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Abstract

This paper presents an attempt to integrate dynamic traffic models and location choice models in a more
consistent way than the four-step planning scheme. Two temporal horizons are considered. On the long
run, individuals select the location of their primary activities based on local land use data and on travel
costs. Mode choice is omitted. On the short run, the car travelers select the departure time and route for
the primary activity. On the short run, the travel demand is disaggregated at the individual level. On the
long run, users characteristics are aggregated. A methodology is developed that can be used to bootstrap
multi-agents simulations in an efficient way. The emphasis is put on the provision of an operational
module. Therefore, the paper focuses on the technical details of the implementation of this methodology
and on its applications to large-scale systems. Preliminary results are presented for the area of Zurich,
Switzerland.
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1. Introduction

Current issues in the study of travel behavior are concerned about the temporal organization of human
activities and the journeys that take place between them. Surveys and empirical works are available
that unveil part of the real decision processes of users. These are extremely useful to the model designer
looking for an improvement or a replacement solution to the classical four-step planning scheme. A major
drawback from the four-step scheme is the absence of any time scales: the sequence of trip generation,
trip distribution, mode choice and trip assignment is not specified in any time reference. Furthermore,
the feedback loop between the upper and lower levels is often neglected or at best implemented using ad
hoc rules since the dynamics of the decision update is not obvious. Activity based demand models are a
promising replacement solution. These models describe travel demand by modeling how users organize
their daily activities and their schedules. Basically, travel demand is considered as being derived from
activity demand that is, in turn, spatially dependent on the land use patterns as pictured on Figure 1.

Figure 1: Three layers of models with different time scales

Activities (day/week)

Land use patterns (month/year)

Transportation system (hour/day)

The shift from the trip-based approach to the activity-based approach leads to several problems. First as
stated by (Ben-Akiva and Bowman, 1998), the fundamental problem [...] is combinatorial in the sense
that the dimension of the choice set of activity decisions is extremely huge (

�������
). The difficulty is the

availability of methodologies to model the decision process. Discrete choice models have been very
successful in travel demand models but space and time are continuous variables. This can be somewhat
relaxed using an adequate discretization. However, the operational requirements of discrete choice mod-
els impose a complete enumeration of the choice set, which is intractable in the general case. Obviously
some simplifying assumptions are needed to turn Figure 1 into a realistic operational model. A second
problem is to provide a consistent way to move data across the different models. Multi-agent simulations
like those proposed by (Waddell et al., 2003) and (Raney et al., 2003) address this problem in an elegant
way: Individual agents keep their intrinsic characteristics throughout the whole chain of models, without
any aggregation performed.

The full implementation of the global model described by Figure 1 will certainly be computationally
intensive (as for the TRANSIMS implementation on supercomputers, see (TRANSIMS, 2003)). The
purpose of this paper is to provide a simple methodology to avoid starting the whole architecture from
scratch data in order to compute the equilibrium for all the modules. Indeed, we can think of starting
with a reduced version of the overall model that will be used to initialize the feedback responses between
the three different layers. Another goal of this paper is to reduce the data requirements of transportation
planning models by avoiding the expensive collection of trip tables. We restrict ourselves to the case of
private transportation and remove, for the time being, mode choice from the context.
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An important aspect in our view is the interpretation or pre-processing of data in travel behavior research.
Typically, the studied area is cut into Transportation Analysis Zones (TAZ) and local land-use attributes
are aggregated over these zones. In practice, the administrative boundaries (counties, states, etc.) are
often used to define these TAZ. When these divisions are too coarse, for instance in a dense urban area,
the practitioner usually divides further the TAZ into smaller pieces. Unfortunately, this pre-processing of
data is ambiguous and may differ from one application to another. Therefore, it sounds appealing to use
data with the highest resolution available. For travel demand, the highest resolution level is usually that of
the local population census. For instance, URBANSIM recognizes that argument and uses 150mx150m
cells to describe the land use properties of the system. URBANSIM provides a loose coupling of land use
models and transportation models. The specification of the interface with the travel model is that TAZ
have to be defined as a group of cells. However, the definition of those groups is left to the user.

In the four-step planning scheme, the trip distribution is often performed using gravity-like models (Or-
tuzar and Willumsen, 1994). The trip-table ����� is computed using

� �����
� �
	����� ��������� (1)

where
� � is the emission of zone � , 	�� is the attraction of zone � ,

� ��� is some impedance related to the
journey from � to � (e.g. distance or travel time) and � is the exponent that is adjusted to fit the obser-
vations. The main disadvantage of this method is that the � exponent does not have an easy economic
interpretation. As a consequence, it requires a real-world measurement of a subset of ����� to fit the �
exponent. The dimension of ����� is ��� where � is the number of TAZ. The collection of a fraction of ���
estimations is often prohibitive and unreliable. Moreover, the lifetime of these data might be rather short
in practical cases because of the evolution of the travel demand over time. In practice, once trip tables
����� have been estimated, they are progressively updated using data with a lower dimensionality such as
traffic counts.

The alternative solution proposed here is that of Figure 2. The trip distribution is performed by a location
choice model that uses typical raw census data: the number of active residents ��� and the number of jobs � in each cell. The dimensionality of the data is � once they are aggregated over the TAZ. Another input
is the transportation cost !"��� that is unknown at the beginning of the simulation. The location choice
model produces two outputs: the trip table ����� as well as a vector #$� that corresponds to the rent of
the TAZ. This vector corresponds to easily available real-world data. It is used as a control data set to
calibrate the location choice model. Therefore, this solution does not require an estimation of a subset of
����� . The advantage of this setting is that �%� �

 � and #$� can be easily updated, have a lower dimension,
are more reliable and less expensive to acquire.

2. Transportation model

The task is to couple two modules that are sufficiently efficient in term of computer performance to
describe large-scale systems. By using raw census data, the objective is to describe the travel demand at
the highest resolution level. To be consistent, the transportation model has to meet the same requirements.
This leads to network sizes that are in the range of dozens of thousands of links for metropolitan areas.
Most static assignment models can handle such problems. However, as mentioned above, the temporal
description is a central component of the study of travel behavior. Users have to make a trade-off between
deriving utility from several activities and the travel impediments imposed by moving from one activity
to the next. Taking into account this trade-off has two obvious implications. Firstly, the transportation
model has to output time-dependent travel time patterns, hence the model should be dynamic. Secondly,
some evaluations of activity schedules have to be integrated. Therefore the transportation model, or any
co-existing module, has to model the decision of the time of usage. Note that these purposes preclude
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Figure 2: Integration of location choice model and transportation model
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traffic micro-simulators from the current study. Indeed, most of them are input with time-dependent
trip tables (i.e. dynamic O-D matrices) and do not feature a feedback of traffic conditions on the users
decision of the time of usage. Moreover, most of them cannot scale to large systems. Eventually, there
is only a limited number of transportation models that can cope with these requirements: TRANSIMS,
MASIM and METROPOLIS. In TRANSIMS, the beginning and the duration of activities are computed
in the Activity Generator module. MASIM stands for a Multi-Agent SIMulation and is developed by
the team of Kai Nagel at ETH Zürich. In this architecture, users are described individually through the
whole simulation. The simulation of vehicle movements is performed using parallel computer resources
so that it can achieve simulations of such large-scale systems faster than real-time. The scheduling of
activities in MASIM is delegated to a specific module presented in this same conference (Charypar and
K.Nagel, 2003). METROPOLIS (de Palma and Marchal, 2002) is used in this study. It is a dynamic traffic
assignment model that embeds a departure time choice model based on the original model of Vickrey.
Vickrey was the first to recognize the importance of schedule delay costs (Vickrey, 1969). Users incur
schedule delays because of traffic congestion. Indeed, the theoretical finding is that schedule delay costs
can be of the same order of magnitude as congestion costs. Consequently, it seems relevant to include
even a simple approximation of these costs in any urban location choice model. In METROPOLIS, the
travel cost ! �  � for a given time of usage


is the sum of the travel time cost and schedule delay cost:

! �  � � � � �� � ��� �
 � � �  ��� 	� � � (2)

where � is the value of time, � �
 � is the travel time,
 �

is the desired arrival time and
� ��
 � is the schedule

penalty function. METROPOLIS implements a stochastic departure time choice with a continuous logit
model. The time-independent consumer surplus !����� derived from traveling from � to � is given by:

!����� �������� � ����! #"%$ � !&��� �(' �� � ) � ' � (3)

where � � is the scale parameter of the logit model and � is the simulation period. This value is used
as an input by the location choice model in order to take into account the within-day variability of travel
costs. Consequently, the coupling between the location choice model and the travel model is relatively
loose in the sense that the time-dependent details are hidden to the location choice model. A similar
coupling is being investigated to apply METROPOLIS and URBANSIM together.
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3. Location choice model

3.1 Formulation

It is assumed that the studied region is spatially discretized into � cells for which the following census
data are available: � � the number of active residents per cell and

 � the number of jobs per cell. Assume
further that the total number of employees is equal to the total number of jobs � (i.e. there is market
clearing for the whole city: labor supply and labor demand are at equilibrium):��

��� � � � �
��
��� �  � � � 
 (4)

The objective is to derive the trip table ����� from the knowledge of vectors � � and
 � . Let us restrict

ourselves to home-to-work trips. In reality, users adapt their home location to their job and conversely.
At the long run equilibrium and under constant conditions, the trip distribution would verify:

������ ����	
��
�
� � � ��� �  ���
��� � � ��� � � �



(5)

In this restricted case, utility is only derived from two activities: working and living at a specific place.
The utility for an individual working at location � and living at location � is assumed to be given by:� ��� � !� ��� �� � ��� � � ����� ��� �
where !����� is the consumer surplus associated to a journey from cell � to cell � , � � is the average rent at
location � , � � is the average wage at location � , ��� is a scale parameter and � ��� are random variables. The
term � � can also be interpreted as a (negative) residential location premium. No restrictive assumption is
made on how !� ��� is computed, whether with a static or dynamic traffic model. The probability that an
individual works at cell � and lives at cell � simultaneously is given by� ��� � � ��� � ����� �����

���� "!� � ��#$!� �&% 

If � ��� are assumed to be i.i.d. Gumbel distributions, it yields the logit formula:

� ��� � �  "('*)�+-,/.�0213,54�67.8:9 ;< � � � � < �� � � �  #"(' )�+:=?>50@1�=�4�62>8 9 ; 

Let us consider first the case where the job location is given. The law of conditional probability imposes
that � ��� � � � �2A � � � � � �CB � � � � � �

where
� � ��B � � � � � �ED � �CB � � � � and

� � � � � ��
�
� � � ��� �

< �
��� � �  "('*)�+-,/.�0213,54�67.8 9 ;< � � � � < �� � � �! #"(' )�+&=?>F0@1?=C4�6@>8:9 ; 
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The conditional probability
� � ��B � � to live in � when having a job fixed at location � is given by :

� � �CB � � � � ���� � � �
� �  #" ' )�+-,/.*0213,54�67.8:9 ;< �

�
� � �! #"('*)�+ , . 0@1 , 4�6 .8 9 ; � �  " '*)�+-,/.*0213,8:9 ;< � � � � �! #"('*)�+:= . 0@1�=8 9 ;
Thus

� � �CB � � � � � �CB � � � � � and the trip table ����� can be written as

� ��� �  � � � �CB � � � � � 

The equilibrium condition (5) imposes that��

��� � � ��� �
��
��� �  � � � �CB � � � � � � � � 
 (6)

Conversely, if we assume that the residential location is fixed in � , the probability to have a job in location
� is given by:

� � �@B � � � � ���� � ���
� �! #" '*)�+-, .?4�67.8:9 ;< �

��� � �! #" '�)�+ ,/. 4�6 .8 9 ; � � � �2B ��� ��� � 

and the trip table elements are given by ����� � � � � � �2B � � ��� � . The equilibrium requires that:��

��� � � ��� �
��
��� � � � � � �2B � � ��� � �  � 
 (7)

We obtain two systems of � non-linear equations (6) and (7). Obviously, rent and wages are defined up
to an additive constant.

3.2 Resolution

Let � � � �  #" � � 1?,8 9�� , 	 � � �! #" � 6@,8 9
� and � ��� � �! #" � )�+ , .8 9�� . The two systems (6) and (7) become:

� � � � � ��
��� �

 � � ���< � � � � � � � � �
 � � 	 � ��

��� � � �� ���< � � � � � � � 	 �
Obviously the two systems are the same problem for the permutations �����  � , � ����	 � , � ������� � � .
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3.2.1 Special case: no transportation cost

If � ��� � � � , then

� � � � � < �
��� �  �< � � � � � � � � � �< � � � � � � 


The factor � � ���� = ���	� = is independent of � so that

 ,� , is constant. Since � � are known up to a multiplica-

tive factor, we can assume � � �
and the solution without transportation cost is given by: � ) �� � � � .

Similarly, we have 	 ) �� �  � .

3.2.2 Linearization

Let � � �� � � � � < �
��� ��� . � , .� . ����� � � � and ��� ��� � � < �

�
� � � �� ��� . To find the roots of � � ��� � , the Newton

method is applied. Assume that � ��� ������� � ) ��� � � � � � � ) �!� where � is the Jacobian matrix� ��� � "" � . � � ��� � . The linear system to be solved is � � � � � ) � �#� � � ) � � . The elements of the
Jacobian matrix � are given by:

� ��� � "" � .
$
� � ��� � � � =�) , =� = �%���!&�(' ��� ��� � � � = ) , =� = �%��� � � �

$ ��� � � � =�) , =C) . =�*)= ����� &
(8)

3.2.3 Implementation

The Newton method suffers from the disadvantage that it requires to be started sufficiently close to the
solution. Preliminary experiments (not reported here) showed that starting from

� ) � is not sufficient in
practical cases. Therefore, iterative substitutions are performed first:

� � 4 � � � � � �,+- � �< �
��� � � . � , .� . �%� = � �

� �/.0
� (9)

where
� �

refers to the solution at iteration  and �212% � � � % . The complete algorithm is shown below.

Empirical values are 3 � � ��� 0 � , 3 � � � � 0*4 and � � � 
65
. Typical experiments require about a hundred

iterative substitutions (loop 2-3) and less than ten iterations of the Newton method (loop 4-5-6). Step
5 is performed using the general routine DGESV from the LAPACK library (LAPACK, 2003). This
method solves 	 � �87 in the general case without any assumption on the properties of 	 . Table 1
presents the numerical performances for random data sets. All the computation times reported in this
paper correspond to a PC equipped with a Pentium 4 CPU clocked a 2.5Ghz. The computation times
are roughly proportional to �:9 . This is consistent with the fact that the computation of the Jacobian is of
order � 9 , as well as the LU factorization performed by DGESV.
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Algorithm 1 Solving the location choice model

1. Set  � �
. Initialize the rent vector � � � � � ) �� � � � .

2. Compute
� � 4 � using (9).

3. If �
� =�� � 0 � = �� � = � � 3 � , go to step 2.

4. Compute � �
��� using (8).

5. Solve � � � � 4 � � � � � � �2� � � � � .
6. If �

� =�� � 0 � = �� � = � � 3 � , go to step 4.

Table 1: Numerical performance of the location choice model.

� CPU [s] RAM [Mb]

500 20 � 5
1,000 175 23
2,000 1850 92

4. Applications to medium-scale systems

A detailed application of the above model was performed on the Paris area in a recent paper (de Palma
and Marchal, 2003). The METROPOLIS transportation model was calibrated using external sources such
as surveys and traffic counts. The Parisian regional database covers about 20,000 square kilometers and
was provided by a local agency, IAURIF. The coded network is made of 18,000 links and is not fully
disaggregated (only the main roads are coded). The origin and destination locations are grouped into 514
TAZ. The calibration of the location choice model consists only in the adjustment of the parameter � �
to fit rent patterns � � with actual rent values. In this study the calibration was carried out in reverse order.
An external trip table ����� calibrated with traffic counts was used to adjust � � . Then, the rent patterns
produced by the model were compared to actual values collected for the Paris area. The calibration
process yielded � � =1.75$ while the average car travel cost for a commuting journey in the morning was
4.91$. The Paris area is strongly CBD-oriented. Therefore, it is interesting to plot the rent gradient as
a function of the distance from downtown Paris. Figure 3 shows that the gradient is about 0.11$ per
km. This value can be interpreted as the increment in rent value due to the presence of travel costs. At
first sight, this is a rather small figure, but it corresponds to the rent gradient due to a single trip. If we
assume 50 trips in a month on average, this yields a rent gradient of about 5.5$ per month per kilometer.
Comparison with real-world values (not presented here) revealed that the location choice model captured
about half of the rent discrepancies between downtown and the suburbs. However, the rent in the CBD
was underestimated.

The resolution of the location choice model is rather fast for a problem of this size (see Table 1) compared
to the computation of the transportation model. METROPOLIS requires typically two hours of CPU time
to compute the traffic equilibrium for this problem. It corresponds to about 50 iterations (e.g. morning
peaks). An important issue is the convergence of the coupling of the models (see Figure 2). The following
iterative procedure was applied:

1. Year 0. � ��� � � � . Compute � ���� and � �� using the location choice model.
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Figure 3: Rent increment due to single trip cost and linear regression.
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2. Year 0. Apply METROPOLIS, compute � ���� .
3. Year 1. Compute � ���� and � �� using the location choice model and � ���� .
4. Year 1. Apply METROPOLIS, compute � ���� .

The relative standard deviation between years 0 and 1 for the rent patterns is 106%, then it drops to 5%
between years 1 and 2, then 4% between years 2 and 3. Two steps are sufficient in practice to obtain a
stable trip distribution. The traffic equilibrium can exhibit some differences between successive steps (not
presented here), such as peak congestion being trade-off for schedule delay. However, the computation
of the consumer surplus using (3) with � � � ���

tends to smooth these variations.

5. Applications to large-scale systems

In the previous section, it has been shown that the location choice model can be used to produce realistic
trip tables for the primary activity but that the algorithm is poorly scalable. If the density of active
residents and jobs is provided using census raster data instead of zones, the size of the system will put the
problem out of reach of the previous algorithm (e.g. a 10km by 10km urban area corresponds to 10,000
cells). The ultimate goal is to develop a methodology that will scale beyond the limit of a few thousands
cells and that avoid, if possible, a complete enumeration of all the possible alternatives. Several potential
tracks can be examined to solve this limitations.
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1. The Newton method is not the most efficient way to solve the non-linear system. In particular, it
does not exploit the property that it is a fixed point problem. Generalization of secant methods
have been proposed recently (Crittin and Bierlaire, 2003) that can handle problems of size 100k.
Experiments have not yet been conducted to compare computing times for this specific problem.

2. An agent-based optimization simulation is under development where agents have a limited choice
set (several dozens of cells at most). From this set they select their primary and secondary activities.
An update process circulates cell information via social connections between agents. Preliminary
results (not reported here) indicates that this process might be slower than a full enumeration but
that it has the advantage to scale independently of the size of the grid. Moreover, it can potentially
capture the dynamics of the modification of behaviors due to external changes.

3. Cells can be automatically clustered into TAZ. Obviously this is a second-best solution since the
goal is to get rid of the ambiguous TAZ description. Since different grouping criteria produce
different TAZ patterns, this solution is not completely suitable. Nevertheless, it can provide, in a
first approximation, a set of reasonable initial conditions for the multi-agent simulations. This can
speed up the convergence by starting the simulation with a plausible choice set for each agent.

5.1 Cell clustering

Ideally, the automatic clustering of cells into TAZ should be adaptative and should only depend on the
data and on the structure of the problem. It has been noted before than the rent values computed by
the location choice model are defined up to an additive constant. These results only make sense when
compared to the solution without travel costs � ) � . Recall that � ) �� � � � � � � ) �� � � � ��� � � . This
implies that if a TAZ is divided into two children TAZ with the same amount of residents


 ,� , the rent
without travel costs is increased by a factor � � ��� . (This can be seen as an instance of the IIA problem
of the logit model.) One one hand, it is suitable to choose a clustering rule such that the location choice
model produces the widest spectrum of rent values. On the other hand, it is not suitable to introduce
discrepancies that are artifacts in the rent patterns. Therefore, the clustering rules are selected as follows:

� group only neighboring cells,

� group cells so that TAZ have the same amount of residents �%� .

If all TAZ have the same amount of residents, they should have all the same rent value in the case without
travel costs and we can assume � ) � � �

for all the TAZ. Note that this method can group cells with quite
different properties in term of residents, jobs and travel costs. However this rule spares us the definition
of a similarity function for the cells. The first rule prevents TAZ to be grouped into non-connected sets
and allows to use graph partitioning techniques to implement the clustering.

The implementation of the clustering is performed using a graph partitioning package (METIS, 2003).
Cells are assumed to be vertices of a lattice where each node is connected to the north, east, south and
west to other cells. Edges have no weight and vertices have weights equal to � � . METIS can compute
a graph partition that ensures an equal distribution of the weights in each cluster. Figure 4 presents this
encoding. Empty cells can be connected at no cost, to allow isolated non-empty cells to be merged with
neighboring TAZ. Eventually, the center of gravity

���
of the TAZ is computed to determine its location:��� � ���	� > > 
��� 
 ,� �	� > > 
 
 , .
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Figure 4: Graph partitioning of the cells
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Table 2: Efficiency of the clustering method

Zurich Switzerland

Size [kmxkm] 80.3x70.1 345.8x219.4
#cells [k] 563 7586
#non-empty cells [k] 81 316
#TAZ 1,000 4,000
� � � � 1195.2 1025.78

� 
 , 23.65 22.12
CPU [s] 19 278
RAM [Mb] 57 961

5.2 Results

The data set for the region of Zurich consists of a subset of the Swiss census and covers about 563,000
cells (only 81,000 have data). The corresponding coded network comes from the NavTech company and
contains more than 76,000 links. Figure 6 displays the clustering into 1,000 TAZ of the Zurich area.
It can be seen that more TAZ are produced where the density of residents is higher, close to Zurich
downtown.The efficiency of the graph partitioning is presented in Table 2. Note that the efficiency of the
METIS routine could be considerably improved by building a graph that handles empty cells in a more
sophisticated manner since, in this application, most of the vertices have null weights. Nevertheless, the
computing times are acceptable even for large-scale systems. Figure 5 presents the distribution of the
number of non-empty census cells per TAZ for the whole Switzerland data set clustered with the same
technique. Figure 6 presents the monthly rent pattern for the Zurich area. Rents are given in CHF and
are computed assuming 50 trips a month. Rents have been adjusted to a minimum of 1,000 CHF to be
comparable with real values.
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Figure 5: Clustering of the whole Switzerland census data
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6. Conclusions

This paper proposed an efficient solution to provide large-scale simulations of urban areas with trip distri-
bution in a more consistent manner than the four-step planning scheme. In particular, the proposed model
computes in a few steps a trip distribution that depends indirectly on within-day travel time variability
as well as on activity schedule constraints. The deliberate choice to keep a simple description (home-
to-work trips, car traffic only, linear schedule delay) allows to design a fast procedure that uses raw
census data in an straightforward way. Nevertheless, some scalability problems remain. A workaround
has been elaborated using cell clustering. For large-scale systems with hundred of thousands of cells,
further research directions have been suggested, such as multi-agent simulations and efficient solvers for
large-scale fixed point problems.
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