
 

 

 

A Tour-Based Model of Travel Mode Choice 

Eric J. Miller, University of Toronto 
Matthew J. Roorda, University of Toronto 
Juan Antonio Carrasco, University of Toronto 
Conference paper   
Session XXX  
 

 

Moving through nets:  
The physical and social dimensions of travel 
10th International Conference on Travel Behaviour Research  
Lucerne, 10-15. August 2003 



10th International Conference on Travel Behaviour Research 

 August 10-15, 2003 

I 

A Tour-Based Model of Travel Mode Choice 
Eric J. Miller, Matthew J. Roorda and Juan Antonio Carrasco 
Department of Civil Engineering 
University of Toronto 
Toronto, Canada 

Phone: 01-416-978-4076 
Fax:  01-416-978-5054 
eMail: miller@civ.utoronto.ca, roordam@ecf.utoronto.ca, carrasc@ecf.utoronto.ca  

 

Abstract 
This paper presents a new tour-based mode choice model.  The model is agent-based: both 
households and individuals are modelled within an object-oriented, microsimulation frame-
work.  The model is household-based in that inter-personal household constraints on vehicle 
usage are modelled, and the auto passenger mode is modelled as a joint decision between the 
driver and the passenger(s) to ride-share.  Decisions are modelled using a random utility 
framework.  Utility signals are used to communicate preferences among the agents and to make 
trade-offs among competing demands.  Each person is assumed to choose the “best” combina-
tion of modes available to execute each tour, subject to auto availability constraints that are de-
termined at the household level.  The household’s allocations of resources (i.e., cars to drivers 
and drivers to ride-sharing passengers) are based on maximizing overall household utility, sub-
ject to current household resource levels.  The model is activity-based: it is designed to be inte-
grated within a household-based activity scheduling microsimulator.  The model is both chain-
based and trip-based.  It is trip-based in that the ultimate output of the model is a chosen, fea-
sible travel mode for each trip in the simulation. These trip modes are, however, determined 
through a chain-based analysis.  A key organizing principle in the model is that if a car is to be 
used on a tour, then it must be used for the entire chain, since the car must be returned home at 
the end of the tour.  No such constraint, however, exists with respect to other modes such as 
walk and transit. The paper presents the full conceptual model and an initial empirical proto-
type. 
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1. Introduction 

This paper introduces a new tour-based mode choice model that takes into account within-
household, inter-personal interactions.  Both a conceptual model and an operational prototype 
are presented within the paper. 

Section 2 discusses key design concepts underlying the model.  Section 3 briefly reviews the 
current state of the mode choice modelling art.  Section 4 describes the conceptual model.  
Sections 5-8 then deal with an empirical test of the conceptual model in terms of: prototype 
assumptions, data, estimation procedure, and model estimation results.  Finally, Section 9 
summarises the paper and briefly discusses next steps in the model’s development. 

2. Design Concepts 

The mode choice model presented in this paper simultaneously determines the travel mode for 
each trip on a person’s home-based tour or trip chain, which consists of a connected set of 
trips, the first of which departs from the trip-maker’s home and the last of which has the per-
son’s home as its destination.  Non-home-based sub-chains that begin and end at the same an-
chor point (work, school, etc.) are also handled. 

The model is specifically designed to be integrated within the Travel/Activity Scheduler for 
Household Agents (TASHA) activity scheduling model (Miller and Roorda, 2003).  TASHA 
generates all out-of-home activities engaged in by all household members over an entire 
twenty-four hour weekday.  Thus, the mode choice model must deal “simultaneously” with 
mode choices for trips of all purposes (in any combination within a given trip chain) over all 
time periods within the day, for trip chains of arbitrary complexity.  Despite this need to inter-
face with TASHA, the model could be used equally well with any activity- or trip-based 
travel demand model that generates home-based tours. 

The model is a disaggregate one, which predicts the mode choices of individual trip-makers.  
A key feature of the model, however, is that it explicitly recognizes that these decisions occur 
within the context of the individual’s household.  Household interactions include: 

1.  When conflicts exist between household members’ desire to use the household’s automo-
bile(s), these conflicts are resolved at the household level, with “the household deciding” 
which person gets the car and which person must use another means of travel for this trip 
chain. Thus, “auto availability”, which is inevitably handled in an approximate and ad hoc 
manner in individual, trip-based models, is endogenously determined within this model. 

2.  Joint activities, in which two or more household members participate (e.g., go to a movie 
together), usually involve the activity participants travelling together.  In such cases, the joint 
choice of mode should be explicitly dealt with, within the context of the overall trip-chains for 
the participants that contain the joint activity(ies). 
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3.  The decision of one household member to drive another household member to his/her ac-
tivity location (e.g., drop a child at school or daycare) is explicitly determined within the con-
text of the trip chains and travel mode opportunities of the persons involved. 

The model is designed to run within a Monte Carlo microsimulation framework, in which ex-
plicit mode choices are generated (e.g., auto-drive is used for this trip) rather than a probabil-
ity distribution of possible outcomes (e.g., there is a 55% chance that auto-drive will be used 
for this trip).  This is essential, since the model is intended to return the mode choices to an 
activity scheduling model, which must have an explicit travel time and mode for each trip. 

This need for a specific, discrete response from the model, rather than a real-valued probabil-
ity is a key feature of the model.  This influences the way in which the model is formulated, 
estimated and applied.  This means that many model replications need to be computed in or-
der to achieve a statistically valid representation of the process.  At the same time, however, 
such a model can exploit the microsmulation framework in a number of attractive ways, in-
cluding being able to handle complex error structures and permitting multiple, complex deci-
sion processes to be modelled in a detailed, internally consistent fashion, in both cases with-
out excessive additional mathematical or computational complexity. 

3. Literature Review – Tour-Based Mode Choice Models 

The literature on disaggregate mode choice models is vast, with a history of more than thirty 
years. The majority of these models are trip-based, focus on a specific purpose (e.g., Ortúzar, 
1983; Asensio, 2002), rely heavily on traditional random utility maximization (RUM) theory, 
and incorporate trip-based assumptions of conventional “four-stage” models. The lack of be-
havioural realism of trip-based models, however, has been criticized by several authors (e.g., 
Ben-Akiva, et al., 1998), who emphasize the importance of a more comprehensive tour-based 
approach.  

Most of the tour-based models have been developed either within the context of European na-
tional models in countries such as The Netherlands (HCG, 1992), Italy (Cascetta, et al., 
1993), Sweden (Algers, et al., 1997; Beser and Algers, 2002) and Denmark (Fosgerau, 2002), 
or US cities such as San Francisco (Bradley, et al., 2001; Jonnalagadda, et al., 2001), Boston 
(Bowman and Ben-Akiva, 2000), and Portland (Bowman, et al., 1998). Although differences 
exist among them, these models share several important features: 

• reliance on some “tree logit” form; 

• simplification in the definition and construction of tours; 

• assumption of a “main” mode; 

• separate calibration by purpose; and 

• use of explicit assumptions about car availability rather than car allocation per se. 
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With respect to the specification of the models, a nested logit (NL) specification, incorporat-
ing different levels of choices, is common practice. An example of this is the Stockholm 
model, where three NL substructures are used: one for “long-term” decisions (car ownership 
and destination), a second for primary destinations, and a third for the secondary destinations. 
These three substructures are connected by inclusive values or “logsums” of utilities that carry 
information about the decisions made on the lower levels to upper levels, in a sequential pro-
cedure. Similarly, in the San Francisco model, mode choice is modelled as a multinomial logit 
(MNL) that “informs” the upper destination decision level through logsums. A final example 
is provided by Bowman, et al. (1998), who assume five types of models in a hierarchy of ac-
tivity patterns, and primary and secondary destination-mode choices. 

In general, the use of logsums is a common practice to avoid the difficulties that are associ-
ated with the simultaneous estimation of complex RUM tree structures.  Computational per-
formance, however, can still be a problem.  In addition, some measures of expected utility 
may be excluded, producing specification problems (e.g., Bowman, et al., 1998).  Sequential 
structures also imply that the different levels of decision do not “share” all the information, 
and that the order in which decisions are made must be defined in an ad hoc way. 

The formation of the tours in these models varies from using a nested structure for frequency 
(e.g., Algers, et al., 1997), “constructing” the tours from trip data (e.g., HCG, 1992; Fosgerau, 
2002), and explicitly modelling the activity schedule (e.g., Bowman, et al., 1998). The direct 
“construction” of the tour from trip data implies some simplifications.  The Danish model, for 
example, includes at most two tours per chain, defines three purposes as a maximum, and in-
corporates some restrictions on frequencies, depending on the purpose. In the Portland model, 
the primary activity of the day, and whether it occurs at home or on a tour, is first defined.  If 
the primary activity is on-tour, the activity pattern model also determines the type of trip 
chain, defined by the number and sequence of stops in the tour. 

The use of a single mode choice for primary and secondary destinations implies the assump-
tion of a “main” mode in the chain; i.e., it is assumed that travellers do not switch modes 
within the tour, and the detailed consideration of mode preferences is made only with respect 
to the main mode.1  In other cases this assumption is partially relaxed.  In the Portland model, 
for example, a set of rules is used to aggregate all the possible combinations of modes into a 
manageable number; while in the San Francisco model the trip mode choice is applied for 
each stop of the tour, conditional on the predicted “main” mode and the origin, destination, 
and time of day. 

Another feature of these tour-based models is that each tour purpose is separately calibrated.  
Further, the Stockholm model, for example, uses different tree structures (simplifying for 
some purposes), and different units of decisions (individuals for work-based tours, and a 
combination of household agents for shopping).  In addition, a common practice is for pur-
poses to dictate the tour formation. 

                                                 
1 Another recent example of this approach can be found in Cirillo and Axhausen (2002) 
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With respect to car allocation, treatment varies among models. For example, the Danish 
model directly incorporates household car availability in the tree structure; the Stockholm 
model considers a level for the car allocation process that defines the possible mode choice 
options; and the San Francisco model considers vehicle availability at higher levels, above 
tour and trip generation.  However, it is not clear whether these models allow for more com-
plex car allocation behavior, such as the use of a same car by different members of the house-
hold within the day. 

Finally, another relevant group of complex mode-choice models are the so-called rule-based 
models, which try to incorporate modal choices within the scheduling process itself.  Some 
examples are the ALBATROSS model by Arentze and Timmermans (2000), and the work by 
Kitamura, et al., (2000). In the case of ALBATROSS, mode choice is incorporated in two lo-
cations within the six-step scheduling process: in the first step, which defines the mode for 
primary work activities; and in the fifth step, at the level of each trip chain with “other” non-
primary-work purposes.  Kitamura, et al. (2000), on the other hand, use a process of “sequen-
tial history and time-of-day dependent structure”, where mode choice occurs after the activity 
type, duration, and destination choices.  Mode choice is modelled in this case using transition 
probabilities that depend on the previous trips, using the same concept of “primary mode” as 
discussed before. 

4. Conceptual Model 

4.1 Introduction 

In this section the conceptual model of tour-based mode choice is developed.  This model is 
elaborated in several steps.  First, the “base” model dealing with how an individual chooses 
the travel mode(s) to be used on a single home-based trip chain in the absence of household-
level constraints (e.g., car availability) or interactions (e.g., ride-sharing) is presented.  Sec-
ond, a household-level mechanism for resolving competing demands for the household’s ve-
hicle fleet is developed.  Finally, procedures for dealing with ride-sharing among household 
members, either as part of a “serve-passenger” task or as part of a joint travel activity, are 
sketched. 

4.2 Individual Trip-Maker Tour Mode Choice 

The problem at hand is to determine the travel modes used for each trip in a known set of 
home-based tours for each individual within a household for a twenty-four-hour weekday.  
For the moment it is assumed that if a licensed driver wishes to use a household car on a 
given trip chain he/she may do so.  It is also initially assumed that “auto passenger” or “ride-
sharing” modes of travel are not available.  

Sub-chains, involving a connected set of trips that begin and end at the same non-home an-
chor point, may exist within the model.  Although virtually any activity location might be an 
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anchor point, in the prototype presented here, a worker’s “usual place of work” is the only an-
chor point considered.  The anchor point is a critical concept within the model, since it is only 
at an anchor point that a trip-maker can decide to drive a vehicle on the trip chain (or sub-
chain), and if the vehicle is taken, it must be used on all trips within the chain (or sub-chain), 
at least until the next anchor point is reached.  Thus, one can label the auto-drive mode as 
chain-based in that the decision to use this mode is inherently a chain-level one in that it 
commits one to use the mode for the entire chain or sub-chain. 

No similar commitment exists in the case of other modes of travel, such as transit, walk and 
taxi.  One may walk to work in the morning and take transit home at night if one feels tired or 
if the weather is bad.  Thus, one can label such modes as trip-based modes since the decision 
to use one of these modes on a given trip depends fundamentally on the individual trip and 
does not necessarily impact the choice of mode for other trips within the chain. 

Figure 1 integrates these concepts into an overall decision-tree for a trip-maker’s choice of 
travel mode(s) for a single tour.  Note that at the overall home-based tour level two options 
exist: drive chain (D), or non-personal-vehicle chain (NPV).  Also note that within the NPV 
chain, trip modes are selected on an individual trip basis. 

 

Figure 1 Tour-Level Decision Tree With a Sub-Chain 

Chain c:
1. Home-Work
2. Work-Lunch
3. Lunch-Meeting
4. Meeting-Work
5. Work-Home

m1
m2

m3
m4

m5

NPV Option for Chain c

m1 = drive

Sub-Chain s:
2. Work-Lunch
3. Lunch-Meeting
4. Meeting-Work

m2
m3

m4

NPV for
Sub-chain s

m2 = drive
m3 = drive
m4 = drive

Drive for
Sub-chain s

m5 = drive

Drive Option for Chain c

mN = mode chosen for trip N
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A random utility approach is adopted in this model to determine the choice among these op-
tions.  The utility of person p choosing mode m for trip t on trip chain c, U(m,t,p), is: 

U(m,t,p)  =  V(m,t,p) + ε(m,t,p)  t∈T(c,p); m∈f(t,p)   [1] 

where: 

V(m,t,p)= systematic utility component of mode m for trip t for person p 

ε(m,t,p)= random utility component of mode m for trip t for person p 

T(c,p) = set of trips on chain c for person p 

f(t,p) = set of feasible modes for trip t for person p 

Further, we assume that the utility for a specific combination of chosen modes for the entire 
trip chain c, U(M,p) is simply the sum of the individual trip utilities: 

U(M,p)  =  ∑t∈T(c,p) V(m(t),t,p) + ∑t∈T(c,p) ε(m(t),t,p) M∈F(c,p)  [2] 

where: 

M = one set of specific feasible modes for the trips on chain c for person p (the 
chain mode set) 

F(c,p) = set of chain mode sets for chain c for person p; this set is defined by both a 
priori trip constraints (e.g., trip distance too long to walk) and chain-based “contex-
tual” constraints (e.g., can’t use auto-drive on return trip if it was not used on the out-
bound trip) 

A special case of M is the all-drive chain (D), for which equation [2] simplifies to: 

U(D,p)  =  ∑t∈T(c,p) V(d,t,p) + ∑t∈T(c,p) ε(d,t,p)     [3] 

where d represents the drive trip mode. 

The other values of M involve the feasible combinations of individual trip-based mode 
choices (e.g., for a three-trip tour: transit-transit-transit; transit-walk-taxi; etc.) that define the 
NPV chain option.  Since in the case of the NPV option the mode for each trip in the chain is 
chosen individually, equation [2] reduces to: 

U(NPV,p) = ∑t∈T(c,p) MAX m∈f(t,p) [U(m,t,p)]    [4] 

where U(NPV,p) is the optimal NPV chain mode set. 

Equation [2] represents a major assumption in the model design.  It is essential to provide a 
consistent comparison between chain-based and trip-based modes, as well as to deal with 
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ride-sharing and joint-travel mode choices.  Note that this is effectively the standard assump-
tion implicit in trip-based models. 

The standard random utility assumption is made that the chain mode set chosen is M* for 
which: 

U(M*,p)  ≥  U(M,p)  ∀ M,M* ∈ F(c,p); M* ≠ M    [5] 

That is, the D or (optimal) NPV chain mode set will be chosen for the given trip chain, de-
pending on which provides the maximum utility to the trip-maker. 

As with any random utility model, the selection of the probability distribution for the error 
terms, ε(m,t,p), represents a critical step in the model specification.  In most discrete choice 
models, criterion [5] would be integrated over the selected error distribution to yield the prob-
ability that person p would choose chain mode set M*; that is to compute: 

P(M*,p)  =  Prob[U(M*,p)  ≥  U(M,p) ∀ M,M* ∈ F(c,p); M* ≠ M]   [6] 

The error distribution is usually selected to facilitate the calculation of equation [6], which 
typically means the assumption of some form of either a generalized extreme value (GEV) 
distribution or a mixed logit representation, where the selection among these competing func-
tional forms is driven by considerations of an appropriate covariance structure for the ε’s.  
Unfortunately, the model presented in equations [1]-[5] does not “fit” well within these stan-
dard functional forms.  In particular, the non-personal-vehicle decision structure is non-
standard in that the overall chain mode set choice depends upon the sum of a set of individual 
trip mode choices.  This does not translate directly into a GEV framework. 

In our model, we choose to forego the need for equation [6] altogether and, instead, work di-
rectly at the level of equation [5].  That is, given an assumed probability distribution for the 
ε’s, we generate a set of ε(m,t,p) for each mode and trip for each person p and evaluate crite-
rion [5] directly.  The chain mode set M* that receives the highest utility score is then simply 
selected.  If P(M*,p) is required (e.g., for parameter estimation purposes), then this process is 
simply replicated with many independent random draws in order to simulate P(M*,p) by the 
frequency with which M* is selected. 

While recognizing that a certain computational burden is inherent in this approach (along with 
some estimation issues, see Section 7), it also brings with it several potentially interesting and 
important advantages.  These include: 

• The modeller is free to use any probability distribution for the error terms that makes 
theoretical sense and is empirically supported by the data, rather than having to as-
sume a distribution that is analytically tractable. 

• The approach exploits the Monte Carlo simulation framework to work directly at the 
behaviourally more fundamental level of the random utility, rather than having do go 
through the intermediate process of synthesizing choice probabilities 
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• Working directly at the level of the random utilities allows for very complex choice 
structures to be constructed in a computationally efficient, theoretically plausible way, 
without the need to construct increasingly unwieldy “nesting” structures.   

In this model, we choose to assume that the errors are normally distributed.  The two obvious 
advantages of this assumption are: 

• when trip errors are added together in equation [2] to compute chain-level utilities, this 
utility remains normally distributed; and 

• very general covariance structures for the joint error distribution are supported by the 
multivariate normal distribution. 

4.3 Vehicle Allocation 

To this point it has been assumed that any valid driver can choose the drive mode chain op-
tion if he/she so wishes.  It is possible, however, for conflicts to occur in which two or more 
potential drivers within a household wish to use the same vehicle at the same time.  Figure 2 
illustrates this situation for the simple but relatively common case of a two-driver, one-vehicle 
household.  In such cases, a conflict resolution mechanism is required to determine which 
driver(s) actually get to use the household’s vehicle(s).  

Figure 2 Vehicle Allocation: 2-Driver, 1-Vehicle Case 

Person 1 Person 2 Car 1

Request for
car

Time

Allocation of
the car to a
given person
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Let ndr(τ) be the number of household trip-makers who wish to use a household vehicle at 
time τ.  Let nveh be the number of vehicles available for the household’s use.  If the condition 
holds that: 

ncar  ≥  ndr(τ)          [7] 

then all drivers are free to use a car on their tour.  If, however, condition [7] is not true, then 
(ndr(τ)-ncar) trip-makers must use their “second best” chain mode option. 

In this model the assumption is that this decision is made so as to maximize total household 
utility, which is defined as the sum of the utilities of the individual household trip-makers.  
This is equivalent to maximizing: 

Σp [U(D,p) – U(NPV,p)]xp        [8] 

subject to: Σp xp  =  ncars        [9] 

where:   xp  =  1 if person p is allocated a car; = 0 otherwise. 

Cases may well occur in which a “second best”, non-drive option does not exist for a given 
trip-maker.  In such cases, U(NPV,p) is currently simply set to a very large negative number 
so that expression [8] can still be evaluated.2  If such a person’s request for a car is rejected, 
then two further options exist: 

1. The person may attempt to reschedule the activities on the rejected tour for another 
time period when a car will be available.  This process lies outside of the mode choice 
model being discussed here. 

2. The household can investigate options for ride-sharing between the “accepted” and 
“rejected” drivers (see below). 

4.4 Serve-Passenger/Auto-Passenger Modes 

Auto-passenger trips occur in three ways: 

1.  shared-ride in a joint activity; 

2.  passenger in an inter-household "car-pool"; and 

3.  passenger being “chauffeured” in a car driven by another household member. 

                                                 
2  This suffices for present model estimation purposes, but it is not the ideal solution.  It would be better to 

measure the actual “utility loss” associated with foregoing the trip chain.  This is beyond the current capabil-
ity of the prototype model, but is an area for future research. 
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Since each of these activities is complex and involves the interaction with at least one other 
person, it is argued that the auto-passenger mode should be determined as an inter-personal 
decision process and should not be included in the individual person tour mode choice model 
that has been presented above.  Joint activity mode choice is discussed below.  Inter-
household car-pooling is an extremely difficult process to represent, and is not addressed 
within the current model. 

Serve-passenger trips are determined in a “second-pass” procedure.  That is, when a new ac-
tivity episode is being inserted into a schedule (and, hence, a trip chain), auto-passenger is not 
considered as a mode for the new travel episodes involved.  Utilities are calculated based on 
the other feasible modes, provisional mode choices are made, and vehicle allocations are 
sorted out, as has been described above.  Subsequently, auto-passenger options for non-
drivers are assessed. 

The basic logic of the serve-passenger decision is that if overall household utility can be im-
proved through the ride-share and the ride-share is feasible (given the driver’s schedule), then 
it is “worth” doing.  For this to happen the “utility gain” of the passenger must exceed the 
“utility loss” of the driver.  Note that even if two people are driving, opportunities for ride-
sharing may still exist (i.e., substituting auto-passenger for auto-drive for one of the drivers 
and a SOV-drive for a rideshare-drive for the other), if the utility gain for the household is 
sufficient. 

Intra-household ride-sharing has not yet been implemented within the model prototype.  For 
present purposes, the key point to note is that it is clear that the utility-based microsimulation 
modelling approach proposed in this paper is extensible to dealing with inter-personal, within-
household ride-share tradeoffs in a way that traditional probability-based models would have 
difficulty undertaking. 

4.5 Joint Travel 

Joint activities are household-level projects involving two or more household members.  
Mode choice for joint activities should be handled the same as for individual trips, except: 

• Mode choice is now a joint decision, simultaneously determined for all joint activity 
participants. 

• Auto-drive is replaced by shared-ride.  That is, the model will not attempt to determine 
who drives and who is a passenger. 

To be consistent with the individual trip model, total travel times and travel costs must be 
computed by adding the travel times and costs of all joint trip members.  Not only is this re-
quired to maintain a consistent treatment of trip utilities throughout the model, but it facili-
tates dealing with “mixed” individual-joint tours. 

Joint tours can occur in two ways.  The more common is a “pure” joint tour, in which the 
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members of the joint party travel together throughout the tour.  “Mixed” tours, in which one 
or more trips made by one or more of the joint activity members are made independently, 
however, are also certainly feasible.  In such cases, equation [2] “simply” extends to assess 
the combined utility of all trips of the two (or more) trip-chains that are “linked” by the joint 
activities.  That is, while the complexity of keeping track of the modal options across the 
linked tours clearly increases, conceptually the procedure remains the same as for the individ-
ual tour case. 

5. Prototype Implementation 

The conceptual model described above has been estimated in a prototype formulation.  As has 
been discussed, this prototype does not deal with the auto passenger mode (either through in-
tra-household ride-sharing or inter-household car-pooling), nor does it include joint activity 
chains.  Further, to keep the initial model as simple as possible, only tours including the “pri-
mary modes” of auto-drive, transit (with walk access) and walk all-way are included.  Other-
wise, however, it represents a full implementation of the conceptual model, including the 
“dynamic” vehicle allocation among competing drivers. 

As noted above, the assumption of normally distributed random terms allows for a very gen-
eralized covariance structure.  In order to exploit this generality somewhat in the current in-
vestigation, while keeping this preliminary analysis reasonably simple, the following error 
structure has been assumed: 

ε(m,t,p)  =  µ(m,p) + η(m,t,p)        [10] 

where: 

µ(m,p)  ≈  MVN(0,Σ)  ∀ p       [11] 

η(m,t,p)  ≈  N(0,σ)  ∀ m,t,p      [12] 

That is, µ is a mode-specific error term that captures person p’s idiosyncratic taste variation 
for mode m, relative to the population average preference.  In the simplest model tested, µ is 
assumed to be iid (i.e., once scaled for identification purposes, Σ is simply the identity ma-
trix), but a heteroscedastic (non-equal diagonal terms) model is also estimated. 

On the other hand, η is a “pure random” effect that varies from mode to mode within a trip 
and from trip to trip. 

While in principle the two error terms could be added together (since they are both normally 
distributed), it is essential to keep them separate so as to be able to identify the “fixed” mode-
specific component relative to the “variable” trip-specific component.  This model is analo-
gous to a mixed logit model in which normally distributed alternative-specific bias parameters 
are imbedded within a logit kernel.  Statistical identification criteria for the model are dis-
cussed in Appendix A. 
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Finally, while not required by either the conceptual model’s assumptions our for computa-
tional convenience, the operational prototype makes the standard assumption that the system-
atic utility function is linear in the parameters. 

6. Data 

The data used to estimate the prototype model parameter values are taken from the 1996 
Transportation Tomorrow Survey (TTS).  TTS is a one-day, telephone-based, travel survey of 
5% of households within the Greater Toronto Area (GTA) that was undertaken in the autumn 
of 1996 (DMG, 1997).  In the survey, all trips made by all surveyed household members 11 
years of age or older were recorded for a randomly selected weekday, along with household 
socio-economic information.  This trip-based dataset was converted into a set of out-of-home 
activities and trip-chains by Eberhard (2002). 

Table 1 1996 TTS Total Sample & Estimation Sub-Sample Summary Statistics 
 TTS      Estimation Sample  

 TTS Total 
Households 

(Raw) 

TTS Trip 
making 

households 
(cleaned) 

No carpool / 
rideshare / joint 

activities 

Total  Final Estimation 
Set1 

Households 88898  68538  41981  4000  3511  

Persons 243286  192960  106276  10177  5684 2 

Trip Chains N/A  176041  80627  7712  6490  

Trips 500313  405809  180731  17238  14570  

Drive3 311502 62.3% 251530 62.0% 122848 68.0% 11479 66.6% 10233 70.2% 

Drive Acc Subway 863 0.2% 648 0.2% 395 0.2% 29 0.2% 0 0.0% 

Drive Egr Subway 798 0.2% 609 0.2% 376 0.2% 28 0.2% 0 0.0% 

Drive Acc Go Rail 1241 0.2% 910 0.2% 649 0.4% 74 0.4% 0 0.0% 

Drive Egr Go Rail 1161 0.2% 862 0.2% 630 0.3% 72 0.4% 0 0.0% 

Non-drive Go Rail4 2216 0.4% 1609 0.4% 878 0.5% 64 0.4% 0 0.0% 

Transit All-way 59760 11.9% 50793 12.5% 33932 18.8% 3442 20.0% 3135 21.5% 

Walk 29250 5.8% 24813 6.1% 14413 8.0% 1414 8.2% 1202 8.2% 

Taxi 2386 0.5% 1866 0.5% 1058 0.6% 107 0.6% 0 0.0% 

Schoolbus 7684 1.5% 6322 1.6% 3112 1.7% 305 1.8% 0 0.0% 

Bicycle 3891 0.8% 3349 0.8% 2440 1.4% 224 1.3% 0 0.0% 

Passenger 78768 15.7% 62311 15.4% 0 0.0% 0 0.0% 0 0.0% 

Other/Unknown 793 0.2% 187 0.0% 0 0.0% 0 0.0% 0 0.0% 

Notes: (1) Trips by modelled modes complying with all choice set rules. 
 (2) Only includes persons making a trip.  Other columns include all persons in the households. 
 (3) Drive includes motorcycle trips. 
 (4) “GO Rail” is the GTA commuter rail system.  “Non-drive GO” indicates transit, walk, 
       auto passenger and taxi commuter rail station access modes. 
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Table 1 provides summary statistics on the full TTS dataset, the total set of households for 
which “cleaned” sets of activities and tours were successfully constructed by Eberhard, and 
the subset of households which did not engage in car-pool, ride-share or joint activities (the 
target population for the prototype model).  In order to keep model estimation computations 
within reasonable limits, a 4,000 household random sample was drawn from the 41,981 total 
households in this last category.  This random sample reflects the larger group’s trip mode 
distribution very well.  Also note that the auto-drive, transit all-way and walk modes account 
for 94.8% of the estimation sample trips.  The commuter rail and subway drive access modes 
were excluded from the prototype model due to the very small number of trips made by these 
modes, while taxi, school-bus and bicycle trips were eliminated due to unavailability of suit-
able explanatory variables with which to construct modal utility functions.  The end result is a 
final estimation dataset consisting of 3,511 households, 5,684 persons who executed at least 
one trip chain, 6,490 trip chains and 14,570 individual trips. 

All auto and transit travel times and costs were obtained from EMME/2-based network calcu-
lations performed within the GTAModel regional travel demand modelling system for the 
GTA.3  Walk travel times were estimated based on simple straight-line origin to destination 
travel distances and assumed average travel speeds. 

7. Parameter Estimation Procedure 

Model parameter values were estimated by maximizing the log-likelihood function: 

L(β)  =  Σh Σp∈H(h) Σc0C(p) Σt0T(c,p) log(P(m*,t,p|β))     [13] 

where: 

H(h) = set of persons 11 years or older in household h 

C(p) = set of home-based tours for person p 

β = vector of model parameters (including parameters of the error distribution) to 
be estimated 

P(m*,t,p|β) = simulated probability of person p choosing the observed mode m* for trip t on 
chain c, given the model parameters β. 

P is simulated through a Monte Carlo process in which N sets of random utilities U are drawn 
for each trip for each person for each chain for a given β, equation [5] is evaluated for each 
draw, and the frequency with which m* is predicted to be chosen is accumulated.  In order to 

                                                 
3  For EMME/2 documentation see Inro (1999).  For GTAModel documentation see Miller (2001). 
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account for the possibility that m* is never chosen within the N draws, P is defined as (Or-
tuzar and Willumsen, 2001): 

 P(m*,t,p|β) = [F(m*,t,p|β) + 1] / [N + nt]     [14] 

where F(m*,t,p|β) is the number of times m* was selected for trip t out of the N draws, and nt 
is the number of feasible modes for trip t. 

Since log(P) is not analytically defined, standard gradient-based methods for optimizing [13] 
are not directly applicable (cf. Train, 2002).  In this application a very simplistic random 
search procedure was used in which a large number of random parameter sets were generated, 
and L(β) was evaluated at each of the randomly generated values of β.  The search area was 
systematically reduced in a series of stages, centred upon the best parameter set found in each 
search stage.  Although time-consuming and computationally intensive, the procedure appears 
to yield stable results.   In particular, given the evaluation of a wide variety of parameter val-
ues over an (initially) extensive domain, local optima did not pose a discernible problem, and 
we are quite confident that the procedure is converging on the global maximum. 

Alternative (and probably smarter!) estimation procedures that should be investigated include 
using a genetic algorithm to focus the random search, and/or trying to fit a surface to the ran-
domly generated points so that a quasi-gradient can be computed that might permit some form 
of hill-climbing procedure to be locally applied.  A more detailed discussion of the estimation 
procedure used in this model, in comparison with other methods, will be presented in a forth-
coming paper by the authors. 

8. Model Estimation Results 

Results for two estimated models are presented in this paper.  The first is an iid model in 
which the variance of µ(m,p) is normalized to 1 for all m.  The second model has the same 
systematic utility specification as Model 1, but has individual variance terms for µ for each 
mode m (with the variance for the auto-drive term being normalized to 1.0).  Table 2 defines 
the variables included in both models.  The utility functions employed are relatively simple in 
structure and could, of course, be further elaborated.  Points to note concerning this specifica-
tion include the following. 

• Travel times and costs are generic across modes, with the exception of auto and transit 
in-vehicle travel times, which have alternative-specific parameters. 

• The aggregate zone-to-zone transit assignment used to generate transit travel times 
does not generate in-vehicle travel times for intrazonal and adjacent zone trips.  While 
travel times for these trips were estimated based on origin-to-destination trip distances, 
the intrazonal and adjzone dummy variables were included in the model specification 
to account for possible biases in these measurements, as well as to capture the possible 
systematic disutility of using transit for very short trips. 
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• The Toronto central area (often designated “Planning District 1”) is much denser and 
more conducive to walking than other areas within the GTA.  The dest_pd1 dummy is 
intended to capture systematic preferences for walking within this district. 

Table 2 Definition of Explanatory Variables 
Parameter Description 

c-tr_n_dr Mode specific constant for transit all-way 

c-walk Mode specific constant for walk 

atime Auto in-vehicle travel time (min) 

tivtt Transit in-vehicle travel time (min) 

walktt Walk travel time including walk access to/from transit (min)  

twait Transit wait time (min) 

travelcost Travel cost ($1996) 

pkcost Parking cost ($1996) 

dpurp_shop =1 if trip purpose = shopping (auto mode); = 0 otherwise 

dpurp_sch =1 if trip purpose = school (auto mode); = 0 otherwise 

dpurp_oth =1 if trip purpose = other (auto mode); = 0 otherwise 

dest_pd1 =1 for walk trips destined for downtown Toronto; = 0 otherwise 

intrazonal =1 for an intrazonal trip for the transit all-way mode; = 0 otherwise 

adjzone =1 for an adjacent zone for the transit all-way mode; = 0 otherwise 

Etrip_par (σ/sd) Scaled variance for the trip specific error  ηpmt 

Covar2 (st/sd) Scaled variance of the mode specific error term (transit all-way mode) 

Covar3 (sw/sd) Scaled variance of the mode specific error term (walk mode) 

 
Variable Average Std.Dev. Variable Average Std.Dev.

atime 13.1 11.4 dpurp_shop 0.155 0.361

tivtt 26.3 22.4 dpurp_sch 0.046 0.210

twalk 21.5 21.3 dpurp_oth 0.241 0.428

twait 7.1 4.9 dest_pd1 0.102 0.303

cost 1.7 1.5 intrazonal 0.071 0.257

parkcost 0.75 1.96 adjzone 0.029 0.167

 

Table 3 presents parameter estimates and goodness-of-fit statistics for both models.  Asymp-
totic t-statistics are not available for these estimates at this time, due to difficulties encoun-
tered in numerically computing the log-likelihood Hessian function in the absence of an ana-
lytical log-likelihood function.  It is expected that these problems will be resolved by the time 
the paper is presented at the conference in August, and that t-statistics will be added to Table 
3 at that time. 
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Table 3 Model Estimation Results 

Parameter Model 1  Model 2
c-tr_n_dr -1.3233 -1.1539
c-walk 0.4977 0.0805
atime -0.2958 -0.3553
tivtt -0.0963 -0.1086
walktt -0.4366 -0.5629
twait -0.8383 -1.2279
travelcost -0.0862 -1.0241
pkcost -2.2220 -3.0333
dpurp_shop 4.5812 3.6322
dpurp_sch 0.1364 0.0909
dpurp_oth 3.8700 6.7735
dest_pd1 3.2801 4.6257
intrazonal -9.8869 -12.7177
adjzone -6.5433 -8.1285
CovarIndex1 1 1
CovarIndex2 6.6803
CovarIndex3 0.3508
Etrip_par 6.4217 6.5675

 
Num Observations 14570 14570
Num Parameters 16 18
Log Lik Max L(beta) -4184.4 -4186.7
Log Lik No Param L(0) -9486.9 -9486.9
-2[L(0)-L(beta)] 10605 10600.3
rho2 0.5589 0.5587
Adjusted rho2 0.5572 0.5568
Obs. Mode Never Chosen 28 45

Note: CovarIndexN is the variance parameter for auto (1), transit (2) and walk (3).  The auto variance is nor-
malized to 1 in all models. 

Points to note from Table 3 include the following. 

• All parameters have expected signs. 
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• All parameters are of plausible magnitude, except the travelcost parameter in Model 1, 
which, combined with the parameter values for atime and tivtt, implies values of time 
of $205/hr for auto users and $67/hr for transit users.  Model 2 returns much more rea-
sonable values of time of $21/hr and $6.4/hr for auto and transit users, respectively, 
which are generally consistent with other values of time obtained in GTA travel de-
mand models. 

• Both models fit the data very well and produce virtually the same overall goodness of 
fit (an adjusted ρ2 of 0.557 in both cases). 

• Despite the same overall fit, the heteroscedastic Model 2 generally yields more plausi-
ble parameter estimates.  In addition to the improved time and cost parameters already 
discussed, the walk alternative-specific constant is much smaller in magnitude in 
Model 2 (and may well be insignificant), and the dpurp_sch dummy variable (for 
which a strong a priori hypothesis does not exist) is very small in magnitude (and al-
most certainly insignificant) in Model 2. 

• The random trip error term (η) possesses a very strong variance parameter (Etrip_par) 
in both models, which suggests that the trip-specific component of the error structure 
is significantly different from the mode-specific component. 

• The heteroscedastic variance parameters for transit and walk are almost certainly sig-
nificantly different from one, and hence significantly different from the auto variance 
term.  The fact that the transit variance is much larger than auto-drive (and of the same 
order of magnitude as the individual trip variance) is plausible, as is the much smaller 
walk variance. 

• An important concern in simulated log-likelihood calculations is the possibility that an 
observed mode for a given observation is never chosen within the Monte Carlo simu-
lation.  In this analysis, 100 random draws were generated per trip.  As shown in Table 
2, only 28 of the 14,570 trips (0.19%) did not have the observed chosen mode selected 
at least once during the Model 1 simulation, while observed modes where never se-
lected for 45 trips (0.31%) in Model 2.  While ideally this number should be driven to 
zero as the estimation proceeds, such a very small number of “never chosen” trips is 
not likely to be having a large impact on the model estimation results. 

Table 4 presents prediction-success tables for both models.  Again, the good fit of both 
models is indicated in this table, with almost 89% of observed modes being chosen on av-
erage.  In addition, each mode is well predicted with prediction success rates in the order 
of 95%, 75% and 70% for the auto-drive, transit and walk modes, respectively.  Relatively 
little “confusion” exists within the model, with off-diagonal elements being generally 
small and “well balanced” (approximately as many transit trips are incorrectly assigned to 
walk as walk trips are assigned to transit, and so on). 

Finally, note in Table 4 that the aggregate predicted mode shares very closely match the 
observed mode shares.  Unlike a conventional logit model estimation procedure, for  
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Table 4 Prediction-Success Tables for the Estimated Models 
Model 1: IID Error Terms 

(a) Trips Predicted Mode 

Obs.Mode Drive Walk Transit Total

Drive 9698.21 385.73 149.06 10233

Transit 514.69 2399.93 220.38 3135

Walk 104.62 270.98 826.4 1202

Total 10317.52 3056.64 1195.84 14570

% of Total Trips Predicted Mode 

Obs.Mode Drive Walk Transit Total

Drive 66.6% 2.6% 1.0% 70.2%

Transit 3.5% 16.5% 1.5% 21.5%

Walk 0.7% 1.9% 5.7% 8.2%

Total 70.8% 21.0% 8.2% 100.0%

% of Obs. Mode Predicted Mode 

Obs.Mode Drive Walk Transit Total

Drive 94.8% 3.8% 1.5% 100.0%

Transit 16.4% 76.6% 7.0% 100.0%

Walk 8.7% 22.5% 68.8% 100.0%

Total 70.8% 21.0% 8.2% 100.0%

Model 2: Heteroscedastic Error Terms 

(a) Trips Predicted Mode 

Obs.Mode Drive Walk Transit Total

Drive 9740.5 386.08 106.42 10233

Transit 519.76 2378.17 237.07 3135

Walk 108.25 248.75 845 1202

Total 10368.51 3013 1188.49 14570

% of Total Trips Predicted Mode 

Obs.Mode Drive Walk Transit Total

Drive 66.9% 2.6% 0.7% 70.2%

Transit 3.6% 16.3% 1.6% 21.5%

Walk 0.7% 1.7% 5.8% 8.2%

Total 71.2% 20.7% 8.2% 100.0%

% of Obs. Mode Predicted Mode 

Obs.Mode Drive Walk Transit Total

Drive 95.2% 3.8% 1.0% 100.0%

Transit 16.6% 75.9% 7.6% 100.0%

Walk 9.0% 20.7% 70.3% 100.0%

Total 71.2% 20.7% 8.2% 100.0%
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example, in which predicted and observed mode shares are forced to match through the selec-
tion of the alternative-specific parameter values, no such constraint is imposed within this 
model’s estimation.  Thus, the ability to reproduce the observed shares is a reasonably strong 
test of the model’s overall performance. 

Clearly, given the preliminary nature of the model estimations undertaken to date (along with 
the current absence of parameter asymptotic t-statistics), these results are suggestive, rather 
than in any way definitive, in nature.  Nevertheless, it is argued that the results are encourag-
ing as tentative indicators of the credibility and practicality of the proposed model. 

9. Conclusions & Future Work 

The model presented in this paper is a “hybrid”, in which rules are combined with a “classi-
cal” random utility maximization decision criterion within an explicit microsimulation 
framework to model tour-level mode choices.  The microsimulation framework is critical to 
the model’s functioning, since it permits decisions to be based directly on simulated utilities, 
thereby avoiding the need to express the choice process in an analytically (or at least compu-
tationally) tractable choice probability expression.  Through this approach, complex personal 
and inter-personal decisions can be modelled in a very tractable manner.  In particular, note 
that additional modes and “decision levels” (e.g., vehicle allocation, serve-passenger, etc.) can 
be added to the model with minimal additional model complexity (albeit with inevitable addi-
tional computational requirements).  This can be contrasted with a “conventional” nested logit 
approach, for example, in which the combinatorics of additional modes and/or decision levels 
quickly render the model computationally cumbersome. 

In order to reduce nested logit combinatorics, current models tend to make strong simplifying 
assumptions, such as first choosing a “primary mode” for the tour, restricting the number of 
“secondary” modes considered for a tour, and /or restricting the size/complexity of tours that 
are considered within the model.  They also do not deal explicitly with inter-personal deci-
sion-making associated with auto-passenger trips and joint activities.  In the model presented 
above none of these limitations is inherent in the model structure: no a priori judgements 
concerning “primary” modes are required; tours of any level of complexity are supported 
within the model; and the model is explicitly designed to deal with inter-personal decision-
making. 

Further, the model structure imposes no a priori constraints on the random utility error struc-
ture that can be assumed.  Given this, normally distributed error terms are used, due to the 
flexible and generally attractive features of the normal distribution, plus the practical useful-
ness of being able to add trip-level errors to yield chain-level errors that possess the same dis-
tribution type. 

These model strengths, of course, do not come without some cost.  The computational burden 
of performing many replications of the choices so as to achieve statistically representative 
outcomes is non-trivial.  Also, as has been discussed, statistical estimation of the model’s pa-
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rameters is an onerous task and requires the use of special procedures, with much more work 
in this area being required before a “standard” procedure can be said to exist.  Given, how-
ever, that the result is the ability to model tour-based travel for all trips made by all household 
members over an entire twenty-four hour period in an internally self-consistent and theoreti-
cally credible manner, it is argued that these are costs well worth paying. 

Clearly, much work remains in terms of the conceptual and operational elaboration of this 
model.  The operational model must be extended to include within-household ride-sharing, 
joint activity chains, and a wider variety of travel modes (e.g., bicycle, taxi, commuter rail).  
Considerably more development and testing of the parameter estimation procedure is re-
quired.  The model needs to be tested with more detailed activity-based data.  It needs to be 
integrated with the TASHA activity scheduler provide “dynamic” mode selections as part of 
the daily scheduling process.  And, finally, it is hoped that the utility-based, microsimulation, 
household-based modelling approach (of which this tour-based mode choice model is a spe-
cific instance) can be extended to provide an integrated, comprehensive model of household 
short- and long-run decision-making (Miller, 2003). 
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Appendix A: Statistical Identification of Model Parameters 

The procedure followed here is inspired by Bunch (1991) and Ben-Akiva, et al., (2001).  It 
involves examining whether the model meets order, rank and positive definiteness conditions.  

Recall that the model error structure is: 

ε(m,t,p)  =  µ(m,p) + η(m,t,p)        [A.1] 

where: 

µ(m,p)  ≈  MVN(0,Σ) 

η(m,t,p)≈  N(0,σ) 

Two cases are considered: 

• a homoscedastic iid model, which has two parameters: one along the diagonal of the 
matrix Σ, and the term σ; and  

• a heteroscedastic, independent model, which has M+1 parameters: M diagonal ele-
ments in the matrix Σ (where M is the number of trip modes in the model) and the 
term σ. 

The order condition states that a maximum of M(M-1)/2 alternative-specific parameters are 
estimable in Σ. In this case, M = 3; thus, an upper bound on the number of estimable parame-
ters in Σ is 3. 

The rank of Σ depends on its specification. In the iid case, the rank of the matrix is 1; in the 
heteroscedastic case, the rank is 3.  The “rank” of σ, of course, is 1 for both models. 

The positive definiteness condition is not binding for this model due to its similarities with a 
multinomial probit model, for which any positive normalization is acceptable (Ben-Akiva, et 
al., 2001). 

Finally, the overall utility function U(m,t,p) (equation [1]) is only identified up to scale, re-
sulting in a loss of one estimable parameter. Thus, the number of identifiable parameters in 
the model is the sum of the ranks of the two error terms, minus one, to account for the utility 
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function scaling.  For the iid model this yields (1+1-1) = 1, while the number of identifiable 
parameters in the heteroscedastic model is (3+1-1) = 3. 

In both models, the variance for the auto-drive error term, µ(d,p), is normalized to 1.0 (thereby 
scaling the overall utility function).  In the iid model, this sets Σ equal to the identity matrix.  In 
the heteroscedastic model, the other two diagonal elements of Σ are identifiable up to scale (i.e., 
the parameters estimated are the transit over drive and walk over drive variance ratios).  In both 
models the variance of η is identifiable up to scale (i.e., the parameter estimated is σ divided by 
the auto-drive variance). 

 


