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Introduction 
Congestion is a pervasive problem in nearly all urban areas, impacting many facets of urban life. 
Schrank and Lomax (2002) estimated that congestion in 75 major U.S. urban areas amounts to $68 
billion per year in fuel and time losses to the traveling public, or $1,160 per peak-period traveler in 
those areas. American commuters consistently rank traffic among the top three regional policy issues 
together with the economy, education, and/or crime. (See, e.g., Scheibal, 2002 and Knickerbocker, 
2000.) Fimrite (2002) quotes a San Francisco Bay Area Council survey of California residents where 
transportation ranks as the primary public concern, even ahead of a struggling economy. 
Accordingly, finding a solution to traffic congestion has captured the attention of engineers, 
economists, policy makers and the public for quite sometime.  
With demand for automobile travel regularly outstripping roadspace provision1, many solutions 
propose demand management. Congestion pricing (CP), now also often called “value pricing”, is a 
rather obvious market concept with a long history of attention. Pigou (1920), Knight (1924), Walters 
(1961) and Vickrey (1963, 1969) provided seminal works exploring pricing mechanisms to allocate 
scarce roadspace. In the absence of pricing or regulation, the demand-supply equilibrium for 
roadspace settles at a suboptimal point where users recognize only average travel time rather than 
the true marginal (social) cost of their travel. This negative externality results in over-consumption 
and excessive roadway congestion. Such inefficiency, due to an absence of a demand moderating 
policy, pervades many road networks at peak periods. 
Vickrey (1969) developed the first (two-link, single-OD pair) dynamic model of vehicle congestion, 
with flexible departure and arrival times, where individuals seek to minimize the sum of travel time 
and schedule delay costs. Vickrey derived socially optimal tolls for this situation. Arnott et al. (1990) 
also considered two parallel routes and demonstrated how social cost savings from altering departure 
time patterns could exceed route-shift savings, under pricing. Arnott et al. (1993) later compared 
four distinct pricing regimes2 on a route with a single Vickrey-type bottleneck and concluded that 
there are substantial benefits to be derived from employing technologically sophisticated pricing 
systems. 

Congestion Pricing Applications and Issues 
CP has found application in many places around the world, notably in South East Asia (e.g., 
Singapore’s toll-tag-collected variable prices and Seoul’s Nam Sam tunnels) and Western Europe 
(e.g., Trondheim, Norway’s toll ring and downtown London’s cordon toll). Gómez-Ibáñez and Small 
(1994) describe various applications. In 1998 in the United States, Orange County, California’s State 
Route 91 (S.R.91) was the first Pilot study commissioned under federal legislation.3 The results of 
this variable pricing experiment were explored by Sullivan et al. (2000) who found that priced-lane 
use was defined by “highly selective travel behavior”4. Poole and Orski (2003).noted that High 
Occupancy Toll (HOT)5 lanes represented only 33 percent of the SR-91’s capacity but were carrying 
40 percent of the traffic during the busiest peak hours, at speeds of 65 mi/h versus 10 to 20 mi/h in 
the other lanes. Also in 1998, a fully automated dynamic pricing pilot project was implemented on 
San Diego’s I.H. 15 with tolls capable of changing every 6 minutes at $ 0.50 increments and variable 
message signs informing drivers of current tolls.6  

In spite of many advantages, system-wide CP proposals have encountered considerable public 
resistance. (See, e.g., Jones, 1998, and Oberholzer-Gee and Weck-Hannemann, 2002.) Though 
marginal cost pricing is desirable from a market efficiency viewpoint (i.e., net benefits are 



maximized as travelers internalize/recognize the true marginal costs of their activities), it can have 
substantial equity impacts. 

For example, both Small (1983) and Hau (1992) found that “average commuters” under CP would 
be somewhat worse off without special revenue redistribution policies. Arnott et al. (1994) employed 
Vickrey's (1969) bottleneck model and assumed fixed demand on a single link.  Like Hau (1992) and 
Evans (1992), they concluded that road pricing without returning revenues generally would be 
regressive, with tolls primarily benefiting those with high values of travel time (VOTTs)7. Arnott et 
al. (1994) also briefly considered the possibility of an equal per-capita rebate and found that drivers 
with lower VOTTs could remain worse off, if they are relatively insensitive to travel time costs. 
Parry and Bento (1999) suggested that a “congestion tax” on commute travel could discourage labor 
force participation to such an extent that the resulting welfare losses in the labor markets exceed 
Pigouvian welfare gains (from internalizing the congestion externality). 

Application issues and potential for regressive impacts have led researchers to seriously consider 
other forms of CP. These include Dial’s (1999) “minimal revenue pricing”8 and other forms second-
best pricing (e.g., Verhoef 2002 and Verhoef et al. 19969), Viegas’ (2001) “mobility rights”, and the 
FHWA’s “Fast and Intertwined Regular (FAIR) Lanes”10 (DeCorla-Souza, 1995). Daganzo (1995) 
proposed a strategy to reduce the size of money transfers and possibly achieve a Pareto-improving 
solution (i.e., with positive difference in utilities for all traveler classes [Varian 1999]) by tolling 
certain groups only on certain days, while recognizing the value of time of the lowest income 
travelers. Nakamura and Kockelman (2002) applied this idea to the San Francisco-Oakland Bay 
Bridge to assess whether one might arrive at a Pareto-improving “toll-plus-rationing strategy” 
without redistribution, under a variety of pricing-policy and speed-flow (i.e., performance-function) 
assumptions.  
All these investigations underscore the fact that CP raises serious equity issues.  Though there has 
been much excellent research in the area of CP, an efficient and equitable policy to tackle the 
congestion externality has yet to be developed. 

A Credit-Based Congestion Pricing (CBCP) Policy  
This paper explores a substantially different approach to congestion pricing based on “credit 
allowances” similar in many respects to the “tradable” emission credits set up by the 1990 Clean Air 
Act Amendments (CAAA1990). Under a CBCP policy, drivers receive an allowance of monetary 
travel credits, to use on the roads. Time- and link-varying prices recognize variable demands and 
their associated negative externalities. Drivers do not pay money “out of pocket” unless they exceed 
their allowance. They save the value of unused credits and can spend these elsewhere. For drivers 
with special, socially desirable travel needs (e.g., welfare-to-work participants, and single parent 
low-income household heads), extra credits may be allotted. 
A CBCP policy has the potential to achieve optimal network use while addressing the primary 
impediments to congestion pricing policies, namely equity, welfare, and revenue-distribution. This 
paper investigates initial perceptions of CBCP in Austin, Texas, and describes various application 
details.  A survey was undertaken to predict public response to CBCP in Austin. With 61 hours of 
estimated annual traffic delays and 104 gallons wasted fuel per peak-period road traveler, Austin 
ranks 16th among US urban areas in Schrank and Lomax’s (2002) studies. The associated annual 
time and fuel costs are estimated to be $1190 per peak-period road user. (Shrank and Lomax 2002) 
To add capacity in a time of declining funding, the Texas DOT recently raised billions in bond 
monies for Austin region toll roads.11 Such factors make Austin an appealing choice for this study.  



Survey Design and Administration  
The CBCP survey was designed to illuminate constraints on traveler choices (such as work times 
and child care locations), public support for and perception of CBCP and other transportation 
policies, and behavioral response to such policies.  The survey was the result of a semester-long 
assignment for a diverse set of graduate students enrolled in the Transport Data Acquisition and 
Analysis course at the University of Texas at Austin (UT). Surveys in both English and Spanish 
were conducted across a wide spectrum of Austin residents, to recognize the diversity of Austin 
residents and their travel preferences with particular attention to equity issues. 
The survey design consisted of three sections and a total of 31 questions. The first section collected 
general information on demographics, locations and trip-making behaviors of respondents. The 
second section described CBCP scenarios in order to glean information helpful for predicting 
behavioral response. The third section sought respondent opinions about congestion and strategies to 
reduce it. 
Respondents were recruited through personal visits to Austin dwelling units, telephone calls, 
intercept surveys at public places, and online (and other media) advertisements of the web-based 
survey.  Locations for household surveys were selected to obtain a wide spatial distribution of 
respondents. Austin’s 1074 traffic assignment zones (TAZs) were grouped into 6 districts of almost 
equal population. In every district, a TAZ was sampled (for survey distribution) in proportion to its 
population.  Both single-household dwelling units and apartments were approached along various 
streets within each zone. 

Random digit dialing (RDD) telephone recruitment12 and public intercept surveys also were used. 
Intercept surveys were much more successful than RDD recruitment and took place at a UT 
women’s soccer game and a popular grocery store with children’s play area and café. Surveys were 
handed out to persons who appeared to be of driving age and collected back after the game or 
shopping.  
While over 36 percent of the 480 responses were obtained in paper form from intercept and 
neighborhood surveys, the great majority came from a user-friendly web-survey. IP addresses of 
survey-submitting computers were stored so that no repeated entries were received. The internet link 
to the web-survey was widely circulated through pamphlets delivered to residences and intercepted 
individuals, over telephone (since telephone surveys were tedious), articles in the Austin American 
Statesman and UT’s Daily Texan (campus newspaper), links from City of Austin, Capital Metro (the 
region’s transit agency) and Austin neighborhood association websites, and finally by sending e-
mails to random lists of Austin residents. 
The web survey contributed about two thirds of the final sample. Public intercept surveys 
contributed over 21% of the sample. Around 10% of responses came from the household surveys, 
and the remainder came from telephone surveys.  Over 480 responses were obtained between 
October 2002 and February 2003. 

Data Analysis  
The following sections describe the models resulting from the returned surveys. Due to non-
completion of income data (9.79% of respondents) and gender data (1.46%), only 426 responses out 
of 480 are used for analysis. Upon comparison with Austin’s 1996 region-wide travel survey, sample 
weights were developed for three age classes (16 to 24, 25 to 44, and over 45 years), gender, and 
four household income classes (less than $15,000, $15,000 to $30,000, $30,000 to $50,000,  and 
over $50,000, in 2002 dollars).13 Only 39.27% of the survey respondents were women, and just 5.4% 



were from the lowest income group. The weighted adjustments alter these initially-biased 
percentages to population-representative values of 49.6% and 7.4%, respectively. Additional 
demographic comparisons of the weighted sample are shown in Table 1a. A list of all variables 
considered in the data analysis (along with their means and standard deviations) is given in Table 1b. 
The following statistics and regression model results are weighted to reflect the true population. 

Perceptions of Congestion and Traveler Response 
The survey asked respondents for their peak and off-peak commute times. The (weighted) mean of 
the ratio of these two times is 1.96, illustrating how congested Austin roads tend to be.  The survey 
also asked people how problematic they feel congestion in Austin to be, by ranking it on a 4-point 
scale (from “not a problem” to “a major problem”). 84.3% responded that congestion is a problem in 
Austin and almost half felt congestion to be a major problem. An ordered probit model (Greene, 
2000) was used to predict this four-level response, and results are shown in Table 2. Initially 407 
valid weighted responses were grouped for analysis out of which 49 responses had to be excluded 
since they did not provide information on critical variables such as peak-hour travel distances and 
times. Perceptions tend to be rather uniform across gender and income group. However, people who 
have lived in Austin longer are predicted to perceive the congestion problem to be much worse than 
newer residents, even when faced with the same delays over similar distances. One reason for this 
may be that newer residents have lived in more congested cities than Austin. Students (both high 
school and college) are the least concerned. Employed persons find congestion to be less frustrating 
than retired or unemployed people. With increasing education and income, people seem less inclined 
to perceive congestion as a problem. 
Table 3 gives ordered probit model results for frequency of trip modification in response to 
congestion. Controlling for a variety of individual (and household) characteristics (including peak-
hour trip-making frequency and congestion experience [measured as lost time per mile traveled 
during daily commute]), it can be inferred that older persons more frequently modify trip choices in 
order to avoid congestion, as do higher-income individuals14. Men have a marginally higher 
tendency to modify trips to avoid congestion, when compared to women. Such tendencies diminish 
with additional children (which may be due to greater child care responsibilities) and vehicle 
ownership (per household member). Those sensing greater total delays in peak-hour congestion and 
those presently making fewer peak-period trips are more likely to modify travel plans. Students seem 
the least inclined to modify travel, whereas unemployed and retired people are the most inclined.  

Support for Congestion-Mitigating Policies 
The various congestion-mitigation policy options proposed in the survey can be broadly grouped as 
“Pricing-related” and “Infrastructure-related”. Pricing-related policies include credit-based 
congestion pricing, flat tolls and parking charges. Infrastructure-related policies include providing a 
light rail system, more buses, more roads, and high occupancy vehicle (HOV) lanes. While 87.9% of 
(population-weighted) respondents supported infrastructure-related policies, a healthy 47.1% 
supported at least one pricing-related policy. 24.9% supported a policy of CBCP, 24.2% supported 
flat tolls, and 11.1% supported parking charges (at more than $5/day). Light rail garnered 57.2% 
support. This is not surprising considering that Austin went through a recent high-profile campaign 
for light rail before this was narrowly defeated15.  Also of interest is the fact that 23% of the 
(population-weighted) sampled respondents had heard about CP, over 90% (91.8%) had driven on 
toll roads, and 12.2% had used a transponder.  



Logit models were developed to study support for pricing policies and support for infrastructure 
related policies. The results are shown in Tables 4 and 5, respectively. There appears to be greater 
support for pricing among long-term residents of Austin, but also among young persons. Higher-
income individuals appear more inclined to support pricing policies, along with those having higher 
levels of education (after controlling for income, age, and other variables, of course). Students, 
volunteers, retired, and unemployed persons, also appear more supportive, as compared to employed 
people. As expected, people with greater flexibility in their work schedules and those traveling larger 
distances during peak hours are less supportive of pricing policies. People with greater vehicle 
ownership per person were surprisingly less welcoming of a pricing policy, which could be because 
they may be making more trips on average and also travel alone on many trips. 

It is interesting to explore the link between support for pricing-related policies and exposure to 
congestion pricing. While support for flat tolls did not vary much based on exposure to CP, 50% of 
people who had heard of CP supported a policy of CBCP – in contrast to only 26.5% of those who 
had not heard of CP. Parking charges were advocated by 28.8% of those who had heard of CP, 
compared to 11.7% of those who had not. Clearly, education on the merits of CP may make a 
substantial difference in public perception of CBCP policies. 

Support for infrastructure related policies was higher among newer residents in Austin and also 
among men as compared to women. Support for infrastructure related policies declined with age, 
income levels, higher education, vehicle ownership, and number of children in household which 
could indicate the tax-payer’s sensitivity to greater infrastructure spending. People with highly 
flexible work schedules and those traveling larger distances during peak hours were less likely to 
support infrastructure improvement policies. 

Specific Responses related to CBCP 
As part of the survey, respondents were asked to rate ease of use, fairness, cost to users, and privacy 
as “very important”, “somewhat important”, or “not important” for implementation of CBCP 
policies. Almost 70% (68.6% [weighted for gender, age, and income]) felt that user costs (i.e., tolls) 
are very important, 58.1% were very concerned with implementation issues (i.e., ease of use), and 
56.2% believed fairness to be a pressing issue.  The issue of privacy appears much less controversial: 
only 32.3% felt it to be very important (25.8% rated it somewhat important, 31.7% rated it 
unimportant, and 11.2% did not respond to this question).  Nevertheless, a CBCP policy will have to 
address the privacy issue in order to win support from all quarters.  Central maintenance of travel 
data for purposes of account charges permits much less expensive on-board technology (e.g., $15 
passive transponders) and reduces opportunities for fraud (since active read-write second-generation 
transponders may be “reverse engineered” to misreport true accumulated charges).  However, it also 
requires third-party protections of data and legislative action to ensure such privately held data are 
not abused. 

Stated Responses to Congestion Pricing Policies 
In response to a peak-hour distance-based toll of 25¢ per mile on all freeways in Austin, 21% 
(weighted proportion) said that would not alter their driving patterns, 29.4% predicted they would 
drive less, 9.9% said they actually would drive more, 29.4% said they would change the time of 
arrival or departure, and 40.2% said they would try changing routes to avoid the peak-period toll. 
12.1% said they would try carpooling, while only 9.2% said they would take the bus and 1.7% 
would bike more often. 5% predicted they would alter their home location, while 1% would change 
jobs or telecommute. 3.9% said CBCP would not impact them since they do not drive on Austin 



freeways Finally, 3% of the weighted responses appeared wholly resistant to CBCP16, with 1.1% 
saying they would leave Austin altogether. 

A policy of CBCP was described, and various scenarios that could result were posed to the survey 
respondents. Respondents had to imagine themselves as drivers commuting every weekday during 
peak hours out and back on a ten-mile stretch upon which CBCP was implemented. The charge was 
to be 25¢ per mile; thus two peak-hour trips on the 10-mile stretch would cost $5 each day.  Monthly 
credits worth $100 were allotted to the drivers so that they could meet all their regular work/school 
trips during peak hours on all 20 weekdays per month. Any further traveling during peak hours 
would require a driver to pay money out of pocket. These drivers had the opportunity to modify their 
trip making to save credits, and they would receive the dollar amount of any credits saved every 
month. Their responses permitted development of the following prediction models of behavior under 
a CBCP policy.  

Travel Changes in the Face of CBCP 
One question of great interest is how many days drivers will change their trip making (either by 
changing trip mode or time of day) so that they have monetary credits remaining at the end of the 
month. The average response was 3.58 days per month, with a generous standard deviation of 5.05; 
this corresponds to a credit savings of $17.90 per month (assuming a daily $5 toll on a 10 mile tolled 
section). A truncated negative binomial regression model (see, e.g., Greene, 1995, and Mishra and 
Sinha, 2001) with an upper bound of 20 for the number of weekdays (per month) was used for this 
analysis; the results are tabulated in Table 6. 

The response models were developed with 344 responses. Though 368 responses were valid for 
weight calculations, 22 responses lacked information on the important trip-making characteristics of 
the respondent (concerning peak-hour distance and peak/off-peak travel times). 
After controlling for various respondent characteristics, including income, age, vehicle ownership, 
and peak-hour trip-making (distances, and travel times), results indicate that trip-modification 
tendencies decrease with age, vehicle ownership and income. Thus, while older persons seemed 
more willing to modify trips to avoid congestion, they are more willing to pay tolls to continue 
driving at the same times of day. Furthermore, those more often willing to change their travel 
patterns tend to be those currently making trips in less congested conditions. (Evidently, those 
presently driving on more congested roads may have very little flexibility left for modifying their 
travel patterns.) People with more childcare responsibilities also were less willing to modify their 
trip making under CBCP. Clearly, there are important connections between need, constraints, and 
willingness to pay. A strong appreciation of these will enable more robust prediction of winners and 
losers under any form of CP policy and enhance formulation of credit distribution strategies. 

Toll Levels for Travel Changes 
It also is very valuable to appreciate how people react if they do not have sufficient credits to 
undertake all desired trips. One scenario provided only enough credits for three-quarters of all peak-
hour commute trips (i.e., 15 per month) and queried respondents on the maximum amount per day 
that they are willing to pay (WTP) “out of pocket” so that they can continue driving alone during the 
peak periods. The average “out-of-pocket WTP” for the (weighted) sample was $4.96 per day (σ = 
$5.66). Another scenario asked respondents for the “limiting toll” that would cause them to 
relinquish the car mode and use a slower bus mode (requiring 15 more minutes each way) for at least 
some of their peak-hour trips. The average value for this “limiting toll” was $4.90 per day  (σ = 
$5.43). 



Table 7 presents the OLS results for log-linear models17 estimated for maximum tolls Austinites are 
willing to pay to avoid shifting to transit (i.e., the limiting toll). One can expect an individual’s 
response to be colored by his/her past travel experiences (e.g., average number, distance and delay of 
peak-period trips usually made), so, as before, these are included as control variables. Several key 
demographic variables (such as gender), are retained in the final models even if they are not 
statistically significant (p-value ≤ 0.10); this is done in order to facilitate inferences across models 
and avoid bias in other estimator values18. 
From Table 7, one observes that persons employed full time are willing to pay 30% more (than 
others) in daily tolls before shifting to the slower, transit mode. And men are prepared to pay 17% 
more on, an average, than women, before shifting. The impact of income and vehicle ownership on 
“limiting toll” were not statistically significant (after controlling for employment status and 
educational experience), but age was – with older people willing to pay higher tolls. People with 
highly flexible work hours were willing to pay 30% more than those without such flexibility. This 
may be because they expect to fewer peak-hour auto trips, and therefore are willing (and able) to pay 
more when they do. 
Notably, the CBCP scenarios specified no travel time savings on the tolled route. Many respondents 
may have anticipated such effects and valued these benefits in their stated willingness to pay to 
continue driving. But it is very likely that many respondents did not make such an association, so 
that the out-of-pocket WTP values reported here are biased low. In the face of time savings and 
reduced travel time uncertainty, Austinites are likely to be willing to pay more than predicted here. 

Values of Travel Time (VOTT) 
Survey respondents were asked what tolls they would be willing to pay to obtain total travel time 
savings of 20 minutes on their daily work (and school) commutes. Out of the 417 weighted 
responses, 139 did not respond to this question. The mean value of VOTT computed for the rest of 
the weighted sample turned out to be about $2.66 for a 20-minute savings, or $7.95 per hour. This is 
comparable to the $3.50 to $5.00 per hour that Calfee and Winston (1998) obtained from their stated 
preference (SP) experiments using a random sample of respondents from major U.S. regions. 
However, it is considerably lower than the estimates obtained from revealed preference studies on 
California’s I-15 and SR-91 corridors. Yan et al. (2002) VOTT estimates for SR 91’s express lanes19 
lie between $13 to $16 per hour, and Brownstone’s (2002) median estimate for the I-15 corridor was 
roughly $30 per hour of commute time20.  It may be that reduced travel time uncertainty, perceptions 
of safety, and other benefits (real or perceived) of congestion-priced lane use will generate a higher 
willingness to pay than survey respondents presently anticipate, given the question as it was posed. 
Inferences about people’s VOTT to work were drawn based on log-linear OLS models shown in 
Table 8. Average commute distance and number of peak-hour trips were controlled for in all models, 
and the results indicate that older persons, those with college degrees, and those with children were 
willing to pay more for travel time savings. Carpoolers were less willing to pay high tolls (65% 
lesser tolls per day), which may be because such people are extremely sensitive to monetary costs in 
the first place and are willing to sacrifice time and convenience for vehicle ownership, gasoline and 
other cost savings.  VOTT was surprisingly independent of income (per household member), and the 
introduction of a squared income variable (designed to capture nonlinear dependencies) did not 
noticeably enhance the model. One reason for this result is that 27% of the respondents reported zero 
on this question; apparently, they do not feel that 20 minutes of daily travel time savings is worth 
paying a toll. Another reason may be the fact that students reported a substantially higher willingness 
to pay (146% more per day) than non-students. Since all respondents were asked to imagine 



themselves in a work-trip commute, the students may have been envisioning themselves as 
employed – and having much higher incomes than the (current) income variable that was tested. 

As congestion worsens and pricing policies evolve, today’s youths are likely to become many of 
tomorrow’s tolled.  It is of interest that they are relatively supportive of such policies, as evidenced 
by their reported willingness to pay – and their support for such policies (as described earlier). 

Conclusions and Extensions 
Credit-based congestion pricing (CBCP) is a wholly new policy to permit efficient road use while 
counteracting most, if not all, equity (and regressivity) issues.  CBCP scenarios for Austin roadways 
were developed for a survey whose respondents were contacted via housecalls, public interception, 
random digit dialing, web sites, and the news media.  Though initially respondents were totally 
unfamiliar with this new strategy, 24.9% clearly supported it after fifteen minutes of reading and 
answering questions related to it. This is rather substantial for such a complex policy involving road 
pricing and is likely to grow; experience with road-pricing policies and education on this new 
strategy seem key mechanisms for promotion and greater acceptance.  Policy privacy was not a 
primary issue for Austinites; implementation, cost, and equity are bigger concerns.  Regular travel 
experiences and individual and household characteristics are also key.  For example, men perceive 
congestion to be less of a problem in Austin than women and demonstrated less flexibility before 
shifting to other modes and/or changing travel plans in response to tolls. Retired and unemployed 
persons view congestion in a more negative context and expressed a willingness to modify their 
plans more often to avoid congestion. 

Public acceptance of a novel and as yet untested policy such as CBCP is likely to require substantial 
education of the public about the benefits of congestion pricing. As tolling gains greater application 
and understanding (abroad and in the U.S., through central district cordon tolls, variable pricing pilot 
programs, HOT lanes, and other strategies), it seems likely that CBCP can emerge as a viable, cost-
effective and strongly supported strategy.  This policy promises substantial benefits for network 
efficiency and welfare equity, addressing key issues that can undermine other proposals.  

Co-introduction of complementary programs, such as employer-sponsored ridesharing and transit 
improvements, promise even greater success, particularly for those having to make regular peak-
hour commutes. Those tending to view CBCP most favorably also perceive greater trip-making 
flexibility and report higher incomes.  Thus, for truly widespread popular support, further 
considerations should be given to constrained travelers within the framework of a CBCP policy.  
Further research can illuminate specific cases of populations less likely to benefit from a CBCP 
policy.  Access to competitive alternative modes (such as buses, casual carpools, and commuter rail) 
at both home and work, and home and school, needs to be thoughtfully appraised.  Models for 
destination, mode, and departure time choice under CBCP need to be developed for impact 
simulation. Changes in land use and land values are likely to be key and should be studied using 
integrated transportation-land use models (see, e.g., Krishnamurthy and Kockelman’s [2004] recent 
Austin applications). Welfare impacts to the Austin region will help in assessing impact of a CBCP 
application and in developing further policy recommendations for eventual implementation of this 
very promising policy.    
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Endnotes
                                                   
1 Supply-side solutions to congestion are often subject to the Pigou-Knight-Downs paradox as well as Braess’s paradox, 
which unleash additional demand upon expanding road capacity and increase travel time upon adding a link in congested 
networks. (Arnott and Small, 1994) 
2 They explored no-toll, optimum-constant-toll, optimum-step-toll and optimal-time-varying-toll regimes for routes with 
capacity both exogenous and optimally chosen. 
3 In 1996, the United States Congress created the FHWA’s Value-Pricing Pilot Program via the Transportation Equity 
Act for the 21st Century (TEA-21). Under TEA-21, the Secretary of Transportation can enter into cooperative 
agreements with up to fifteen State or local governments, or other public authorities, in order to establish, maintain and 
monitor local value pricing pilot programs. TEA-21 provides that any value-pricing project may involve the use of tolls 
on the Interstate system as an exception to provisions contained in 23 U.S.C. 129 and 301. TEA-21 also allows single-
occupant vehicles to occupy High Occupancy Vehicle (HOV) lanes under such a pricing program (as an exception to 23 
U.S.C. 102). (VPPP, 2002) 
4 Women between ages 30 and 50 formed the main user group, and driving comfort and the perception of greater safety 
were the principal supplemental benefits cited by travelers who choose to use the toll lanes even when expected value of 
their time savings was clearly less than the tolls paid. (Sullivan et al. (2000) 
5 HOT lanes are HOV lanes or carpool lanes that non-carpool drivers may use by paying a toll. 
6 Under regular conditions, tolls vary from $0.50 to $4; in exceptional circumstances, they may rise to $8. If the toll 
changes during a motorist’s use of the lanes, the system algorithms charge the user the lowest toll he/she may have seen 
on the message signs. (Smith, 2002) 
7 Those with higher VOTTs often have higher incomes.  Arnott et al. (1994) recognized different schedule delay costs 
and VOTTs, but assumed a single relative cost of late-to-early arrival and a single preferred arrival time, for all travelers.  
In the special cases where either (1) individuals had different costs of late arrival but the same preferred arrival times and 
VOTTs, or (2) commuters had different preferred arrival times but the same schedule delay costs and VOTTs, they found 
the optimal toll to be welfare neutral and a rebate policy to be welfare enhancing for all commuter groups. 
8 Penchina (2003) demonstrated that if the demand is not highly price elastic, Dial’s (1999) minimal revenue (MR) 
pricing has some important advantages over marginal cost (MC) pricing like lower tolls, fewer tolled links, and more 
stable tolls under time-varying demands translating to lower transaction costs, less “user confusion”, and more 
“perceived equitability”. 
9 Verhoef et al. (1996) considered a simple network with several origin-destination pairs and with alternate routes, one of 
which was not tolled.  They showed that a second-best toll on the tolled route could be negative, in order to discourage 
usage of the non-tolled route. 
10 According to the Research and Technology Transporter (2001), FAIR lanes involve demarcating congested freeway 
lanes into Fast lanes and Regular lanes (e.g., by using plastic pylons and striping). The Fast lanes would allow "para-
transit" and limousine-type services, and would be electronically tolled, with tolls set in real time to limit traffic to the 
free-flowing maximum. Electronic message boards located in advance of the Fast lane entry points would advise 
motorists of the toll rate changes. In the Regular lanes, constricted flow would continue; however, drivers with electronic 
toll tags would be compensated with credits. Credits could be used as toll payments on days when drivers choose to use 
the Fast lanes or as payment for transit and para-transit services, which would be subsidized using toll revenues. The 
credits would compensate motorists for giving up their right to free use of the lanes converted to Fast lanes. 
11In November 2001, Travis County voters approved a $66 million bond issue to pay for S.H. 130 right-of-way costs, 
and $32 million for S.H. 45 right-of-way costs. In November 2000, neighboring Williamson County’s voters passed a 
$350 million bond issue with about $150 million designated for tollway right-of-way acquisition and utility relocation. 
(Texas Freeway 2002) 
12 For the random digit telephone numbers, the first 5 of 7 digits were pulled in a systematic fashion from the telephone 
directory. The final 2 digits were randomly generated. In effect, random number dialing of residential telephone numbers 
was achieved.  
13 Sahr's (2002) adjustment factor of 14.94% was used to inflate 1997 dollar amounts to 2002 dollar amounts. The data 
from five ATS survey income groups (less than $10,000, $10,000 to $20,000, $20,000 to $35,000, $35,000 to $50,000, 
and over $50,000, in 1997 dollars) was regrouped (using linear interpolation) into the four CBCP survey income groups.  
14 Note that “income” is per household member in these models, in order to recognize that household size has a major 
impact on household wealth or individually perceived purchasing power. 
15 Austin’s Capital Metro light rail proposal was defeated on November 7, 2000, by just over 2000 votes, an extremely 
thin margin. Moreover, 50.6% of voters within the City of Austin voted in favor of the proposal. Support for light rail 
was often strongest along the proposed routes, in precincts within a half-mile of the initial-system routes. (LRNA 2001) 



                                                                                                                                                                          
16 These respondents explicitly noted that they would oppose any form of CP application in Austin.  
17 Log-linear models ensure positive predictions of the response variable, willingness to pay (WTP). To convert the 
regression results to dollar values, one must use the exponential function.  In notation form, E(ln(WTP))=βx, so 
E(WTP)≈exp(βx). While weights were available for 417 survey respondents, 124 of these did not respond to the 
“limiting toll” scenario question. 20 of these non-respondents refused on the grounds that they did not approve of the 
policy (a point that they clearly noted in “comments” sections of the survey).  Others may have found the scenario too 
complex to respond confidently. 
18 If valid explanatory variables are removed simply because of statistical significance issues, remaining correlated 
variables will proxy for the removed, latent variables, producing biased parameter estimates. (See, e.g., Greene 2000, for 
discussion of such issues.) 
19 Yan et al’s (2002) estimates of VOTT come from 3 models: a multinomial logit model for route choice; a nested logit 
models for mode, transponder and route choice; and a nested logit model of time of day, transponder and route choice. 
The VOTT estimates were $16, $15 and $ 13.32 per hour, respectively. 
20 Brownstone et al (2002) expect their estimates to be biased high due to a perception that toll facilities provide safer 
driving conditions.  



Table 1a. Demographics of Survey Respondents: Before and After Weighting 
 

Age  % in 
Weighted 
Sample 

% in 
Initial  
Sample  

Years lived 
in Austin 

% in 
Weighted 
Sample 

% in 
Initial  
Sample  

Education % in 
Weighted 
Sample 

% in 
Initial  
Sample  

Employment 
status 

% in 
Weighted 
Sample 

% in 
Initial  
Sample  

16 to 19 years 1.1 0.7Less than a 
year 

4.5 3.6Some high school  0.2 0.2Full-time 
employee 

74.6 79.6

20 to 24 years 19.2 12.71 and 2 years 7.3 7.7Vocational training 
certificate  

17.6 12.7Part-time 
employee 

8 5.8

25 to 34 years 28.1 33.13 to 5 years 20.9 21.6High school 
diploma/GED 
certificate 

4.8 4.6Full-time student 10 7.2

35 to 44 years 16.4 22.1More than 5 
years 

66.7 66.4Under-graduate. 
degree 

44.1 46.8Part-time student 1.5 1.2

45 to 59 years 28.4 25.9Missing 0.7 0.7Graduate degree or 
higher 

33.2 35.7Unemployed, 
(non-student & 
not retired)  

1.5 2.2

Over 60 years 6.8 5.5            Retired 4.1 3.6
                  Volunteer 0.4 0.5
Total % 100 100Total 100 100Total 100 100Total 100 100

 
 
 
 
 



Table 1b. Description of All Variables (Weighted Results) 
 

Variable Type Variable name Description N Minimum Maximum Mean SD 
CONGLEVEL Perception of congestion  (0 - not a problem, 1 - minor 

problem, 2 - problem, 3 – major problem) 409 0 3 2.344 0.765 
FREQMOD Frequency of modifying trips to avoid congestion (0 - 

never, 1 - sometimes, 2 -often, 3 - always) 410 0 3 1.644 0.91 
NDAYS Number of days per month one would change trip mode 

and/or time to save credits 346 0 20 3.575 5.054 
ALTMODTOLL Minimum toll ($) for exploring alternate modes/times 

facing insufficient CBCP credits 347 0 20 4.959 5.661 
CARTOBUSTOLL Toll price ($) causing commute trip mode shift from 

SOV car to bus, assuming 15 additional minutes each 
way 316 0 20 4.897 5.426 

WILLTOPAY Willingness to pay ($) per day for 20 min. travel time 
saving from a CBCP policy 296 0 20 2.656 3.987 

LOGMINTOLL Natural logarithm of minimum toll for change in trips 324 -1.386 2.996 1.181 0.998 
LOGCARTOBUS Natural logarithm of toll for shifting from SOV to bus 290 -1.897 2.996 1.208 1.002 

Dependent 
variables 

LOGWTP Natural logarithm of willingness to pay for 20 minutes 
travel time savings per day 267 -2.303 2.996 0.574 0.933 

YRSINAUSTIN Years living in Austin 414 0.5 8 6.343 2.505 
AGE Age (in years) 417 17.5 69.5 38.696 14.074 
AGESQ Age squared (years squared) 417 306.25 4830.25 1694.993 1209.370 
MALE Indicator for gender (male =1, female =0) 417 0 1 0.504 0.501 
HHSIZE Household size (number of persons) 417 1 7 2.223 1.083 
LICDRIV Number of licensed drivers in the household 417 0 7 1.860 0.827 
NUMCHILD Number of children in the household 417 0 4 0.363 0.702 
INCOMEPP Annual household income ($) per person 417 1000 200000 30266.460 23078.470 
INCSQ Square of annual household income 417 1.00E+06 4.00E+10 1.45E+09 2.88E+09 
VEHOWN Number of household vehicles per driver 417 0 3 0.837 0.321 
EMPLYDF Indicator variable for employed full time 417 0 1 0.825 0.380 
EMPLYD Indicator variable for employed (full or part time) 417 0 1 0.746 0.436 
RETUNEMP Indicator variable for retired or unemployed 417 0 1 0.056 0.23 
STUDENT Indicator variable for student (full or part time) 417 0 1 0.100 0.301 
GRADUATE Indicator variable for college graduates  (1 - graduate, 0 

- non-graduate) 417 0 1 0.774 0.419 

Respondent 
demographics 

MASTERDEG Indicator variable for masters degree holders (1 - yes, 0 - 
masters)  417 0 1 0.333 0.472 



CARPOOL Indicator variable for person who carpools (1 - yes, 0 - 
no) 373 0 1 0.291 0.455 

 

WKFLEX Indicator variable for person with highly flexible work 
or school hours  (1 - yes, 0 - no) 417 0 1 0.124 0.329 

NPEAK Number of Peak-hour trips per week (7.30 to 9.30 a.m. 
& 4.30 to 6.30 p.m.) 417 0 50 8.030 4.525 

DISTWORK One-way travel distance (to work or school) (miles) 369 0 200 13.771 23.283 
TIMEPK Travel time during peak hours (min) 377 0 120 26.968 18.282 
TIMEOFFPK Travel time without congestion (min) 377 0 100 14.400 10.405 

Travel 
information 

TIMELOSSPM Travel time lost per mile in peak hours (min) 361 0 11.5 1.284 1.098 
 
Note: Data that was obtained categorically (e.g., income and age classes) has been modified to approximate continuous values for Table 1’s values and for use in 
the regression models. Wherever applicable, class midpoints were used as approximations. An average value of 8 years was assumed for people who lived in 
Austin for more than 5 years. An average income of $200,000 was assumed for those whose income exceeded $170.000. There were no respondents older than 80 
years of age, so the penultimate bracket’s mid-point (69.5 years) was thus the highest coded age.  
 



Table 2. Ordered Probit (OP) Model Results for Perception of Congestion in Austin 
 

VARIABLE NAME Initial 
Estimates 

P-value Final 
Estimates 

P-value 

CONSTANT 1.3777 0.000 1.3774 0.000 
YRSINAUSTIN 0.1140 0.000 0.1137 0.000 
AGE 0.0016 0.710   
MALE -0.0891 0.345   
DISTWORK 0.0124 0.011 0.0124 0.002 
TIMELOSSPM 0.1609 0.001 0.1702 0.000 
NPEAK 0.0008 0.942   
INCOMEPP -4.333E-06 0.195 -3.509E-06 0.215 
NUMCHILD -0.0899 0.363   
VEHOWN 0.0351 0.873   
EMPLYD -0.2010 0.161 -0.2078 0.111 
STUDENT -0.4051 0.029 -0.3835 0.021 
GRADUATE 0.2034 0.042 0.1827 0.049 
MASTER -0.2113 0.080 -0.2027 0.038 
µo 0 NA 0 NA 
µ1 1.0507 0.000 1.0532 0.000 
µ2 2.1685 0.000 2.1688 0.000 
Nobs 365   365  
Log likelihood -357.64   -366.84  
Log Lik: Constants only -385.17   -385.17  
LRI 0.0715  0.0692  

Note: An ordered probit model’s latent mean is the sum of the regression coefficient estimates interacted with 
explanatory variable values. Addition of a standard normal random error term defines final classification, where the µ’s 
identify thresholds for class limits.   
 
Table 3. OP Model Results for Frequency of Travel Modification to Avoid Congestion 
 

VARIABLE NAME Initial 
Estimates 

P-value Final 
Estimates 

P-value 

CONSTANT 1.8116 0.000 1.8676 0.000 
AGE 0.0113 0.000 0.0128 0.000 
MALE 0.1293 0.107 0.1099 0.137 
DISTWORK 2.887E-03 0.506     
NPEAK -0.0298 0.002 -0.0313 0.001 
TIMELOSSPM 0.1264 0.003 0.1166 0.006 
NUMCHILD -0.1974 0.014 -0.2056 0.010 
INCOMEPP 6.373E-07 0.808     
VEHOWN -0.4130 0.004 -0.4461 0.000 
EMPLYD -0.4069 0.001 -0.4333 0.000 
STUDENT -0.6059 0.003 -0.6056 0.002 
GRADUATE -8.684E-02 0.350     
MASTER 1.290E-01 0.253     
µo 0 NA 0 NA 
µ1 1.374 0.000 1.370 0.000 
µ2 2.290 0.000 2.282 0.000 
Nobs 363   363   
Log likelihood -442.35   -443.05   
Log Lik: Constants only -462.66   -462.66   
LRI 0.0434  0.0424  



Table 4. Binary Logit Model for Support of Pricing Policies 
 

VARIABLE NAME 
 

Initial 
Estimates 

P-value Final 
Estimates 

P-value 

CONSTANT 2.7784 0.051 1.1027 0.098 
YRSINAUSTIN 0.1037 0.066 0.1094 0.051 
AGE -0.0172 0.135 -0.0151 0.178 
MALE -0.2446 0.346   
NPEAK -0.0267 0.417   
INCOMEPP 9.947E-06 0.113 8.270E-06 0.173 
NUMCHILD 0.0336 0.890   
EMPLYD -1.7194 0.126 -0.6084 0.160 
STUDENT -1.2780 0.283   
GRADUATE -0.3935 0.265   
MASTER 0.7122 0.025 0.6233 0.030 
VEHOWN -1.0847 0.086 -1.1680 0.018 
DISTWORK -0.0186 0.128 -0.0174 0.131 
TIMELOSSPM 0.0524 0.665    
WKFLEX -0.9395 0.022 -0.9004 0.017 
INFLXPRC -0.0223 0.942   
Nobs 368   368  
Log likelihood -183.6173   -185.9109   
Log Lik: Constants only -200.4898   -200.4898   
LRI 0.0842   0.0727   

 
Table 5. Binary Logit Model for Support of Infrastructure Improvement Policies 

VARIABLE NAME 
 

Initial 
Estimates 

P-value Final 
Estimates 

P-value 

CONSTANT 34.6186 1.000 7.6056 0.000 
YRSINAUSTIN -0.2593 0.034 -0.2572 0.027 
AGE -0.0146 0.370 -0.0193 0.168 
MALE 0.8681 0.037 0.7911 0.038 
NPEAK -0.0648 0.203 -0.0678 0.124 
INCOMEPP -1.537E-05 0.054 -1.451E-05 0.047 
NUMCHILD -0.8167 0.014 -0.8872 0.002 
EMPLYD -28.4297 1.000     
STUDENT -28.4941 1.000     
GRADUATE 0.5616 0.329     
MASTER -0.7619 0.117 -0.7583 0.059 
VEHOWN -1.8825 0.045 -1.7448 0.017 
DISTWORK 0.0281 0.187     
TIMELOSSPM 0.2030 0.394     
WFLEX -0.7301 0.166 -1.1560 0.016 
INFLXWORK&TIME 0.7570 0.194     
Nobs 368   414   
Log likelihood -92.0006   -104.9394   
Log Lik: Constants only -111.9425   -124.3194   
LRI 0.1781   0.1559   

 



Table 6. Truncated Negative Binomial Model Results for Number of Days an SOV Driver 
would Modify Trip Making so as to Save CBCP Credits 
 

VARIABLE NAME 
 

Initial 
Estimates P-value 

Final 
Estimates P-value 

CONSTANT 3.8712 0.000 3.6084 0.000 
AGE -0.0206 0.007 -0.0191 0.012 
INCOMEPP -7.455E-06 0.104 -8.727E-06 0.039 
NUMCHILD -0.4575 0.002 -0.4276 0.003 
EMPLYD -0.4760 0.250    
STUDENT -0.5493 0.307    
VEHOWN -1.4330 0.002 -1.4028 0.001 
DISTWORK -0.0429 0.006 -0.0405 0.018 
TIMEPK -0.0252 0.040 -0.0246 0.040 
TIMEOFFPK 0.0778 0.001 0.0714 0.003 
NPEAK 0.0195 0.464    
Alpha 2.1757 0.000 2.2261 0.000 
Nobs 344   344   
Log likelihood -744.25   -746.17    
Log Lik: Constants only -1353.11   -1353.11   
LRI 0.45  0.4485   

Note: Alpha is a measure of over-dispersion in the model and has to be greater than 1 for a negative binomial model.  
 
 
Table 7.  OLS Model Results for Willingness to Pay to Avoid Mode Shift from SOV to Bus  
 

VARIABLE NAME 
Y =log(Toll) 
Coefficients  P-value 

Y = Log(toll) 
Coefficients  P-value 

CONSTANT 0.7228 0.086 0.3901 0.125 
AGE 0.0112 0.034 0.0087 0.046 
MALE 0.1535 0.210 0.1621 0.165 
INCOMEPP 2.133E-06 0.464   
EMPLYDF 0.2807 0.166 0.2677 0.042 
STUDENT -0.1128 0.685   
GRADUATE -0.2049 0.229   
VEHOWN -0.3869 0.102   
WKFLEX 0.3201 0.093 0.317 0.073 
DISTWORK 0.0035 0.592   
TIMELOSSPM -0.0049 0.933   
NPEAK 0.0215 0.176 0.0227 0.129 
Nobs 257   289  
Adjusted R2 0.048  0.033  

Y = Natural log of maximum toll willing to pay to avoid bus use (assuming 15 additional minutes of commute time each 
way) 
 



Table 8. OLS Model Results for Value of 20 minutes Travel Time Savings  
 

VARIABLE NAME 
 

Initial 
Estimates P-value 

Final 
Estimates  P-value 

CONSTANT 0.5793 0.210 0.4243 0.289 
AGE 0.0073 0.190 0.0067 0.210 
MALE -0.1045 0.409     
INCOMEPP -1.367E-06 0.626     
NUMCHILD 0.1894 0.104 0.1856 0.101 
EMPLYD -0.0824 0.673     
STUDENT  0.7355 0.008 0.9018 0.000 
GRADUATE 0.4451 0.005 0.4435 0.004 
NPEAK -0.4343 0.174 -0.4750 0.125 
CARPOOL -0.3985 0.006 -0.4201 0.003 
DISTWORK -0.0086 0.089 -0.0073 0.136 
NPEAK -0.0007 0.966     
TIMELOSSPM -0.0297 0.614     
Number of observations 211   215   
Adjusted R2 0.1116   0.1360   

Y = Natural log of value of 20-minute travel time savings during commute round-trip 
 


