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Abstract

We study route choice behavior when travel time is uncertain. In this case, users do
not minimize expected travel time but also take into account travel time variability. We
collected survey data and analyze them with a method based on the ordered probit model.
This allows us to have an ordinal as well as cardinal measures of risk aversion. Such an
approach is therefore consistent with expected as well as with non-expected utility theory.
Survey data suggest a series of key factors which explain the degree of risk aversion.

Keywords : Risk aversion, ordered probit, ordinal, cardinal, structural estimation, ex-
pected utility, non expected utility, stated preferences, survey, Paris.

1 Introduction

The route choice plays a central role in Transportation Economics, engineering and Operations
Research. We consider here the simple case of two routes in parallel. The equilibrium concept is
due to Wardrop, or equivalently, it is a non-cooperative Cournot (quantity) equilibrium with a
continuum of players. The Wardrop principle states that each driver selects the shortest travel
time route and as a consequence, if the two routes are used at equilibrium, the travel time is
necessarily the same on both routes. Many authors have questioned this deterministic route
choice behavior, i.e. the fact that if the travel times are di®erent on both routes, all users select

the shortest one. If the users have di®erent values of time and minimize the travel cost cki of
alternative i, with cki = ®ktti (®k value of time for individual k and tti travel time), again all
users out of equilibrium have the inclination to select the route with the shortest travel time.1

Note that when the travel time is the same on the two routes, the model is again questionable
since it says nothing about route choice. The assumption underlying deterministic route choice
behavior has been challenged by researchers and several modi¯cations have been proposed. We
will discuss one by one three alternative complications, which remove the assumption that usually
(i.e. when travel times di®er) all users select the same route. The third change is concerned
with the impact of the variability of travel time on route choice, which studied in the paper. Of
course a combination of those complication would lead to a more realistic model.

1Any increasing function of travel time will lead to the same discussion. We choose here linearity in travel
time, for simplicity.
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Model 1: variety of route choice attributes. Deterministic route choice has been criticized
on the ground that a large variety of factors, other than travel time play a role. If those factors
are observable, the above model can be easily extended, since it su±ces then to replace the
travel time function by the generalized cost function. The cost function of individual k is
cki = F(Xi; ¯k), where Xi is a vector representing the number of tra±c lights, scenery, safety,
travel time, etc. and ¯k are individual-speci¯c parameters to be estimated. In this case, the
travel cost depends on the user preferences (via ¯k), so that the choice of two di®erent users
facing the same alternative routes may di®er.

Model 2: factors unobservable to the modeler but observable to the users. The
situation is more complex if factors (other than the travel time) that a®ect route choice are
not observable by the modeler. For example, a user may select a route because he may want
to make a stop over. In this case, the travel cost for individual k of route i can be written as
cki = ®ktti + eki , where eki is a factor known by user k but unobservable by the modeler. This
additive speci¯cation is the most commonly used in the literature. The maximization principle
discussed in the deterministic case remains the same from the user perspective. For two routes in
parallel, individual k selects route 1 if and only if ck1 < ck2. This is a deterministic model from the
individual perspective. If the factors eki are continuously distributed over R in a population, a
positive fraction of users will select route 1 and route 2. For simplicity, we consider a population
of statistically identical individuals. Since the idiosyncratic terms fekig are not observable by
the modeler, the best he could do is to describe the probability Pki that an individual randomly

selected in the population chooses route i. This probability is given by Pi = PrfCki < Ck
j g, with

Cki = ®ktti + "ki , where "ki is a random variable. This is a probabilistic choice model, even if
there is no uncertainty from the individual perspective.

Model 3: factors unobservable to the users. Attitudes towards risk play a major role
in route choice decisions and the user choice behaviour under uncertainty is examined in the
framework of Model 3. Preliminary work in the mean variance context but without explanatory
variables has been done by Noland and Small (1995) and by Noland, Small, Koskenoja and
Chu (1998). Contrarily to these authors, we do not consider the departure time dimension in
our analysis. This last case, treated in this paper corresponds to the situation where some

characteristic of the route (here the travel time) is not observable by the individuals. The fact
that this factor is observable or not by the modeler is irrelevant in our analysis. We assume that
the travel time is stochastic and wish to describe the choice behavior of a speci¯c individual.
Note that the perceived travel time can be biased or not. Although the individuals ignore the
current travel time, we assume that he knows the distribution of travel time. Given that the
travel time is random, the expected travel time is unlikely to be a su±cient statistic, since the
other moments of the distribution, and in particular the standard deviation of the travel time are
likely to in°uence route choice. Some authors have proposed to reinterpret model 2 to address
the current case. This would correspond to a situation where there is a distribution of travel time,
but each individual has a idiosyncratic idea about the value of travel time and bases his decision
on his subjective belief. Unfortunately, this model is based on very strong assumption that
individual do not learn (otherwise, day after day, they would accumulate information and get
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better estimate of the travel time) and cannot communicate with each others. This interpretation
can be acceptable in the case of non-recurrent congestion but it is certainly a poor approximation
for recurrent congestion.

In the third model, the expected travel time should be replaced by a function which depends
on the distribution of travel time. Some parameterization have been used in the ¯nance and to
a lesser extent in the Transportation literature (such as the mean-variance model; see Noland,
Small, Koskenoja, and Chu, 1998). It is well known that the mean-variance models su®ers from
severe biases since in particular it generated irrational behaviors (as discussed in the paper) if
the random variable (here the travel time) is not normally distributed.

The most widely \aggregation rule" used is the expected utility theory (see, Machina, 1982,

and Machina and Pratt, 1997). It relies on two separate assumptions. First, it implies that
preference can be described by a utility function (which is known by the modeler). Second,
it is based on the assumption that the preferences can be rationalized by the corresponding
expected utility function. This approach, initially introduced by Bernoulli in a rather trivial way
(without the utility concept) was later reformulated by Von Neuman and Morgerstern. Despite
its popularity, it has been questioned by empirical and theoretical scholars (see Khaneman and
Tversy, 1979, and the contributions of the French School: La®ont, 1993 and Gollier, 2001).
However, expected utility theory and discrete choice models, can lead to behavior speci¯c to
non-expected utility theory (this topics will not be treated in this article).

The objective of this paper is to develop a model, which accommodates at the same time
expected and non-expected utility functions (see, the brilliant discussion of Epstein, 2003 on this
issue). This is achieved by studying both the ordinal and the cardinal components of preferences
towards risk (see the discussion of Camerer, 1989, on the use of di®erent utility functions). In
our belief, this use of these two approaches (cardinal and ordinal) is the major methodological
contribution of the paper. This method allows us to evaluate the impact of socio-economic

factors on the tolerance towards risky travel time.
We have recently discovered that some researchers have developed estimates of risk aversion

comparable to ours either in the case of expected utility theory (see Hartog, Ferrer-i-Carbonell,
and Jonkerand, 2000) or in the case of non expected utility theory (see Donkers, Melenberg, and
van Soest, 2000). This last paper also introduces a methodology to estimate risk aversion, which
is based on the idea of ranking of choices (ordinal description of choices). However, contrarily
to these authors, we did not asked certainty equivalent questions, but asked the respondents
to rank lotteries. It is our experience (see Ben-Akiva, de Palma, and Bolduc) that respondant,
even when they have the possibility to ask for some explanations are unable to respond to
certainty-equivalent questions.

An extended road map of the paper is presented below. In Section 2, we introduce the survey
experiment, which was conducted in Ile-de-France (Fontan, 2002). We collected a large sample
(about 2,300 respondents) who were asked lottery-type questions as well as several questions
concerning their socio-economic factors. In Section 2.1, we brie°y present the survey question-
naire. The risk tolerance is measured using lottery questions discussed in Section 2.2. In Section

2.3, we present the main aggregate results. In Section 3, we discuss the empirical model. The
methodology based on the ordered Probit is introduced in Sections 3.1 and 3.2. In the re-
maining sections, we envisaged the four standard utility functions (mean-standard deviation,
mean-variance, CRRA and CARA). In section 4, we present the empirical results. We ¯rst
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present estimates with no explanatory variables and then estimates with explanatory variables.
In the analysis with explanatory variables, we explicitly recognize that attitude towards risk
does vary across individuals. We discuss the impacts of several key socio-economic variables
(employment status, purpose of the trip, gender, primary transportation mode) on the level of
risk aversion and compute the distribution of risk tolerance. Finally, Section 5 brie°y concludes
the paper.

2 Stated preferences survey

2.1 The general structure of the survey questionnaire

A computer-based phone survey (CATI) was administered during May-June 2000 in Paris area
and suburbs. 4137 respondents were asked questions concerning their morning trips (the phone
interviews took place between 5 and 7 PMthe same day). The main purpose of this questionnaire
was to study the departure time decision of commuters and non commuters using private and

public transportation (see [8] for details).
The ¯rst part of the questionnaire collected information on the selected trip : schedule and

constraints at the origin and the destination, purpose of the trip, characteristics of the mode(s)
used (e.g. travel time and cost), knowledge of the route, etc...

In the second part of the questionnaire, the respondents were asked randomly selected ques-
tions involving several trade-o®s between travel time and schedule delay cost.

The third part of the questionnaire, analayzed in this paper, collected data concerning the im-
pact of travel time variability on route choice. Lottery-type questions were asked to a sub-sample
of 2;387 individuals (See details below). The purpose of this part was to better understand route
choice behaviour when travel time is uncertain.

The last part of the questionnaire was concerned with individual and household characteris-
tics such as gender, age, income, number of children, occupation, leisure, etc...

2.2 The evaluation of risk aversion

The risk part was based on the actual travel time for the ¯rst trip in the morning. In each
question, the individual was faced with the same risk free alternative (¯xed travel time corre-

sponding to his revealed actual travel time) and a risky alternative (lottery) involving travel
time variability. In the context envisaged here, the individual faced a route with a ¯xed travel
time (risk free route) and another one with a variable travel time (risky route). The travel time
for the risky route entails a low and a high value (both proportional to the revealed individual
travel time) ; high and low values occur with the same probability.

Each respondent was faced with a series of three sequential similar questions, as shown on
Figure 1.

For the ¯rst question L4, each respondent had to choose between the risk free alternative
Ls (a route with the guaranted actual travel time tt) and a risky alternative (a route with a
low travel time tt1 = 2=3 tt and a high travel time tt2 = 4=3 tt). As a consequence both routes
have the same expected travel time and only risk averse individual will select the risk free route,
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Figure 1: The hierarchy of lotteries

whereas risk lovers would choose the risky route and risk neutral agents (if any) would say they
are indi®erent between the two routes.

For the second question, all individuals had to choose between the same risk free alternative
Ls, and a new risky alternative. This risky alternative was more favourable for those who had
previously selected the risk free alternative and less favourable for those who had previously
selected the risky alternative. Lottery Li is more favourable than lottery Lj if either the lower
level tt1 or the higher level tt2 is lower for Li than for Lj and the other level is the same for the

two lotteries. For example, L1 is less favorable than L2 since 11/12 > 5 /6. The seven lotteries
are ranked from the least favourable L1 to the most favourable L7.

Finally, the third lottery proposed depended on the answers to the previous lotteries, accord-
ing to the same reasoning as above (see table below). For example, an individual who selected
the lottery L2 = (5=6;4=3) next faced the less favourable lottery L1 = (11=12;4=3).

Notice that the relation \more favorable" can be given an interpretation in the context of
expected utility theory. Clearly, the utility is a decreasing function of travel time. Consider
two lotteries Li and Lj where Li is more favourable than Lj (in the sense de¯ned above). If
tt1i < tt1j and tt2i = tt2j , then

EU (Li) = 0:5U (tt1i) + 0:5U (tt2i) > 0:5U (tt1j) +0:5U (tt2j) = EU (Lj) :

Therefore, the more favourable lottery Li is preferred to less favourable lottery Lj for any
decreasing utility function. Note that this result still holds in the context of the following non-

expected utility theory. Let assume that individuals have a biased perception of probabilities.
For example, a pessimistic individual may systematically underestimate the probability of the
lower travel time ( ~P1 < 0:5 instead of 0:5) and overestimate the probability of the larger travel
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time ( ~P2 > 0:5 instead of 0:5) so that non-expected utility of lottery Li is NE (Li) = ~P1U (tt1i)+
~P2U (tt2i). One still has

NE (Li) = ~P1U (tt1i) + ~P2U (tt2i) > ~P1U (tt1j) + ~P2U (tt2j) = NEU (Lj) ;

so Li is still preferred to Lj by all individuals.

All individuals agree with this ranking L1 Á L2 : : : Á L7, but position the safe alternative
Ls di®erently. The individuals who prefer the least favourable lottery L1 to the safe alternative
have the larger tendency to enjoy risk, that is they are the least risk averse.2 Conversely, those

who prefer the most favourable lottery L7 are the most risk averse.
If an individual prefers the safe alternative to L3, he necessarily prefers the safe alternative to

L1 and L2. If he prefers L4 to the safe alternative, he also necessarily prefers L5, L6 and L7 to the
safe alternative. This allows to de¯ne an ordinal notion of risk aversion and the corresponding
standard cardinal representations. Consider a cardinal representation corresponding to a chosen
utility function and let µ¤j represent the risk aversion of an individual who is indi®erent between
Lj and the safe alternative Ls. Consider the individual who prefers Ls to L3 but prefers L4 to
Ls. Then his risk aversion lies in the interval [µ¤3; µ

¤
4]. For any chosen utility, the ordering of

lotteries then gives a natural ordering of risk aversions µ¤1 < µ¤2 : : : < µ¤7. De¯ning µ¤0 = ¡1 and
µ¤8 = +1 will allow us to consider in the same way the extreme intervals. Risk aversion lies in
the interval ]µ¤0;µ

¤
1] for the individuals who prefer the less favourable lottery L1 to the safe one

Ls; similarly, it lies in the interval [µ¤7;µ
¤
8[ for the individuals who prefer the safe lottery Ls to

the most favourable one L7.
This set of questions allows to rank the individuals in 8 categories. Since the lotteries are

naturally ranked for any decreasing3 utility function, the above reasoning is independent of the
cardinalization of preferences. It is only based on a cardinal notion of risk aversion and as a

consequence and importantly does not preclude the use of non-expected utility.

Note that the lotteries are proportional to the actual travel time tt, so the scale e®ects if any
will be introduced through our measure of risk aversion.

If an individual places the safe alternative Ls at the same position whatever the level of the
reference travel time tt, then one can say that our ordinal notion of risk aversion is free of scale;
alternatively, we say that preferences are scalable. In the framework of expected utility theory,
this condition corresponds to the case of constant relative risk aversion.

In the other case, the position of the safe alternative Ls depends on tt. In expected utility
theory terms, the relative risk aversion is variable. A particular example corresponds to case of
constant absolute risk aversion, for which relative risk aversion is inversely proportional to tt.

For any parametric speci¯cation of preferences, it is straightforward to compute a numerical
value for the thresholds µ¤j of relative risk aversion. This is what we do in sections 3.3 to 3.6.

2Here, the concept of risk aversion is not based on the (cardinal) measure of the Arrow-Pratt index. For the
time being, it is only linked to an ordinal notion supported by the preference relationship between lotteries.

3Travel time is obviously a bad rather than a good : people are better o® with lower travel times. Most utility
functions considered here will take negative values, which is atypic but not inconsistent.
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2.3 Descriptive statistics

The total sample is composed by 56% women and the average age is 38:25% of households have
two individuals, 18% one individual, 20% three individuals, 22% four individuals and 15% ¯ve
or more individuals. 55% of households count at least one child under 18:47% of households do

not have a car and the income of 60% of households is less than 18;000FF per month.4

The trip to work represent 67:2%, trip for shopping 9:2% and the trip to school represent
8% of total trips. Note that men more frequently trip to work and women go more frequently
shopping or visiting people.

About 73% of individuals use only one mode. Cars are used by 49% of individuals and transit
by 45% (4% of car passengers and 2% of motorcycle users). Note that individuals between age
15 and age 30 use frequently public transportation. The average travel time is 39 minutes by
private transportation and 38 minutes by public transportation.

The aggregate result for the risk question are brie°y presented below. The distribution of
the choices of the 2;387 individuals we could retain for the estimates is displayed in the following
table. 785 individuals representing 32:9% of the sample are risk lovers; this seems quite a high
percentage.

Choice Frequency %
SSS 393 16:46
SSR 379 15:88
SRS 358 15:00
SRR 315 13:20
I 157 6:58
RSS 198 8:29
RSR 143 5:99

RRS 150 6:28
RRR 294 12:32

Table 1 : Distribution of choices

The purpose of this article is to show how risk aversion depends on individual characteristics.

To do that, we need to develop a methodology for the estimation procedure. Since several
utility functions can be used in our estimates, and since the mere idea of expected utility theory
is questionable, we prefer to start with an ordinal approach, and afterwards use a cardinal
approach with relies on speci¯c utility function. For the cardinal analysis, we concentrate on
the standard utility functions envisaged in the literature.

3 Methodology for the empirical study

3.1 The ordered probit model

We wish to develop a choice model to describe the probability that an individual selects a
given lottery. Since the proposed alternatives are naturally ordered, we decided to introduce an

4One Euro is 6:55957 French francs.
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estimation procedure based on the ordered probit model (see the seminal article of Small, 1997,
on the ordered probit model).

The ordered probit model describes the probability that an individual selects a given alter-
native among a series of ordered alternatives (here the order is the one of the lotteries).

First, we consider a cardinal representation of risk aversion corresponding to a chosen utility.
The utility of the choice involves a random variable µk with a strictly increasing cdf Fk, to be
determined. µk is interpreted as the degree of risk aversion. The choice depends on thresholds,
which determine the ranges of choices. For this chosen utility function, the numerical value of
the corresponding threshold µ¤j is given by the condition of indi®erence between the lottery Lj
and the risk-free alternative. The individual who has a higher value µk (µk > µ¤j) will stricly
prefer the lottery Lj to the risk-free alternative. Moreover, the individual with a risk aversion
µk 2 £

µ¤j¡1; µ
¤
j

¤
prefers Lj to Ls but prefers Ls to Lj¡1. The probability Pkj that individual k

places Ls between Lj¡1 and Lj is:

P k
j = Pr

³
µ¤j¡1 < µk � µ¤j jXk

´
= Fk

¡
µ¤j

¢ ¡ Fk
¡
µ¤j¡1

¢

Second, let º denote any other cardinal representation of the same ordinal risk aversion,
involving the random variable ºk with pdf ©k and the corresponding thresholds º¤j

5, to be
estimated. This second representation may be chosen according to an arbitrary rule and we are
not interested in ¯nding the corresponding utility function. For example, we can choose º so
that the random variables ºk has a gaussian distribution because it leads to simple calculations.

Since µk and ºk correspond to the same ordinal preferences, they lead to the same localisation

of Ls in the lotteries scale and the probability Pkj that individual k places Ls between Lj¡1 and
Lj is:

Pkj = ©k
¡
º¤j

¢ ¡ ©k
¡
º¤j¡1

¢
:

In addition to the conditions º¤0 = µ¤0 = ¡1 and º¤8 = µ¤8 = ¡1, this implies that the threshold
values µ¤j and º¤j are linked by the conditions

Fk
¡
µ¤j

¢
= ©k

¡
º¤j

¢ , µ¤j = F¡1
k

¡
©k

¡
º¤j

¢¢
: (1)

Whenever µk is a continuous random variable with support R, Fk is a strictly increasing function
and can be inverted. The conditions (1) provides the correspondence between µk and ºk in 7
points.

The individual likelihood for individual k is simply the probability of the observed outcome

jk, that is Pkjk = ©k
³
º¤jk

´
¡©k

³
º¤jk¡1

´
and the sample log-likehood is simply given by the sum

of the individual log-likelihoods.

ln L =
nX

i=1

ln
³
P k
jk

´
;

5With º¤0 = µ
¤
0 = ¡1 and º¤8 = µ

¤
8 = ¡1
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where n represents the sample size.
We will develop in sections 4.1 and 4.2 the expression of ©k both with and without explana-

tory variables, with a special focus on the observed individual travel time ttk.

On the one hand, the estimation procedure is only based on the ordinal representation
of preferences re°ected in º ; threshold values º¤j are estimated using a maximum likelihood
technique and are not a®ected by the choice of any cardinal representation of preferences. On
the other hand, the speci¯cation of a utility function allows to give a numerical (cardinal) value
to the estimated (ordinal) risk aversion.

3.2 Mass point

Since a fairly large number of individuals (157 representing 6:5% of the sample) happened to
be indi®erent in the ¯rst lottery L4, we decided to create an additional category, denoted by I,
regrouping \indi®erent" individuals. Since the expectation of lottery L4 corresponds to the safe
alternative, indi®erent individuals are risk neutral. Therefore, their risk aversion is µ = µ¤4 = 0.
This generates a mass point in the distribution of µ.

We therefore explicitly recognize that the function F¡1
k ±©k may be constant on some interval.

We can deal with this by associating two di®erent values º¤4inf and º¤4 sup to the threshold µ¤4 = 0.

In this case, ºk is still a continuous random variable, whereas µk has a mixed distribution with

Pr
³
µk = 0

´
= Pr

³
º¤4 inf < ºk � º¤4sup

´
= ©k

¡
º¤4sup

¢ ¡©k (º¤4inf) : (2)

The function Fk shows a discontinuity in 0 and remains invertible elsewhere. The condition

(1) µ¤j = F¡1
k

³
©k

³
º¤j

´´
still holds for j 6= 4.

In the two cases (with or without mass point), µk can be expressed as a function of ºk.
The only di®erence is that this function is strictly increasing in the case of no mass point but
constant on the interval

£
º¤4inf ;º

¤
4 sup

¤
in the case of a mass point.

In order to get numerical values for the risk aversion, we consider 4 utility functions and
compute the series of thresholds for each of them.

3.3 Mean-standard deviation formulation

For example, consider the following expected utility function corresponding to the lottery Lj =
(®j1;®j2) with travel times

¡
tt1 = ®j1tt; tt2 = ®j1tt

¢
, expected travel time E(tt) = (tt1+ tt2) /2

and standard deviation ¾ = (tt2¡ tt1) /2:

EU (tt1; tt2) = ¡E (tt)¡ µS¾ = ¡tt

µ
®j1+ ®j2

2
+ µS

®j2 ¡ ®j1
2

¶
:

For this speci¯cation, an individual indi®erent between the lottery (®1; ®2) and the risk free
choice tt has a risk aversion µ¤S such that EU (tt1; tt2) = ¡tt or

µ¤S =
2 ¡ (®j1+ ®j2)

®j2 ¡®j1
:
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Note that EU (tt) is proportional to tt, just as the lotteries proposed, so if choices were driven
by mean-standard deviation preferences, the choices would not be a®ected by the actual travel
time tt if the estimates µS are independent of the actual travel time tt. In this case the threshold
values are also independent of tt.

Straightforward calculations con¯rm that the thresholds µ¤Sj are correctly ranked in this case.
This gives the thresholds displayed in the following ¯gure.

     R S         

   

     RR     RS     SR     SS         

        

     RRR RRS RSR RSS SRR SRS SSR SSS     

                                      

     θ1
∗=−3/5   θ2

∗=−1/3  θ3
∗=−1/7  θ4

∗ =0    θ5
∗=1/7  θ6

∗=1/3  θ7
∗=3/5    

 

Figure 2: Ranking and threshold values for mean-standard deviation utility

3.4 Mean-variance formulation

In that speci¯cation, the standard deviation is replaced by the variance of travel time, so the
utility becomes :

EU (tt1; tt2) = ¡E (tt) ¡ µV ¾2 = ¡tt

Ã
®j1+ ®j2

2
¡ µV tt

µ
®j2¡ ®j1

2

¶2!
:

Note that for the loteries considered, E (tt) is proportional to tt, whereas ¾
2

is proportional to tt
2
.

According to the standard formulation of the mean-variance model, µV represents the absolute
risk aversion. There are no scale e®ect, if the estimate show that µV in inverseley proportional
to the actual travel time tt.

The threshold values are given by the condition EU (tt1; tt2) = ¡tt :

µ¤V = 2
2 ¡ (®j1 +®j2)

(®j2 ¡®j1)
2 tt

:

Note that the threshold values for the relative risk aversion are inversely proportional to the
actual travel time. Indeed, if the estimates show that the parameter µV is inversely proportional
to the actual travel time tt, then the utility function is scalable.

3.5 CRRA utility

U (x) = ¡x1+µ
R

1+µR
; µR 6= ¡1. Note that the case µR = ¡1 corresponds to the logarithmic utility

function U (x) = ¡ ln(x). It can easily be checked that the individual who is indi®erent between
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the safe and the risky lottery L3 (4 /3 ; 3/4) has a logarithmic utility function. Note also that
that ° = 0 corresponds to risk-neutral agents (in this case: U (x) = ¡x).

We now compute the thresholds for µR 6= ¡1. The expected utility of the alternative
(®j1tt;®j2tt) in lottery Lj is:

EU (Lj) = ¡1

2

0
@

¡
®j1tt

¢1+µR

1 + µR
+

¡
®j2tt

¢1+µR

1 + µR

1
A = ¡1

2

tt
1+µR

1 + µR

³
(®j1)

1+µR + (®j2)
1+µR

´
;

whereas the utility of the riskless choice is tt
1+µR

1+µR
. Therefore the preference are scalable if the

estimate of µRA are constant (with respect to tt). The indi®erence condition between the lottery
Lj and the safe choice Ls is

(®j1)
1+µR + (®j2)

1+µR = 2:

We verify that this condition is independent of the value of the actual travel time. Therefore,
¯nding a signi¯cant e®ect of actual travel time on decisions leads to the rejection of the CRRA

speci¯cation (with constant parameters) against a more general speci¯cation such that standard
relative risk aversion µR is not constant.

Straightforward calulation shows that ­
¡
µR

¢
= (®j1)

1+µR + (®j2)
1+µR is a convex function

of ° and has a unique minimum for

µR =
ln

³
¡ln ®1
ln®2

´

ln
³
®2
®1

´ ¡ 1

and that ­
¡
µR

¢ ¡!
°!§1

+1. Since in addition (®j1)
1+µR + (®j2)

1+µR = 2 for µR = ¡1, there

is a unique solution ~° 6= ¡1 such that ­(°) = 2. Therefore the thesholds are uniquely de¯ned

(although they are not explicit).

3.6 CARA utility

U (x) = 1¡eµARx
a ; a 6= 0. The limit case µAR ! 0 correspond to risk neutral individual (then

U (x) = x). The expected utility of the lottery is :

EU (Lj) =
1

µR
¡ 1

2µR

³
eµ

R®j1tt + eµ
R®j2tt

´
;

whereas the utility of the risk free choice is
³
1 ¡ eµ

R tt
´±

µR .

So the lottery is preferred to the safe choice i® eatt(®j1¡1) + eatt(®j2¡1) > 2. Clearly, the
solution are independent of the actual travel time tt i® the parameter µR is inversely proportional
to tt (and in this case the preferences are scalable).

The table below sums up the threshold values for the risk measure µ for the di®erent utility
functions (we chave chosen tt = 1 hr, when the threshold value are not constant). We can check
that they are increasing with the lottery rank.
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®j1 ®j2 µ¤Sj µ¤Vj µ¤Rj µ¤Aj
L1 11=12 4=3 ¡3=5 ¡72=25 ¡8:223 ¡7:875
L2 5=6 4=3 ¡1=3 ¡4=3 ¡2:975 ¡2:887
L3 9=12 4=3 ¡1=7 ¡24=49 ¡1(ln) ¡0:993
L4 2=3 4=3 0 0 0 0
L5 2=3 15=12 1=7 24=49 0:958 0:993
L6 2=3 7=6 1=3 4=3 2:744 2:887
L7 2=3 13=12 3=5 72=25 7:455 7:875
Table 2 : Thresholds for the di®erent utility functions

4 Application and results

4.1 Estimates with no explanatory variables

In the absence of any explanatory variable, the distributions of µk and ºk are the same for all
individuals and we can drop the indexes k. So we get a function Ã = F¡1 ± © identical for all
individuals. In that case, it is not restrictive to choose for © the standard normal, so that the
threshold values º̂¤j can be estimated using the ordered probit formulation. The threshold values

µ¤j are given by the lotteries and the parametrization of preferences introduced in section 3.
Since the model is just identi¯ed, the estimated values º̂¤j are such that the estimated proba-

bility of each interval ©
¡
º̂¤j

¢¡©
¡
º̂¤j¡1

¢
is exactly the observed percentage P̂j in the corresponding

interval of individuals who choose Lj .
With no explanatory variables, no restriction is imposed to the model. However, the model

is not very useful since the probabilities it generates are simply the corresponding proportions
observed in the sample. However, it can be easily generalized by introducing explanatory vari-
ables, as we do in the following sub-section. Before that, we present the properties of the model
wihout explanatory variables, since it is simpler to understand in that case and it can be easily
extended to the case of explanatory variables.

The main interest of the model in the case of no explanatory variables is to estimate the
distribution of risk aversion for any chosen utility function.

Figure 4 represents the 7 thresholds for the di®erent utility functions. Since Table 2 shows
that thresholds are very low for the mean-standard deviation and mean-variance formulations
as compared to the CARA and CRRA functions, we used di®erent scales : the right one (from
-2 to 2) is used for the mean-standard deviation and mean-variance formulations; the central
one (from -10 to 10) is used for the CARA and CRRA functions. Except for this scale e®ect,
the thresholds obtained with the di®erent utility functions are comparable.

Since µ has a mixed distribution, we will consider separately the two aspects of its distribu-
tion.

On the one hand, Pr (µ) = 0 corresponds to the observed percentage of risk neutral agents
in the sample, whatever the utility function.

On the other hand, the conditional density function for the continuus part fµjµ6=0 can be
simply deduced from the (gaussian) density of the latent variable º (see Figure 3) and from
the Ã transformation depicted in Figure 5 in the case of the mean-standard deviation model.
As discussed in section (2), risk neutral individuals corresponds to the °at portion of the Ã

12
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Figure 3: Distribution of the latent variable º

curve. Since both º¤j and µ¤j are ranked, we can select an increasing smooth function Ã̂ such

that µ¤j = Ã̂
³
º¤j

´
; j = 0:::8; j 6= 4. Alternatively, we can select a polynomial approximation

which is increasing in the relevant interval. Figure 5 shows that the Ã function is well described
by an order 4 polynomial function ÃP4, at least in the relevant interval µ 2 [¡0:6; +0:6] , º 2
[¡1:159; +0:976].6

The polynomial approximation ÃP4 is de¯ned on R. However, although ÃP4 is increasing on
the relevant interval [¡1:159;+0:976], it happens to be decreasing for º > 1:5. Since Figure 5
shows that Ã is approximately linear for º > 0, we have replaced the polynomial approximation
ÃP4 by a linear function for º > 1:5. This concerns less than 16:5% of the sample (those
individuals who have the larger risk aversion µ > µ¤7 and have always chosen the safe lottery Ls).
The resulting approximation will be denoted Ã̂.

The cdf for µ is given exactly in 7 points by the Ã transformation and by equations (1) :

µ¤j = F¡1
h
©

³
º¤j

´i
= Ã

³
º¤j

´
. The extension of Ã on R allows to recover the cdf of µ on R :

F¡1 ± © = Ã , F = © ± Ã¡1 and the density

f = F 0 = ©
0 ± Ã¡1 ¤ ¡

Ã¡1
¢0

=
Á ± Ã¡1

Ã0 ± Ã¡1
;

where Á denotes the standard normal density. It can be approximated on R by ©
0 ±Ã̂¡1

Ã0±Ã̂¡1
. We end

6For the conditional distribution of µ conditional on µ 6= 0, risk neutrality (µ = 0) corresponds to a single value
for º in the interval [º4inf = ¡0:443;º4 sup = ¡0:267].
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Figure 4: Threshold values for the di®erent utility functions

up with

f (µ) =
Á± Ã̂

¡1
(µ)

Ã0 ± Ã̂
¡1

(µ)
=

Á (º)

Ã̂
0
(º)

:

Since Ã is a polynomial function (and a linear function for º > 1:5), its derivative is trivial to

obtain. The estimated density for µjµ > 0 is depicted in Figure (6), where the vertical lines
represent the thresholds. Note that the values of risk aversion outside the relevant interval
[µ¤1;µ

¤
7] are not estimated very precisely. The fact that the tail is larger on the left side than

on the right side is a consequence of the linearization of Ã̂ for large values of º, implying that
µ takes only moderate values. On the other side, the polynomial approximation ÃP4 took very
negative values.

4.2 Introduction of explanatory variables

As usual in the ordered probit approach, we make the (restrictive) assumption that the e®ect

of explanatory variables is to shift the distribution of ºk through a linear combination Xk¯ so
that ©k is the cdf of a normal with expectation Xk¯ and variance 1. The \reference individual"
is de¯ned by the condition Xr¯ = 0 and the corresponding cdf of µr is denoted Fr.

This assumption is restrictive because it implies that :

1. All the explanatory variables are perfect substitutes in risk aversion determination.7

7Let ¯1 , ¯2 and ¯3 denote the coe±cients of the explanatory variables X
1, X2 and X3. Let consider any number

¢, an individual with characteristics X1
1 ,X

2
1 and X

3
1 and another individual with characteristics X

1
2 = X

1
1 +¯2¢,

X2
2 = X

2
1 ¡ ¯1¢ and X3

2 = X
3
1 . Then the model implies that the two individuals have the same distribution of

risk aversion because X2¯ =
¡
X1
1 + ¯2¢

¢
¯1 +

¡
X2
1 ¡ ¯1¢

¢
¯2 +X

3
1 ¯3 = X

1
1 ¯1 +X

2
1¯2 + X

3
1¯3 = X1¯ .
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Mean-Standard deviation model - No explanatory variables

-0.80

-0.60

-0.40

-0.20

0.00

0.20

0.40

0.60

0.80

-1.5 -1 -0.5 0 0.5 1 1.5

meanSD Polynomial (meanSD)

Figure 5: The Ã transformation and its order 4 polynomial approximation.

2. The variations of the probabilities P k
j for a variation of the quantity Xk¯ are not totally

free as shown on ¯gure 3. For example, if Xk¯ > 0 for individual k, the probabilities
of riskiest choices are increased and the probabilities of the sa¯est choices are decreased
(compared to the reference de¯ned by Xr¯ = 0).

It is more convenient to write ºk = Xk¯ +!k where !k standard normal with cdf ©. Then :

©k
¡
º¤j

¢
= Pr

³
Xk¯ +!k � º¤j

´
= Pr

³
!k � º¤j ¡Xk¯

´
= ©

¡
º¤j ¡ Xk¯

¢
:

Let Ã denote F¡1r ± © as in the case of no explanatory variable. Then the model implies
that the transformation between the two cardinal representations of individual risk aversion is
the same for all individuals, that is :

Ã = F¡1r ± © = F¡1k ± ©k 8k

This assumption is restrictive as explained above (1 and 2). However, with a larger dataset,
it could easily be relaxed in the following ways :

² split the sample so that Ãk is the same within each subsample but may vary from one
subsample to the other. This is only limited by the condition that each subsample is large
enough for the parameters to be estimated with enough precision.

² introduce heteroskedasticity in the distribution of ºk. This corresponds to a heteroskedas-
tic ordered probit model. The variance of ºk is then modelled as V

¡
ºk

¢
= exp (Yk°), where

Yk is another set of explanatory variables that may intersect (but may not include) Xk.
This model is known to be especially di±cult to estimate when there are many variables
common to Xk and Yk.
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Density function for θθ mean-standard deviation
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Figure 6: Distribution of risk aversion for the mean-standard deviation formulation

We ¯rst develop an analysis based only on the ranking of the choices. Let µk denote the risk
aversion of individual k. As shown on Table 1, individual k selects lottery Lj if and only if
his risk aversion is in the interval

¡
µ¤j¡1; µ¤j

¤
. The threshold values depend on the choice of the

utility function. Our ultimate objective is to predict the probability that a given individual with

given characteristics selects one among several alternatives. Therefore, we are only interested
in the ranking of the alternatives and on an ordinal notion of risk aversion rather than on a
cardinal one. We will rely on an ordered estimation technique and will build bridges between
the ordinal and cardinal representations of preferences and risk aversion. Since only the ranking
of the µ matters, we can work on any convenient monotonic transformation of µ, which therefore
preserves the ranking.

For a given individual k, the value of µk is assumed to be unobservable by the econometrician
(although it is known by the individual). The best the modeller can do is to describe µk as a
random variable with pdf Fk. However, the modeller observes individual characteristics Xk that
were collected in the survey questionnaire. We model below the dependency of µk on Xk.

Let consider another cardinal representation of risk aversion involving the random variable
ºk and the thresholds values º¤j .

The distribution function Fk depends a priori on the observable characteristics Xk Let Pkj
denote the probability that individual k chooses Lj , given his socioeconomic characteristics Xk

Pkj = Pr
³
µ¤j¡1 < µk � µ¤j jXk

´
= Fk

¡
µ¤j

¢ ¡ Fk
¡
µ¤j¡1

¢

= ©k
¡
º¤j

¢ ¡©k
¡
º¤j¡1

¢
:

Since we work here on an ordinal notion of risk aversion, there exists an increasing function
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Ã such that

µk = Ã
³
Xk¯ + ºk

´
;

where ºk has a standard normal distribution N (0;1).
Let © denote the standard normal cumulative distribution function. Notice that © and Ã

are not indexed by k since they are assumed to be the same for all individuals in the population,
whatever their characteristics.

Pkj = P
³
µ¤j¡1 < Ã

³
Xk¯ + ºk

´
� µ¤j

´

= P
³
Ã¡1

¡
µ¤j¡1

¢ ¡ Xk¯ < ºk � Ã¡1
¡
µ¤j

¢ ¡Xk¯
´

or

Pkj = ©
¡
º¤j ¡Xk¯

¢ ¡ ©
¡
º¤j¡1 ¡Xk¯

¢
; (3)

where º¤j = Ã¡1
¡
µ¤j

¢
denotes the thresholds for ºk, j = 1:::7. Equation (3) corresponds exactly

to the ordered probit speci¯cation (with º¤0 = ¡1 and º¤8 = +1). Note that the thresholds º¤j
are speci¯c to the population considered and are independent of the individual characteristics.
According to the above formula, individual characteristics are assumed to shift the distribution
of º. This is equivalent to a shift of all the thresholds of the same quantity Xk¯, as shown on
the following ¯gure. A shift on the right increase all the probabilities on the right part of the
¯gure (less risky choices) and decreases all the probabilities on the left size (more risky choices)

.
The increasing function Ã is known in 7 points µ¤j = Ã

³
º¤j

´
. Recall that the µ¤j can be

computed given lotteries and a choice of the utility function. The º¤j are estimated using the
usual ordered probit technique (see (3)).

This allows to compute the conditional distribution FXk :

FXk (µ) ´ F
¡
Ã¡1 (µ) ¡Xk¯

¢
= ©(º ¡ Xk¯) :

4.3 Estimation results

4.3.1 Whole sample

As expected, the thresholds º¤jr obtained with explanatory variables are a simple linear transfor-
mation of the initial thresholds º¤j , obtained without explanatory variables : º¤jr = a+ bº¤j . The

new transformation Ãr is then given by the condition : µ¤j = Ãr

³
º¤jr

´
= Ãr

³
a + bº¤j

´
= Ã

³
º¤j

´
.

So Ãr is obtained by combining Ã with a linear transformation and it is not necessary to give a

the graph of µj = Ãr

³
º¤jr

´
.

The results for the whole sample estimation are presented in Annex Table 1. The explanatory
power is very low (pseudo-R2= 2:23%) and most of the explanatory variables have no signi¯cant
e®ect on risk aversion. Concerning socio-economic characteristics, we can only say that risk
aversion is signi¯cantly larger when the purpose of the trip is a business appointment and lower
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The effect of explanatory variables
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Figure 7: The e®ect of explanatory variables on º thresholds

for middle income earners. One possible explanation for the low explanatory power of individual
characteristics is that risk averse individuals and risk lovers respond to di®erent models. So we
will restrict the next section to risk averse individuals.

On the opposite, actual travel time tt has a very signi¯cant (positive) e®ect on risk aversion.
In order to measure this e®ect in a non restrictive way, we simply considered a polynomial
approximation and estimated an order 3 polynomial for the e®ect of tt on the latent variable º.
The 3 corresponding parameters are highly signi¯cant and the shape of the e®ect of tt looks like
a 1=tt function (see Figure ), which is consistent with the mean-standard deviation and with
the CARA formulations.

4.3.2 Risk averse agents only

The results for risk averse agents presented in annex table 2 show signi¯cant e®ects of many
explanatory variables. The explanatory power (pseudo-R2) has increased up to 11:87% and most
explanatory variables have a signi¯cant e®ect on risk aversion.

Risk aversion is very signi¯cantly larger when the purpose of the trip is a business appoint-
ment and for public transportation users. Intermediary professions, employees and especially
blue collars have a larger risk aversion than other workers or non workers. Women are slightly
more risk averse than men, but the di®erence is not really signi¯cant. Older individuals (more
than 60 years old) are far less risk averse. Risk aversion is a U-shaped function of income, but
the e®ets is not very signi¯cant.

In the case of the probit model, we take advantage of the fact that the derivative of the density
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function Á is simply the product of the identity and Á itself (Á0 (x) = ¡xÁ (x)) to calculate the
conditional expectation of º in any given interval. The conditional density of º knowing that

º¤j¡1 < º < º¤j is Á(º)

©(º¤j)¡©(º¤j¡1)
on the interval

h
º¤j¡1;º

¤
j

i
. So the conditional expectation of º

on this interval is

E
¡
ºjº 2 £

º¤j¡1; º
¤
j

¤¢
=

º¤j
s

º¤j¡1

º
Á (º)

©
³
º¤j

´
¡ ©

³
º¤j¡1

´dº =
Á

³
º¤j

´
¡Á

³
º¤j¡1

´

©
³
º¤j

´
¡©

³
º¤j¡1

´ :

The formula holds both on closed intervals and on open intervals with limits ¡1 and +1.

5 Concluding comments

This paper present a new methodology to measure risk for a population of travellers. We concen-
trate our analysis on route choice and there is no reason to believe that the quantitative results

could be extended to other decisions under uncertainty. Our main focus was to analyses which
factors in°uence the user's attitude towards risk. We collected our data via a telephone inter-
view administered to a large sample of private and public transportation users. We introduce
an index which measures the preference towards risk, either from an ordinal or from a cardinal
point of view. The ordinal approach does not rely on expected utility theory. Indeed, one could
argue that the ordinal neither rely of expected utility theory since it is based on discrete choice
theory which does not satisfy, for example, the axiom of transitivity: if an individual prefers
lottery L2 to lottery L1, and lottery L3 to lottery L2 it is not true that he prefers lottery L3 to
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Figure 9: Conditional expectations for mean-standard deviation (Risk averse individuals)

lottery L1. This is because, for each decision stage, some unobservable factors do in°uence the
decisions processes (see Anderson; de Palma, and Thisse, 1992). This suggests that there is no
need to reject expected utility theory, for the deterministic component of the model (without
non-obversable error term variables), since the econometric model that we have developed can
possibly explain example of choice behavior with seem to contradict expected utility theory.

We have headlight the impact of key socio-economics factors (gender, education, employment
status, purpose of the trip) which explain the level of risk aversion. However, the statistical
signi¯cance remains rather low (low adjusted R2 of about 12%) and more data are needed (a
few thousands are still not enough) to get better results and in particular to construct panel
data. Embedded in a discrete choice model (ordered probit), the expected utility is not strongly
rejected. However, we did not estimate the perceived probabilities, in order to check is the
individual under (or over) estimates the probabilities of occurrence of additional travel time (for

example). This would justify deviation from expected utility theory. Several questions raised
in this paper remain open and much more work has to be performed in the theoretical and
empirical study of risk aversion.

Finally, we believe that our methodology can potentially be applied for the analysis of risk
aversion in other contexts: see, Ben-Akiva, de Palma, and Bolduc (2002) for the investment
context, Goeree, Holt, and Palfrey (2002) for the game theory context and Holt and Susan
(2002) for the use of experimental economics in the study of risk aversion. We expect that the
web site that we are developing to collect data will be able to bridge this lacuna.
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Table A1 : Regression results (whole sample)

Ordered probit estimates   
Number of obs : 2385
Log likelihood   : -4960.4775
LR chi2(14)      : 225.78
Prob> chi2       : <10-5

Pseudo R2       : 0.0223

Variable Coef. Std. Err. z-stat P>|z|

Travel time 0.0730831 0.0095221 7.68 0
Travel time ² -0.0008866 0.0001523 -5.82 0
Travel time 3 3.24E-06 0.000000728 4.45 0

Purpose of the trip
Business appointment 0.2365417 0.1207646 1.96 0.05
Other reason Reference category

Age
Age>60 0.0007697 0.0928495 0.01 0.993
Younger Reference category

Profession
Intermediary professions 0.1005022 0.055519 1.81 0.07
Employees 0.0838141 0.0570618 1.47 0.142
Blue collar 0.0179638 0.0952012 0.19 0.85
Other profession, non worker Reference category

Gender
Woman -0.0104343 0.0441392 -0.24 0.813
Man Reference category

Transportation mode
Public transportation 0.2063947 0.0452522 4.56 0
Private transportation Reference category

Household income
Income <1000€/month -0.1318078 0.1072436 -1.23 0.219
1000-1500€/month -0.3675041 0.0797591 -4.61 0
1500-2000€/month -0.0850272 0.0658713 -1.29 0.197
2000-2500€/month -0.055934 0.053451 -1.05 0.295
Income >2500€/month and missing Reference category

Threshold values
threshold1 0.5218828 0.1896114
threshold2 0.7835648 0.1885422
threshold3 0.9874257 0.1880498
threshold4 1.23507 0.1878847
threshold5 1.420189 0.1882091
threshold6 1.783224 0.1895806
threshold7 2.213197 0.1916457
threshold8 2.774855 0.1945354

Figure 10:
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Table A2 : Regression results (risk averse and risk neutral)

Ordered probit estimates   
Number of obs : 1600
Log likelihood   : -2211.2167
LR chi2(14)      : 595.72
Prob> chi2       : <10 -5

Pseudo R2       : 0.1187

Variable Coef. Std. Err. z-stat P>|z|

Travel time 0.2102987 0.0154637 13.6 0
Travel time ² -0.0027497 0.0002568 -10.71 0
Travel time 3 0.0000114 1.30E-06 8.72 0

Purpose of the trip
Business appointment 0.3860796 0.1483898 2.6 0.009
Other reason Reference category

Age
Age>60 -0.3522765 0.1256943 -2.8 0.005
Younger Reference category

Profession
Intermediary professions 0.1734804 0.0694839 2.5 0.013
Employees 0.2115525 0.0722139 2.93 0.003
Blue collar 0.3368098 0.1251842 2.69 0.007
Other profession, non worker Reference category

Gender
Woman 0.1030768 0.0559359 1.84 0.065
Man Reference category

Transportation mode
Public transportation 0.158499 0.0565664 2.8 0.005
Private transportation Reference category

Household income
Income <1000€/month 0.04663 0.1362516 0.34 0.732
1000-1500€/month -0.1864096 0.1086728 -1.72 0.086
1500-2000€/month -0.0940956 0.0833161 -1.13 0.259
2000-2500€/month 0.0006692 0.0674461 0.01 0.992
Income >2500€/month and missing Reference category

Threshold values
threshold1 3.383028 0.2899622
threshold2 4.35633 0.2953728
threshold3 5.088665 0.2999036
threshold4 5.858514 0.3040333

Figure 11:
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