2)

T denotes matrix transpose. The rows of matrixZn, z
T
ni represent the factors that affect utility of indi-

vidualn for alternativei. βn designates the vector of weights individualn attaches to these factors. The
disturbance termεn incorporates unobserved characteristics of attributes and of the individual that render
utilities unobservable, latent variables. The decision makern chooses alternativei if

Uni ≥ Unj (3)

for all j in the set of alternatives faced byn. The above choice is not observable by the analyst,who is
then content to assess the probabilities of choosing each alternativei by the rule

Pn(i;βn) = P [Uni > Unj , j 6= i] (4)

Supposei(n) is the chosen alternative by the individualn. A set of measurements(Zn, i(n)) over a set
of N individuals provides a window through which we observe eq.(2)and eq.(3). Parameter estimation
is then performed using the above set of measurements and an optimization criterion. The most popular
practice rests upon maximization of the log likelihood function

L(β) =

N
∑

n=1

logPn(i(n);βn) (5)

An alternative to maximum likelihood optimisation rule considered in this paper, relies on maximization
of correct classifications through the most probable alternative rule. Since the analyst has no access to the
latent utilities due to the unobserved disturbances he/shecannot deduce the winning alternativei(n) from
utility maximization (3). A reasonable guess for the analyst is the most probable choicêi(n) satisfying

Pn(̂i(n);βn) = max
1≤j≤k+1

Pn(j;βn) (6)

On the basis of the most probable choice rule, a parameter vectorβ classifies correctly an individualn in
the data set if

Pn(̂i(n);β) = Pn(i(n);β) (7)

that is
Pn (̂i(n);β) > Pn(j;β), 1 ≤ j ≤ k + 1, j 6= i(n) (8)

Parameter estimation is then performed by maximizing the number of correct classifications in a given
data set. This approach is tightly related to maximum score estimation studied and made operative by
(Manski, 1975; 1986). Both maximum likelihood and maximization of correct classifications based on
the most probable alternative are discussed in subsequent sections.
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The model capability to approximate the real choice processand to improve reliability of the resulting
forecasts is enhanced if the role of the disturbances, the factors and the measurements are further clarified.
This is done in the next section along the lines of the integrated choice model developed in (Walker and
Ben Akiva, 2002). Section 3 defines the selection distributions. Section 4 deals with the binary choice
case. Section 5 discusses multiple choices. Conclusions are summarized in section 6.

2. Model specification

Model specification results from the split of roles of the major actors involved in the choice equations.
The linear form is maintained throughout. Measurements combine revealed preferences (RP) and stated
preferences (SP). Disturbances are split into flexible and core disturbances. Flexible disturbances are
attributed to random parameter variations. Factors are divided into observable and latent variables.

2.1 Combining revealed preferences and stated preferences

The generalized random utility model combines revealed measurement data(ZR
n , i

R(n)) and a set of
stated preference measurements(Z

Sj
n , iSj(n)), n = 1, 2, . . . , N , j = 1, 2, . . . , S. Revealed preferences

indicate market behaviour. Additional surveys in the form of stated preferences significantly enhance
the estimation process and provide information on the nature of the unobservable elements of the choice
process. Using the approach suggested by (Morikawa, 1994),eq.(2) is decomposed as

UR
n = ZR

n βn + ψReRS + e
R
n (9)

USj
n = ZSj

n βn + ψSeRS + e
Sj
n j = 1, 2, . . . , S (10)

The single RP survey is complemented byS stated preference surveys.eRS
n is a scalar random variable

that is constant across responses for a single individual. It accounts for the correlation across multiple
responses for a given individual.ψR andψS are deterministic vectors and account for the magnitude of
the correlation effect. The main parametersβn remain the same in both utility expressions.

2.2 Factors

Factors are split into observable explanatory variables and latent explanatory variables. The latent vari-
ables are in turn divided into two groups. The first group of latent variables incorporates psychological
factors affecting utilities, such as attitudes and perception. Comfort and convenience are typical psy-
chological factors encountered in transportation demand modelling. Following (Walker and Ben Akiva,
2002) we assume that factors in this first group are partiallyexplained by observable attributes of the
alternatives and characteristics of the individual through the linear additive model

x∗nil = x
lT
nilλl + el

nil l = 1, 2, . . . , L (11)

The latter equation expresses each of theL latent variablesx∗nil as a function of observable explanatory
variablesxl

nil, an individual and choice invariant parameter vectorλl and a disturbance termel
nil. The

superscriptl emphasizes the latent nature of the variable. Collecting all latent variables in a single vector
we obtain

x
∗T
ni = x

lT
niΛ + elT

ni (12)

whereΛ is the block diagonal matrix

Λ = diag (λ1, λ2, . . . , λL )

The second group of latent variables includes attributes ofalternatives not actually chosen by the individ-
ual and for which information is gathered through possibly separate surveys. Travel times for example
exhibit random fluctuations due to varying traffic conditions. For each individualn and alternativei, the
set of choice specific latent attributes is given by

x̃ni = x̄ni + e
x
ni (13)
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x̄ni is the mean attribute vector for alternativei. The random vectorex
ni represents the random fluctuation

of the factorx̃ni from its mean. The superscriptx signifies the difference of the attribute errore
x
ni

from the erroreni in the utility specification. It may occur that for certain alternativej some of the
components of the factor vectorx̃ni are deterministic. The travel cost of a transit mode is an example.
This is accommodated by assuming that the variance of the corresponding error component is zero.x̄ni

can be estimated by averaging over SP data. In the absence of adequate data, it can be approximated by
means of subpopulation classes. Collecting equations (12)for all alternatives we obtain the matrix form

X∗
n = X l

nΛ + El
n (14)

X∗
n andEl

n are(k + 1) × L matrices. Likewise eq.(13) is written in matrix form as

X̃n = X̄n + Ex
n (15)

On the basis of the above discussion the factors are decomposed as follows

ZR
n = (XRo

n , X̃R
n , X

∗
n ) (16)

where the matrixXRo
n consists of the observable explanatory variables. We assume that the same latent

variables enter both the SP and RP measurements. Therefore

ZSj
n =

(

X
Sjo
n , X̃

Sj
n , X∗

n

)

(17)

In correspondence with the above equations we partition theparameter vectorβn as

βT
n = (βoT

n , β̃T , β∗T ) (18)

where

• βo
n corresponds to the observable explanatory variables.

• β̃ weighs the random and choice specific latent factors. It is choice invariant and individual invari-
ant deterministic vector.

• β∗ corresponds to the latent variables. It is choice invariantand individual invariant deterministic
vector.

If we substitute equations (16),(17) and (18) into the main utility equations (9), (10) we obtain

UR
n = XRo

n βo
n + X̄R

n β̃ + ERx
n β̃ +X l

nΛβ∗ + El
nβ

∗ + ψReRS
n + e

R
n

USj
n = XSjo

n βo
n + X̄Sj

n β̃ + ESjx
n β̃ +X l

nΛβ∗ + El
nβ

∗ + ψSjeRS
n + e

Sj
n

2.3 Disturbances

Disturbances are split into flexible disturbances and core disturbances with distinct role assign-
ments each. In this paper flexible disturbances are generated by the random nature of some of the
parameters (Brownstone and Train, 1999), (Mc Fadden and Train, 2000), (Walker and Ben-Akiva,
2002). By the previous discussion, the random parameters are embodied in theβo

n part. Hence we
consider the split

βo
n =

(

βd

βr
n

)

(19)

The blockβd comprises of individual and choice invariant deterministic parameters. The remaining
block is random and individual specific with meanβ̄. The variation from the mean

e
β
n = βr

n − β̄

is characterized by the probability density functionfβ(x). In accordance with the above parameter
split, we further partition the observable explanatory variables as

XRo
n = (XRd

n , XRr
n )

XSjo
n =

(

X
Sjd
n , X

Sjr
n

)

whereXRd
n corresponds to the deterministic parameters andXRr

n corresponds to the random pa-
rameters. Similar interpretations hold for the SP attributes.
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2.4 Generalized utility model

Taking into account the combination of the RP and SP measurements, the latent variables and the
random parameters, the main utility equation is reformulated more compactly as

UR
n = XR

n γ + Y R
n (γ)wR

n = XR
n γ + εRn (20)

where

XR
n = (XRd

n , XRr
n , X̄R

n , X
l
n ) (21)

γT = (βdT , β̄T , β̃T , (X l
nΛβ∗)T ) (22)

Y R
n (γ) = (ψR, XRr

n , β̃T , β∗T , I ) (23)

w
RT
n = ( eRS

n , eβT
n , ex1RT

n , . . . , exMRT
n , el1T

n , . . . , elLT
n , eRT

n ) (24)

The matrixXR
n consists of observable covariates. The parameterγ is directly obtained fromβ.

Identifiability requires additional constraints to ensurethat β∗ is recovered fromX l
nΛβ∗. The

generalized disturbance is factored as

εRn = Y R
n (γ)wR

n (25)

The matrixY R
n (γ) is deterministic and depends on the parameters as well as on explanatory vari-

ables.I denotes the identity matrix. The stochastic part of the generalized error is described by the
random vectorwR

n of dimensionn(β) +M + L+ k + 2 where

– n(β) is the number of stochastic parameters

– M + L is the number of the two groups of latent variables

– k + 1 is the number of alternatives

SP utilities are similar with R replaced by S.Thus

USj
n = XSj

n γ + Y Sj
n (γ)wSj

n (26)

where

XSj
n =

(

X
Sjd
n , X

Sjr
n , X̄

Sj
n , X l

n

)

Y Sj
n (γ) =

(

ψSj , X
Sjr
n , β̃T , β∗T , I

)

w
Sj
n =

(

eRS
n , eβT

n , e
x1SjT
n , . . . , e

xMSjT
n , el1T

n , . . . , elLT
n , e

SjT
n

)

We shall assume throughout that all blocks comprisingw
R
n andw

Sj
n are jointly independent. Fur-

thermore each subblock vector is independent but not necessarily identically distributed. Thus
the generalized disturbance is decomposed into independent blocks of different significance. The
erroreR

n characterizes unobserved attributes affecting choice, measurement error and functional
misspecification. Unobserved tastes of the individual, intra-individual variations including dif-
ferent states of mind, different consumption occasions andintra-personal dynamics such as state
dependence and short run preference inertia are to some extent captured by the remaining blocks.
The same error blocks cope with inter-individual differences in utility. eRS

n describes correlation
between hypothetical and actual behavior.

Using the above generalized linear choice model we derive next expressions for the choice proba-
bilities.

3. Selection Distributions

Let us first consider the error term (25). For each alternative i = 1, 2, . . . , k + 1 we define the
random vector

ξRT
ni = ( εRn1 − εRni, ε

R
n2 − εRni, . . . , ε

R
ni−1 − εRni, ε

R
ni+1 − εRni, . . . , ε

R
nk+1 − εRni ) (27)
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Let f ξR
ni (x; γ) be the corresponding probability density function andF ξR

ni (x; γ) the probability
distribution. Note that

k+1
∑

i=1

F ξR
ni (x; γ) = 1 (28)

Consider the ’systematic’ part of the generalized utility expression (20)

V R
n = XR

n γ (29)

with componentsV R
n,i, i = 1, 2, . . . , k + 1. For each alternativei define the vector of utility

differences

v
RT
ni = (V R

ni − V R
n1, . . . , V

R
ni − V R

ni−1, V
R
ni − V R

ni+1, . . . , V
R
ni − V R

nk+1 )

Each vectorvR
ni is readily determined once the parameter vectorγ given by eq.(22) is computed.

In fact,
v

R
ni = −AiV

R
n = −AiX

R
n γ (30)

where

Ai =

(

Ii−1 −1i−1 0i−1,k+1−i

0k+1−i,i−1 −1k+1−i Ik+1−i

)

, i = 1, . . . , k + 1 (31)

Iq is theq × q identity matrix,0q×r is theq × r zero matrix and1q a vector of lengthq consisting
of 1’s.

With the above definitions, equation (4) takes the form

PR
n (i;βn) = F ξR

ni (vR
ni; γ) = F ξR

ni (−AiX
R
n γ; γ) (32)

Similar expressions are valid for the SP parameters.

The probability distributionsF ξR
ni andF ξSj

ni are referred to asselection distributions. They are not
available as they depend on unknown parameters as well as on the distribution of the disturbances.
Additional information on the structure of the selection distributions is extracted in the sequel. The
analysis is simpler in the binary case of two alternatives. This is presented in the next section.

4. Binary choice

In the binary case, the two selection distributions are related byF ξR
n2 = 1 − F ξR

n1 . Moreover the
random vectorξR

n1 becomes the scalar random variable

ξR
n = (ψR

1 − ψR
2 )eRS

n + (xRrT
n1 − x

RrT
n2 )eβ

n + β̃T (ex
n1 − e

x
n2) +

β∗T (el
n1 − e

l
n2) + eR

n1 − eR
n2 (33)

The differenceex
n1 − e

x
n2 is anM dimensional vector. It consists of the differences of the two

entries of each2 × 1 dimensional vectorexj , j = 1, 2, . . . ,M . e
l
n1 − e

l
n2 is similarly defined.

The following table summarizes the notation we shall employ. Given a functionf , let f̂ denote
the Fourier transform off . The first column contains the disturbance blocks ofw

R
n . The second

column contains corresponding probability density functions. The third column includes the terms
of ξR

n in eq.(33). The last column indicates the characteristic function of the random terms in
column 3.

The computations make use of the following well-known factsfrom probability theory.

1. SupposeY is a linear combination of random variablesXj :

Y =
∑

j

βjXj = βTX

The characteristic function ofY , f̂Y (ω), namely the Fourier transform of the probability
density functionfy(−x) is given by

f̂Y (ω) =
∏

j

f̂Xj
(βjω)
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Table 1: Disturbance characteristics and notation

Disturbance pdf Terms inξ Characteristic function
eRS

n fRS ψR
1 − ψR

2 )eRS
n f̂RS((ψR

1 − ψR
2 )ω)

e
β
n,j , j-entry ofeβ

n fβ
j (xRrT

n1 − x
RrT
n2 )eβ

n

∏

j f̂
β
j ((xRr

n1,j − x
Rr
n2,j)ω)

e
x
n1j , j-entry ofex

n1 fx
1j, fx

2j β̃T (ex
n1 − e

x
n2)

∏

j f̂
x
2j(−β̃jω)f̂x

1j(β̃jω)

el
nj f l

1j, f l
2j β∗T (el

n1 − e
l
n2)

∏

j f̂
l
2j(−β

∗
jω)f̂ l

1j(β
∗
j ω)

eR
nj fR

1j, fR
2j eR

n1 − eR
n2 f̂R

2 (−ω)fR
1 (ω)

2. Pick any one ofXj, sayXk. LetFXk
denote the pdf ofXk andF̂Xk

its Fourier transform.
Then

F̂Y (ω) =
k−1
∏

j=1

f̂Xj
(βjω)F̂βkXk

(ω)

3. Consider the differenceY = X1 −X2. Then

f̂Y (ω) = f̂X1
(ω)f̂X2

(−ω) F̂Y (ω) = f̂X2
(−ω)F̂X1

(ω)

The selection distribution is determined from the product of the elements of the last column of the
above table and property 3. The independence assumptions imposed on the errorwR

n imply

F̂ ξR
n1 (ω) = f̂RS((ψR

1 − ψR
2 )ω)

∏

j

f̂β
j ((xRr

n1,j − x
Rr
n2,j)ω) ×

∏

j

f̂x
2j(−β̃jω)f̂x

1j(β̃jω) ×

∏

j

f̂ l
2j(−β

∗
jω)f̂ l

1j(β
∗
jω)f̂R

2 (−ω)fR
1 (ω) (34)

If we take the inverse Fourier transform we express the desired selection distribution as a convolu-
tion product. Similar expressions hold for the SP measurements.

Equations (34) and (32) together with their SP counterpartscan be employed in the maximization
of the log likelihood as an alternative to maximum simulatedlikelihood (MSL) algorithms. It is
well known (Ben-Akiva and Lerman, 1985) that descent maximization algorithms require at each
step the valuation of the choice probabilities and the derivatives of the choice probabilities with
respect to parameters. For the generalized choice model under consideration, choice probabilities
are calculated via successive conditioning over the probability density of the latent variables, the
flexible disturbances and the combined RP/SP disturbance (Walker and Ben-Akiva, 2002). These
calculations involve high dimensional integrals. As a consequence when the number of parameters
plus the number of latent variables is not small, considerable computational burden is faced. For
this reason these integrals are simulated with sample averages where draws are selected from the
underlying densities (Hajivassiliou et al, 1996), (Hensher and Greeene, 2003). The production of
draws is based on Monte Carlo pseudo random sequences or quasi random sequences (for example
Halton draws); for a discussion see (Bhat, 2003). A binary choice study is undertaken in (Walker
and Ben Akiva, 2002).

Alternatively, taking into account the special structure of the utilities (20) and the block indepen-
dence of the disturbances, valuation of the choice probabilities can be effected via the selection
distributionsF ξR

n1 , 1 − F ξR
n1 , F ξSj

n1 , 1 − F
ξSj

n1 and eq.(34). The passage to and from the frequency
domain is accomplished by a fast Fourier transform (FFT), see for instance, (Kalouptsidis, 1997).
If the densities of the elements of the disturbance vectorw

R
n have a known parametrized func-

tional form, the characteristic functions can be precomputed. Then the likelihood maximization
algorithm computes only the arguments of these functions ateach step, in accordance with (34).
Alternatively, non parametric estimators for the characteristic functions can by used.
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Let us next consider the most probable alternative rule and maximization of correct classifications.
Application of the MPA rule on the revealed preference data set yields

PR
n (1;βn) > PR

n (2;βn) = 1 − PR
n (1;βn)

if and only if
PR

n (1;βn) = F ξR
ni (−A1X

R
n γ; γ) > 1/2 (35)

Let δR
n (γn) denote the median of the selection distributionF ξR

n1 :

F ξR
n1 (δR

n (γn)) = 1/2

Typically,F ξR
n1 is strictly increasing. We shall further assume that the median is constant over the

sample population. Thus (35) holds if and only if

v
R
n1 > δR

n (γ)

or
(XRd

n1 −XRd
n2 )Tβd + (XRr

n1 −XRr
n2 )T β̄+

(X̄R
n1 − X̄R

n2)
T β̃ + (X l

n1 −X l
n2)

T (X l
nΛβ∗) > δR(γ) (36)

In much the same way the stated responses of individualn in conjunction with the most probable
alternative rule lead to the inequality

(X
Sjd

n1 −X
Sjd

n2 )Tβd + (X
Sjr

n1 −X
Sjr

n2 )T β̄+

(X̄
Sj

n1 − X̄
Sj

n2)T β̃ + (X l
n1 −X l

n2)
T (X l

nΛβ∗) > δSj (γ) (37)

The collection of the above inequalities for all individuals in the given data set must be solved with
respect toβd, β̄ β̃, β∗ andδR(γ), δSj (γ).

If the random blockseRS
n , eβ

n, e
x
n1 − e

x
n2, e

l
n1 − e

l
n2, eR

n1 − eR
n2 are independent and each has

a symmetric probability density function, it holdsδR(γ) = 0 and likewise forδSj (γ) and the SP
data. In this case the disturbance statistics do not influence the most probable rule. Instead, random
utility maximization reduces to a deterministic utility maximization in the sense thatPn(1) >

Pn(2) if and only if V R
n1 > V R

n2 andV Sj

n1 > V
Sj

n2 where

V R
n1 = XRd

n1 β
d +XRr

n1 β̄ + X̄R
n1β̃ +X l

n1Λβ
∗

V R
n2 = XRd

n2 β
d +XRr

n2 β̄ + X̄R
n2β̃ +X l

n2Λβ
∗

V
Sj

n1 , V Sj

n2 are similarly defined. The above expressions are linear inequalities with unknownsβd,
β̄, β̃ andΛβ∗, comprising the parameterγ. If the above inequalities have a solution, variants
of the simplex method or the perceptron algorithm can be applied. Such solution rarely exists.
Then we seek for algorithms that find parameters satisfying the largest number of the given set of
inequalities. Such algorithms are described in (Manski, 1975; 1986) and (Kalouptsidis et al, 2002).

5. Multiple Choice

If more than two choices occur, the selection distributionsare functions of several variables and
their relationship is more complicated. This is the subjectof this section. It is established that
the selection distributions are obtained as outputs of linear filters whose input is one of them.
Then the advantages of this interrelationship in maximum likelihood as well as maximum score
computations are demonstrated.

The selection distributionF ξR
ni is the probability distribution function of the random vector ξR

ni.
ξR
ni is obtained fromξR

n1 via the linear transformation

ξR
ni = Liξ

R
n1 (38)

whereLi is ak × k invertible triangular matrix.
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Let f̂R
ni(ω) be the characteristic function ofξR

ni. Then

f̂R
ni(ω) = E[ejωT ξR

ni ] = E[ejωT Liξ
R
n1 ] = f̂R

n1(L
T
i ω) (39)

Letus(t) denote the unit step function:us(t) is 1 for t ≥ 0 and0 for t < 0. The multidimensional
unit step is defined as

us(t1, t2, . . . , tk) = us(t1)us(t2) · · ·us(tk).

The above function is separable and its Fourier transform is

ûs(ω1, ω2, . . . , ωk) = ûs(ω1)ûs(ω2) · · · ûs(ωk).

It is well known that

ûs(ω) =
1

jω
+ πδ(ω),

whereδ(ω) is the Dirac distribution.

Usingus(t1, t2, . . . , tk), the distribution can be obtained from the density via the convolution

F (t1, t2 . . . , tk) =

∫ +∞

−∞

· · ·

∫ +∞

−∞

f(t1, t2, . . . , tk)us(t1 − s1, t2 − s2, . . . , tk − sk)ds1ds2 · · · dsk

Passing to the frequency domain, convolution converts to pointwise multiplication. Therefore,

F̂ (ω1, ω2, . . . , ωk) = f̂(ω1, ω2, . . . , ωk)ûs(ω1, ω2, . . . , ωk) (40)

Hence
F̂ ξR

nj (ω)

F̂ ξR
n1 (ω)

=
f̂ ξR

nj (ω)

f̂ ξR
n1 (ω)

=
f̂ ξR

n1 (LT
j ω)

f̂ ξR
n1 (ω)

(41)

Therefore

F̂ ξR
nj (ω) =

f̂ ξR
n1 (LT

j ω)

f̂ ξR
n1 (ω)

F̂ ξR
n1 (ω) (42)

The latter equation states that allselectiondistributions are obtained if one of them, sayF̂ ξR
n1 (ω),

is filtered by a multidimensional linear filter with frequency responsef̂ ξR
n1 (LT

j ω)/f̂ ξR
n1 (ω). The

characteristics of this frequency response are solely determined by the selection distributionF ξR
n1 .

Next we expressF ξR
n1 in terms of the disturbance statistics. Recall thatFR

n1 is the distribution of the
random vectorξR

n1. Taking into account eqs (23)-(25),ξR
n1 is written as the sum of 5 main terms:

ξ1 = A1ψe
RS +A1X

r
e

β +
∑

j

β̃jA1e
xj +

∑

j

β∗
jA1e

lj +A1e (43)

where, the indicesR, γ andn are omitted for simplicity. The five random vectors appearing in
the right hand side of the above expression are independent because they are functions of the
respective independent disturbances. Therefore the characteristic function ofξR

n1 is the product of
the characteristic functions of these five random vectors. Furthermore each one of them is obtained
by a linear transformation of the respective disturbance. Hence the following factorisation results.

f̂ ξ
1 (ω) = f̂RS(ψTAT

1 ω)f̂β(XrTAT
1 ω)

M
∏

j=1

f̂xj (β̃jA
T
1 ω) ×

L
∏

j=1

f̂ lj (β∗
jA

T
1 ω)f̂e(AT

1 ω)
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If each of the contributing disturbance vectors is independent, the following more refined factori-
sation obtains

f̂ ξR
n1 (ω) = f̂RS(ψTAT

1 ω)
∏

j

f̂β
j (∆xRrT

nj AT
1 ω) ×

M
∏

j=1

f̂
xj

1 (β̃j(−
∑

i

ωi))

M
∏

m=1

f̂
xj

m+1(β̃jωm) ×

M
∏

j=1

f̂
lj
1 (β∗

j (−
∑

i

ωi))

M
∏

m=1

f̂
lj
m+1(β

∗
j ωm)f̂e

1 (−
∑

ωi) ×

∏

m

f̂e
m+1(ωm) (44)

If a disturbance is an iid vector, further simplications result since the individual factors are identical:
f̂ b

j = f̂ b, f̂xj
m = f̂xj , f̂ lj

m = f̂ lj andf̂ej = f̂e.

Similar expressions are valid for the SP measurements and the respective selection distributions.

It follows from the above analysis that in analogy with the binary case, only one dimensional
Fourier transforms are involved in the calculation of the choice probabilities. The various correla-
tion and heterogeneity effects are immersed into the frequency variables solely. This fact facilitates
computations in the frequency domain.

5.1 Equality of the selection distributions

In this paragraph we explore conditions under which the selection distributions coincide. As in the
previous subsection we omit the indicesR, γ andn. We deduce from eq. (42) thatF ξ

j = F ξ
1 for

all j if
f̂ ξ
1 (LT

j ω) = f̂ ξ
1 (ω) j = 2, . . . , k + 1 (45)

According to the factorisation formula (44) the latter holds if it is satisfied for each disturbance
factor. More specifically, consideration of the combined RP/SP term yields

f̂RS(ψTAT
1 L

T
j ω) = f̂RS(ψTAT

1 ω)

or
LjA1ψ = A1ψ

which in effect states that the RP/SP correlation vectorψ is choice invariant. This means that with
the exception of one, all components ofψ are equal. Consideration of the flexible disturbance term
leads to

LjA1X
r = A1X

r

This constraint states that all attributes included inXr, namely attributes associated with random
parameters, must be choice invariant, such as the characteristics of indidual. The remaining three
factors, namely random attributes, latent variables and core disturbances conform to eq.(45) if each
e

xj , elj ande are iid vectors.

5.2 Most probable choice rule and deterministic reduction

The most probable rule (6) and maximization of correct classifications for multiple discrete re-
sponses is considered next. We shall demonstrate that underthe iid assumptions that ensure equal-
ity of the selection distributions, the most probable rule reduces to the deterministic maximization
rule

V R
ni∗(n) = max

1≤i≤k+1
V

Sj

ni (46)

V
Sj

ni∗(n) = max
1≤i≤k+1

V
Sj

ni (47)

whereVni is the systematic utility given by eq. (29).

9



International Conference on Travel Behaviour Research
August 10–15, 2003

SupposeF ξR
ni = F ξR

n = F for all alternativesi. As before, we skipR,n andγ to simplify notation.
We shall show that

î(n) = i∗(n)

Indeed, letX be a random vector with probability distribution function given by the selection
distributionF . Such random vector always exists. Let1 ≤ j ≤ k + 1. Then the event

[X ≤ vj ] = {ω ∈ Ω : Xm(ω) ≤ Vj − Vm, m 6= j}

is contained in the event

[X ≤ vi∗(n)] = {ω ∈ Ω : Xm(ω) ≤ Vi∗(n) − Vm, m 6= i∗(n)}

Indeed, for anym 6= i∗(n), j,
Vj − Vm ≤ Vi∗(n) − Vm

because of (47). For the same reason

Vj − Vi∗(n) ≤ Vi∗(n) − Vj

Therefore

P (j) = F (vj) = P [X ≤ vj ] ≤ P [X ≤ vi∗(n)] = F (vi∗(n)) = P (i∗(n))

The latter inequality implieŝi(n) = i∗(n), proving the claim.

We infer from the above analysis that if the selection distributions coincide the most probable
rule (6) becomes equivalent to the deterministic utility maximization rule (47). A consequence
of the above equivalence is that the selection distributionF and hence the probabilistic structure
of the block iid disturbances has no impact on the winning alternative. The resulting situation
relates to maximum score estimation formulated in the important papers by Manski, see (Manski,
1975, 1986). As in the binary case parameter estimation can be accomplished by solving linear
inequalities. If a true parameter vector exists, which is rarely the case, the most probable rule leads
to the set of linear inequalities

[XRT
niR(n) −XRT

nj ]γ > 0 (48)

[X
SjT

ni
Sj (n)

−XSjT
nm ]γ > 0 (49)

n = 1, 2, . . . , N , j,m = 1, 2, . . . , k + 1, j 6= iR(n), m 6= iSj(n). Variants of the simplex
method, the perceptron algorithm and several other schemescan be employed for the solution. If
no true parameters exist, maximization of correct classifications is applicable. The parameterγ that
satisfies the maximum number of the above inequalities is seeked. The maximum score algorithm
proposed by (Manski 1975, 1986) applies. Alternative schemes are derived in (Kalouptsidis et al,
2003).

6. Conclusions

In this paper the generalized choice model including randomparameters, latent variables and com-
bined RP/SP preferences has been considered. The selectiondistributions governing the choice
probabilities have been analysed in the frequency domain. The resulting expressions in conjunc-
tion with the fast Fourier Transform offer computational advantages in likelihood maximization
algorithms. The selection distributions coincide under block iid assumptions on the disturbances.
Then the most probable rule reduces to a deterministic utility maximization problem, closely re-
lated to maximum score estimation. Deterministic utility maximization can be approached by al-
gorithms solving linear inequalities. Analysis and assessment of the proposed methods in a proper
experimental setup is under way. Extensions dealing with ordered choices as well as the possibility
that only a subset of the parameters is common to both RP and SPsurveys are being studied.
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