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Abstract 

This paper describes the development of an operational prototype for a comprehensive 
microsimulation model of urban systems. It examines several important design advances that 
emerged during the transition from a conceptual framework to operational code.  

ILUTE (Integrated Land Use, Transportation, Environment) simulates the evolution of an 
integrated urban system over an extended period of time.  This model is intended to replace 
conventional models for the analysis of a broad range of transportation, housing and other urban 
policies.  

An overview of the ILUTE framework was presented at the 9th IATBR conference (Miller and 
Salvini, 2001). Since then, considerable progress has been made on the overall model and its 
component submodels. At present, an operational prototype is being tested using data from the 
Greater Toronto Area. Disaggregate information for the model is synthesized from census data, 
travel survey data, activity data, and randomly generated proxy data. 

ILUTE is based on the "ideal model" described in the final report of the Transit Cooperative 
Research Program's (TCRP) Project H-12, “Integrated Urban Models for Simulation of Transit 
and Land-Use Policies” (Miller, Kriger, and Hunt, 1998).  
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1. Introduction to ILUTE 

ILUTE simulates the activities of individual objects (agents) as they evolve over time. These 

objects include persons (with households and families), transportation networks (road and 

transit networks with support for bicycle and walking modes), the built environment (houses 

and commercial buildings), firms, the economy (interest rates and inflation), and the job 

market. The simulator evolves the state of the urban system from a specified base month to a 

specified target month. At any time, the simulation can be branched to test various policy 

alternatives. Figure 1 provides a structural overview of the ILUTE model as outlined in 

Miller, Kriger, and Hunt (1998).  

 

Figure 1 Structural Overview of the ILUTE model 
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Source: Miller, Kriger, Hunt (1998) 
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The shaded “behavioural core” of the model has four inter-related components: land use, 

location choice, auto ownership, and activity / travel. ILUTE enables researchers to capture 

the complex interactions that occur within an urban system. The transportation system, for 

example, is one of many interconnected factors affecting the quality of "life" within the 

simulated system. 

As an integrated full-feedback model, ILUTE allows higher-level decisions (e.g. residential 

mobility) to influence lower-level decisions (e.g. daily travel behaviour) and vice versa. A 

variety of modelling methods are employed within ILUTE to capture object behaviours: state 

transition models, random utility models, rule-based (computational) models, learning 

models, exploration models, and newly developed hybrids of these approaches.   

ILUTE supports several output options: the system state can be exported as a set of binary 

files (for efficient storage and retrieval) or as relational database tables (for easy import into 

other packages). The resulting spatiotemporal data can be exported for visualization using the 

Houdini 3D animation tools from Side Effects Software. 

1.1 Current Status of the ILUTE Operational Prototy pe 

The ILUTE prototype consists of approximately 15,000 lines (over 200 pages) of C++ source 

code in approximately 50 classes. The code supports the following capabilities: 

• synthesize a test set of households, persons, jobs, dwelling units, and buildings 

• import spatial data (census tracts, Transportation Tomorrow Survey (TTS) 
planning districts, TTS traffic zones), transit and road networks, EMME/2 travel 
time data (by mode and time of day), and text-based economic data (interest rates 
and consumer price indices) 

• evolve the state of the system to an arbitrary date using an arbitrary time step by 
simulating the activities and behaviours of individual objects (e.g. persons and 
households) 

• track (display) the activities and behaviours of individual objects in the system as 
they evolve  

• simulate population in-migration and out-migration  

• export spatiotemporal data for visualization in 3D (static or animated) 

• read and write state information to a relational database 
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1.2 Advances of the ILUTE Operational Prototype 

The ILUTE operational prototype presents several advances to the state-of-the-art: 

1. ILUTE is designed as an open test bed that can accommodate the work of dozens of 

researchers. Given the complexity of urban systems, this approach is essential to building a 

credible next-generation model. Through the use of individually accessible submodels, 

researchers are able to work independently, yet contribute to a common goal.  

2. ILUTE possesses an object-oriented design and a class structure that accommodates the 

demands of the "ideal model". The design contains a rich set of real-world objects with 

appropriate semantics (attributes and operations) and relationships (generalization, 

composition, aggregation, etc.).   

3. ILUTE explicitly represents households, persons, and families. The relationships 

between these entities are created during synthesis and maintained during evolution.  

4. Support for multiple spatial aggregations allows rich submodels to be developed. A 

clear example of the benefit of multiple spatial representations is developed in the residential 

search process where the housing market submodel is able to use two levels of spatial 

aggregation: the first to narrow down the district, and the second to narrow down the 

neighbourhood.  

5. ILUTE’s ability to handle joint decisions through ad-hoc decision making units 

provides an important extension to the benefits of explicitly representing persons, households, 

and families. While many decisions are made at the person and household level, other 

decisions are made jointly by persons who do not share the same household (or who represent 

only a portion of a household).  

6. The ability to handle temporal leads and lags enables ILUTE to better represent real-

world decisions. While it was initially thought that leads and lags could be handled at 

subsequent (or previous) time periods, doing so results in decisions being made outside of 

their correct economic context.  

7. The stressor mechanism is an innovative and conceptually appealing approach to 

handling triggered events, joint decisions, accumulated stress, and person-household 

interaction. The behavioural capabilities of this mechanism enrich the behavioural credibility 

of ILUTE. Authors of future submodels can use the stressor mechanism as an elegant way to 

simplify the handling of complex and nested decision-making processes. 
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8. ILUTE's time stamping mechanism allows a variable time step to be used throughout 

the model. This flexibility improves computational efficiency and model accuracy over fixed-

time approaches. The support of a variable time increment allows both long-run and short-run 

processes (and everything in between) to be handled at their optimal temporal frequency.  

9. The ILUTE prototype implements a flexible and extensible mechanism for loading 

external temporal data. The temporal data manager in the ILUTE prototype avoids many 

common data handling errors by providing a common interface for loading and storing raw 

data samples and interpolating at run time.  

10. ILUTE’s monetary value handling method of storing a date-value pair offers significant 

conceptual and practical advantages over traditional approaches. The auto transactions 

submodel currently implemented within the ILUTE prototype, for example, makes use of the 

monetary conversion mechanism to generate income information specific to a calibrated year.  

11. A representative "stub" model of the housing market highlights several of ILUTE's 

architectural strengths. The multi-stage process of activity, search, and bid is implemented in 

the submodel and the process is triggered either as a random event or as the result of 

accumulated household stress exceeding a prescribed threshold.  

2. Design of the ILUTE Operational Prototype 

Early in the development of ILUTE, it was clear that the object-oriented approach to software 

development would have a profound impact on the conceptual appeal of the overall model. 

The one-to-one mapping between objects in the “real world” and those in the microsimulation 

model enables researchers to describe behaviours in the language of the problem domain.  

2.1 Representation of Persons, Households, and Fami lies 

One of the key features of the ILUTE operational prototype is the explicit representation of 

persons, households, and families. While this requirement adds considerable complexity to 

the model, it is essential to adequately reflect the context in which real-world decisions occur. 

The inclusion of the family relationship within ILUTE enables a number of insightful 

decisions to be made in location choice and activity scheduling. Family relationships captured 

within the ILUTE operational prototype include mother, father, spouse, ex-spouses, children, 

and siblings.   
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2.2 Behaviour and Decision-Making 

In ILUTE, behaviour is implemented by objects called decision-making units. ILUTE’s 

explicit representation of compound groups like households and families means that decisions 

can be made directly by these objects. In other cases, several objects will collaborate to form 

ad-hoc decision-making units (for example, the drivers in a household may collaborate to 

make a decision about a vehicle purchase). The assignment or attribution of behaviours to 

collective decision-making units is a fundamental design feature of the ILUTE model. This 

feature delivers several practical benefits, including the ability to trace decisions on a per-

entity basis and the ability to support multiple temporal decision scales. Some decision-

making units are abstractions of real-world entities. A firm, for example, is an object within 

ILUTE that makes decisions. While in the real-world, it is persons in the firm that are actually 

making these decisions, the use of such objects as surrogate decision-makers is a useful and 

understandable abstraction of the real-world process. 

2.3 State Representation 

An object's knowledge about itself and its environment is stored within each object in 

attributes that form the object's state. Any past memory or knowledge required by the objects 

in the model are carried forward to the present time. One of the challenges in developing a 

large-scale microsimulation model is handling the fact that each person has a unique 

representation of reality. For example, we each have a mental map of the city in which we 

live. Someone who lives in Toronto might have a good idea of the road network in Toronto 

but would probably have a poor representation of the road network in Lucerne. While it is 

convenient to think of all persons as sharing a single perfect map of the city, we know that 

this perfect representation is far from accurate. In order to simulate the absence of perfect 

information, the true system state is stored once and individual accesses to that state are 

artificially adjusted during the search process to yield imperfect results.  

2.4 Spatiotemporal Data 

The evolution of an urban area involves activities that take place in space and time. As both 

space and time are continuous variables in the real world, some form of discretization is 

necessary in order to store these values in a simulation.  

In discretizing time, it was deemed advantageous to accommodate multiple temporal 

resolutions. The design involves storing a timestamp along with every object and update 
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process in the system. This timestamp allows objects to be updated and processes to be 

executed on a flexible schedule. The creation of a separate timestamp class enables the basic 

temporal resolution of the simulation to be easily modified. The flexibility of variable time 

increments is unique to ILUTE and serves to significantly improve computational efficiency 

and model accuracy over fixed-time approaches. The fixed one-year time step suggested in 

the description of the ideal model was a compromise between a one-month and a multi-year 

time step. For some events, such as simulating the housing market, one year is probably too 

infrequent. For other events, such as simulating transportation infrastructure changes, one 

year is probably too frequent. The support of a variable time increment allows all processes 

and objects to be updated at their optimal temporal frequency.  

To handle the representation of space, the ILUTE operational prototype also accommodates 

multiple spatial resolutions. Census tracts, planning districts, travel zones, and grid squares 

are all handled simultaneously in the ILUTE prototype. The flexibility to handle multiple 

spatial aggregations (with any underlying spatial representation) is a key feature of the model.  

3. Architecture: Class Structure 

The list of classes in Table 1 provides some insight into the current architecture of ILUTE: 

 

Table 1  Application Class Diagram - Operations 

ActivityGenerator  Application  AutoTransactionModel  
Bid  Building  CDBHousehold  
CDBPerson  CDBPersonChildList  CDBPersonExSpseList  
CDBPersonSiblingList  CDBPropertyOwner CRecordset  
DatabaseAdministrator  DwellingUnit  Establishment 
Firm Household  HousingMarket  
Job  Link  Location  
MarriageMarketPool  MarriageMktModerator  Matrix  
MonetaryValue  Neighbourhood  Node  
Person  Polygon2D  PropertyOwner  
RoadLink  RoadNode  Schedule  
SHP_Polygon  SimulatedObject  SimulationDate  
SpatialObject  StressManager  Stressor  
StressorFinancial  StressorTravelTime  TemporalDataManager  
TransitLink  TransitNode  TransportationNetwork  
TravelTimes  TTSPlanningDistrict  Vehicle  
Vertex2D World   

 



10th International Conference on Travel Behaviour Research 

______________________________________________________________________________ August 10-15, 2003 

7 

3.1 The Application Class 

At the highest level, ILUTE consists of an Application class that serves as the master 

controller for the simulation. The Application class manages a simulated world and controls 

all user interaction. The Application class has been separated from the World class in order 

to allow the application to load multiple worlds. In this way, the design is much like the 

Application/Document/View architecture found in the Microsoft Foundation Classes (a 

variant of Smalltalk’s Model/View/Controller architecture).  

The Application class, shown in Figure 2, aggregates the SimulationDate and 

DatabaseAdministrator classes.  

 

Figure 2 Application Class Diagram - Operations 

Application

menu() : void
Application()
<<virtual>> ~Application()
executeOnce() : void
executeAll() : void

SimulationDate

-myBaseDate

DatabaseAdministrator

-myDatabaseAdministrator

 

 

The Application class is responsible for creating the singleton1 World and 

DatabaseAdministrator objects. It is also responsible for maintaining the simulation base 

date and conducting all user interaction. 

                                                

1 A singleton is a class that has only one instance. 
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3.2 The World Class 

The World, the central class in ILUTE, manages all of the simulated objects in the system. 

The World class, shown in Figure 3, has a simulation date and contains a number of 

operations related to processing various events and decisions. 

 

Figure 3 World Class Diagram – Attributes 

TemporalDataManager

MarriageMarketModerator

map<int, int>

TransportationNetwork

list<int> HousingMark et-myActiveHouseholdIdList

World

myMinX : int
myMinY : int

-myCPIManager
-myInterestRateManager

-myMarriageMarketModerator

-myTTSZoneToPDMap

-myTransportationNetwork

-myEventDeathList

-myHousingMarket

SimulatedObject

SimulationDate-myDate

+myDateLastUpdated

 

3.3 The Household and Person Classes 

The Household class is responsible for managing the behaviour of a simulated household. 

The Person class is responsible for managing the behaviour of a simulated person.  Figure 4 

shows the attributes of the Household and Person classes and their relationship to several 

other associated classes. 

Early in the development of the model, it was deemed necessary for the model to work either 

with in-memory data structures or with an external relational database. The class design in the 

ILUTE prototype is flexible enough to support either approach. Identifiers, called ids in the 
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model, are used to provide a key by which an object can be found either in an in-memory map 

or in a relational database. This requirement, while adding complexity to the model, offers 

considerable flexibility to the designer of future submodels. In the current implementation, all 

data values are stored in memory and the database is only used for making data persistent (for 

sharing, branching, or analyzing). 

 

Figure 4 Household and Person Class Diagram – Attributes 

SimulatedObject

ESex
<<enum>>

EMaritalStatus
<<enum>>

EPrimaryWorkMode
<<enum>>

Job
EEducationLevel

<<enum>>

MonetaryValue

Person

myAge : int
myHouseholdId : int
myPersonId : int
myDriversLicenceFlag : bool
myPrimaryWorkModeTravelTime : float
myMarriageMarketActivityFlag : bool
myMotherId : int
myFatherId : int
mySpouseId : int

-mySex -myMaritalStatus

-myPrimaryWorkMode

-myJob
-myEducationLevel

-mySavings

-myEquity
-myMortgage

list<int>

-myExSpouseIdList

-myChildIdList

-mySiblingIdList

EHouseholdType
<<enum>>

Household

myActiveInHousingMarketFlag : bool
myDwellingUnitId : int
myHouseholdId : int

-myPersonIdList

-myVehicleIdList

-myHouseholdType

StressManager

-myStressManager

4. Architecture: Processes 

The decision processes in ILUTE provide a flexible and extensible mechanism for handling 

complex real-world decision processes. This section examines temporal leads and lags, 

decision-making, and the stressor mechanism.   
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4.1 Temporal Leads and Lags – Market Disequilibria 

During the development of the operational prototype, it became clear that the model needed to 

support a variety of leads and lags within the system. Moreover, the model needed to avoid 

the equilibrium assumption/concession made in many other models in order to accurately 

represent real-world conditions. There are many examples of where leads and lags occur in 

the system. For example, a house may be on the market for many months before it sells. At 

any given time, there are a number of houses remaining on the market. As a result, the market 

is never cleared. Similarly, it takes several years to build an apartment-style condominium 

building once the decision to develop is made.  

Lags and leads in the prototype are handled through time-proxied decision processes that 

represent future events. The attributes derived from these future intentions are stored in the 

object's current state and are automatically made persistent when the object's state is stored. A 

good example of leads and lags occurs in the housing market submodel where the purchase of 

an unbuilt condo might precede the move-in date by several years. During any time interval, 

the purchaser may wish to forfeit the deposit and withdraw from the deal. Similarly, the 

developer may choose to move the closing date back (with possible associated penalties).  

As an extension to the mechanism for handling leads and lags, the ILUTE prototype also 

handles anticipatory behaviour where decisions are made in anticipation of a future change in 

the state of the system. For example, a family might decide to move to a larger dwelling unit 

in anticipation of having a baby within the next two years. While it is not possible for an agent 

to examine the actual future state (doing so would create an infinite recursion), it is possible 

for an agent to anticipate a future state based on the current system state. For example, a 

person might have a process to anticipate future interest rates. While this anticipation might 

affect a number of important decisions, it is purely speculation (even when well-informed) on 

behalf of the person involved. 

While it was initially thought that such anticipatory decisions could just as easily be "picked 

up" after the fact (i.e. once the baby arrives, they decide that the house is too small and look 

for a larger house), such an approach results in decisions being made outside of the actual 

economic context in which they would have occurred. In the case of the move to a larger 

home, the decision might have been made during a time when interest rates and house prices 

were low. If those conditions are not the same after the baby arrives, the resulting decision 

might be very different.  
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4.2 Accumulators  

An accumulator allows a value to grow slowly over time until a given threshold is reached 

and an event is triggered. The accumulator concept is important in any case where a trigger is 

not occurring in response to a single change in state, but rather as the cumulative effect of a 

number of state changes. Writers of individual ILUTE submodels are free to choose whether 

an accumulator is necessary in capturing such decisions. An example of an accumulator is a 

bank account (holding of cash assets) where wealth can accumulate in the account over a long 

period of time. An example of a non-accumulated item is income, which has a particular value 

at any point in the simulation. The use of the accumulator enables a current measure of a 

variable that has changed over time. The stressor mechanism presented in the following 

section provides a good example of the accumulator concept in action. 

4.3 Stressors and the Stress Manager 

The stressor2 and stress manager components of ILUTE provide a rich and extensible 

mechanism for handling triggered events, joint decisions, accumulated stress, and person-

household interactions.  

The StressManager class, shown in Figure 5, is responsible for handling all stress-related 

processing. While any object can be associated with a stress manager, the present 

implementation only assigns stress managers to households. When a household is updated, its 

stress manager is also updated. The update mechanism is responsible for updating all stressors 

corresponding to that household.  

The StressManager class manages a vector of Stressor objects. Each specific stressor is a 

subclass of the generalized Stressor base class. A sample of the Stressor class hierarchy is 

shown in Figure 6. The ILUTE prototype implements two stressors within its hierarchy: travel 

time and financial. The implementation of the travel time stressor is relatively complete 

whereas the financial stressor serves only to demonstrate polymorphism within the design of 

the architecture. The Stressor class is an abstract base class3 for specific stressors. All 

stressors have the same interface, as defined in the Stressor class.   

 

                                                

2 A stressor is something that causes (or can cause) stress.  

3 An abstract class is a class that is never instantiated. It serves to define a common interface for its subclasses. 
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Figure 5 Stress Manager Class Diagram 

vector<Stressor*>

Household

StressManager

<<const>> getAverageStressLevel()
updateStresses()
resolveStresses()
<<const>> display()
StressManager()
<<virtual>> ~StressManager()

-myStressorVector

-myStressManager

 

 

 

Figure 6 Stressor Class Diagram 

Stressor

myStressLevel  :  float

setSt ressLevel ()
<<const>> getStressLevel()
<<abstract>> resolveStress()
<<abstract>> updateStress()
<<abstract, const>> display()
Stressor()
<<virtual>> ~Stressor()

StressorFinancial

<<virtual, const>> display()
updateStress()
StressorFinancial()
<<virtual>> ~StressorFinancial()
<<virtual>> resolveStress()

StressorTravelTime

<<virtual,  const>> display()
updateStress()
St ressorTravelTime()
<<virtual>> ~StressorTravelTime()
<<virtual>> resolveStress()
processMoveDecision()
<<const>> getMovingUt ility()
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In the current prototype, stress levels4 are stored as normalized floating-point values between 

0 and 1. Stress levels below 0.25 are considered minor; those between 0.25 and 0.75 are 

considered moderate; and those above 0.75 are considered severe. The stress update 

mechanism, invoked on all stressors by the StressManager, allows the stressors to be 

updated at any time. As stressors are persistent, the stress level can increase or decrease as the 

stress accumulates or disperses.  

Once a stress is severe, indicated by a stress level above 0.75, a resolution is sought. The 

automatic triggering of a stressor-specific resolution mechanism could easily be adapted to 

incorporate a Monte Carlo technique where the likelihood of dealing with a stressor is greater 

(but not absolute) when it is severe. This approach would seem to better mirror the reality of 

life where some individuals put up with inordinate amounts of stress (at least for short periods 

of time).  

The stressor-specific resolution mechanism allows each stressor to have its own resolution 

mechanism. The resolution strategy for travel time, for example, might be to investigate the 

best option of moving jobs, moving residences, adding a vehicle, or moving and changing 

jobs. The stress-resolution mechanism can be as simple or as complicated as desired. For 

example, it would be possible to incorporate risk in each alternative and the stress resolution 

mechanism could consider the decision-maker's attitude toward risk in evaluating the 

alternatives. 

4.4 Microsimulating Market Interactions 

Within ILUTE, a number of processes can be abstracted as market interactions: the purchase 

of a home or automobile, the selection of a spouse, the decision to select a job, etc. The 

common theme in all such interactions is the idea that a consumer and a supplier transact 

within a market. Early attempts to model such interactions involved the simple pooling of 

suppliers on one side, consumers on the other, and an exchange process that matched 

consumers with suppliers based on some form of utility maximization. While the initial 

approach had some conceptual appeal, it tended to over-optimize the matching process.  

                                                

4 The terms stress level and stressor are used to avoid the ambiguities in the common use of the term stress. In 

ILUTE, a stressor is something that causes stress and the stress level is a measure of the amount of stress. It 

may be convenient to think of stress as a disutility. 
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In the real world, not all consumers and suppliers interact in the same market. For example, it 

is very unlikely that a home purchaser would examine every house on the market before 

making a decision. Not only would it be prohibitively time consuming, it would also be 

virtually impossible because the housing supply is highly dynamic. On any given day, there is 

a sliding window of opportunity. Similarly, few persons get the opportunity to date all 

potential partners before making a decision on marriage.  

4.5 Activity Scheduling 

ILUTE is an activity-based model and one of its key components is the scheduling of 

activities by persons in the system. Persons engage in activities for a variety of reasons – 

some personal and some in order to meet household obligations. The activity scheduler in 

ILUTE's operational prototype is based on a design by Miller and Roorda (2003). Several 

considerations were observed in the development of this model: 

1. Activity scheduling involves sharing of responsibilities and resources – a problem that 

requires the concepts of communication and collaboration among simulated agents. 

Competing for scarce resources (such as a single car in a multi-driver household) can 

also lead to complicated resource use patterns.  

2. Many activities require multiple participants. Coordinating the arrival of multiple 

participants adds considerable complexity to the scheduling dilemma. Moving 

activities involving multiple participants is much harder than moving individual 

activities. Some trips, often called serve dependent trips, are made to service other 

persons.  

3. While it is convenient to think of activities as isolated events, real-world activities are 

often connected as projects. Axhausen (1998) defines a project as a coordinated set of 

activities tied together by a common goal or outcome.  For example, renovating a 

basement is a project that involves multiple trip-generating activities.  

4. Many aspects of activity scheduling are fuzzy. A shopping trip is flexible in terms of 

its timing – work is generally less flexible. To catch the last train of the day, however, 

it is necessary to be on time. Because of the difficulty of predicting travel time to the 

train station, the person is likely to leave some contingency time and arrive early. 

While handling such fuzziness is natural to a human, it requires special techniques in 

the case of a computer model.  
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5. The generation of activities is not a task that can be completed “a priori” to scheduling 

as real-life schedules change (often resulting in sub-optimal schedules). The bumping 

of lower priority events for higher priority ones adds another dimension of complexity. 

In addition to bumping and possibly rescheduling activities, some activities can be 

shortened, lengthened, or interrupted. The cost of each rescheduling option, however, 

can vary considerably with the activity.  

6. The utility derived from some tasks is connected to the time that has elapsed since the 

task was last executed. Much like decreased marginal utility of goods to a consumer, 

certain activities become more important than others as elapsed time increases. For 

example, the utility derived from eating, sleeping, or grocery shopping is clearly 

linked to the elapsed time since the activity was last completed. When some activities 

are postponed, they rise in priority (utility) until they become critical.  

7. The activity scheduling system must handle a wide range of modes including auto 

driver, auto passenger, commuter rail, transit, express transit, taxi, walk, and bike. 

Sometimes, mode choice is determined by the schedule and other times the schedule is 

determined by the mode choice. Regardless of the direction of the effect, the choice of 

possible modes makes it difficult to create provisional schedules (especially in the 

case of a shared vehicle resource).  

8. In order to assess the sensitivity of certain policy variables, it is important to support 

ride-sharing modes. Examples include car and van pooling, as well as auto passenger 

commutes where a passenger is dropped off “on the way” to work. An even more 

difficult case to handle is the emergence of “slugging” in Washington D.C. and other 

congested urban areas. Riders (slugs) wait in “slug lines” at an express bus stop (with 

a slug sign) and are picked up by a driver going in the same general direction. This 

semi-formal mode of ride sharing has yet to be modelled.  

9. Some activities are more likely to require a vehicle than others. Shopping, for 

example, is often a task that is conducted with a personal auto. Shopping by other 

modes is likely to affect the frequency and outcome of the shopping trip. A trip to the 

grocery store by taxi, for example, might cause one to buy more groceries but shop 

less frequently. Similarly, shopping trip by public transportation, walking or biking 

might result in more frequent trips with smaller purchases on each outing.  

10. Some activities have a "natural frequency". For most regular workers, working is a 

daily weekday requirement whereas grocery shopping is perhaps a weekly event. 
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5. Architecture: Data 

5.1 Data Synthesis 

The data synthesis procedure in the ILUTE prototype is quite extensive, but is not designed to 

provide a census-calibrated population. Rather, the intent of the prototype procedure is to 

generate a comprehensive population of a prescribed size for the purpose of testing the 

prototype. As a parallel research effort for ILUTE, several other researchers are developing a 

formal prototype synthesis procedure for generating a representative population from census 

data.  

There are a significant number of interconnections within the system that must be maintained 

during synthesis. The synthesis procedure is an optional user-initiated procedure as the model 

can also be run on existing data. When the user chooses the synthesize data option, the World 

is asked to synthesize a given number of households. The number of families, persons, 

dwelling units, jobs, vehicles, and buildings synthesized is a function of this initial number.  

The data synthesis procedure in the prototype consists of four sequential phases: the synthesis 

of households and persons, the synthesis of buildings and dwelling units, the assignment of 

households to dwelling units, and the assignment of the primary work mode.  

5.2 External Temporal Data 

The TemporalDataManager class, shown in Figure 7, imports and manages time-varying data 

tables stored in delimited text files. Historical consumer price index data and historical cost of 

borrowing data are stored in two such files. A number of submodels and processes use 

external temporal data either directly (e.g. residential mobility submodel) or indirectly (e.g. 

auto transaction submodel). As it was anticipated that some sources of data would be required 

in multiple submodels, a formal mechanism for handling external temporal data was 

developed. 

The temporal data manager in the ILUTE prototype is both efficient and flexible. Efficiency is 

achieved by storing only the original data values found in the external data files. Flexibility is 

achieved by providing a number of functions for retrieving and interpolating the data from the 

in-memory data store. The separation of interface and implementation allows different 

submodels to interact with the same data in different ways. The temporal data values are 



10th International Conference on Travel Behaviour Research 

______________________________________________________________________________ August 10-15, 2003 

17 

stored in a C++ Standard Library map data structure. This structure enables the efficient look-

up of a value corresponding to a given key. 

 

Figure 7 Temporal Data Manager Class Diagram 

EDataFrequency

Annual
Monthly
Undefined

<<enum>>

map<int,float>World

TemporalDataManager

<<const>> displayAll() : void
<<const>> getValueUsingLinearInterpolation(month : int) : float
<<const>> getValueUsingHoldLastKey(month : int) : float
<<const>> getValueUsingNearestKey(month : int) : float
<<const>> display() : void
loadTemporalData(ifilename : string) : void
TemporalDataManager()
<<virtual>> ~TemporalDataManager()

-myDataFrequency

-myTemporalDataMap

-myCPIManager

-myInterestRateManager

 

 

In urban systems models, external data files often contain a combination of historical and 

forecast data5. Forecast data are generally not available with the same frequency as historical 

data. As a result, there are often gaps in the available data. For example, historical consumer 

price index data might be readily available on a monthly basis but forecast data might only be 

available on an annual basis. One of the jobs of the temporal data manager is to fill these gaps 

using one of several interpolation techniques. 

5.3 Monetary Values 

The changing value of money over time presents an interesting challenge for the model. In a 

long-run simulation (e.g. 30 years), changes in the value of money can significantly distort the 

outcome of the model if not handled carefully.  

                                                

5 It does not matter if these historical and forecast data are stored in one file or two files.  
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In the ILUTE operational prototype, all monetary amounts are stored as a pair of numbers 

consisting of a date-value pair. For example, the pair ($75.00, 1985) would correspond to 75 

dollars in 1985, which might have the same spending power as the pair ($100.00, 1992). The 

monetary value structure automatically encapsulates both data members. When a monetary 

amount is used, it can be converted to current-day dollars as required.  Comparison and 

subtraction operators can automatically convert monetary values to common units before 

performing calculations. This approach blends the benefits of the above two approaches as it 

does not require regular updating and dollar amounts can be kept in the unit that is most 

reasonable. Figure 8 provides an overview of the MonetaryValue class and its conversion 

operations. 

The auto transaction model in the operational prototype exemplifies the use of the monetary 

value classes as it assumes that all dollar amounts are in 1998 Canadian dollars. The 

coefficients of the auto transaction equations would need to be changed if non-1998 dollars 

were used.  

 

Figure 8 Monetary Value Class Diagram 

SimulationDate

PersonJob

-myJob

-myStartDate

MonetaryValue

myValue : float

<<const>> asFloatForDate()
<<const>> display()
<<const>> convertToDate()
MonetaryValue()
MonetaryValue()
<<virtual>> ~MonetaryValue()
MonetaryValue::operator+=()

-myDate

-mySavings

-myEquity

-myMortgage

-mySalary
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5.4 The Database Administrator Class 

The DatabaseAdministrator class, shown in Figure 9, is responsible for the persistent 

storage and retrieval of simulation data. The database administrator interface allows the 

ILUTE prototype to create and drop database tables, load the system state, and save the 

system state. A table suffix is used to specify the month for which the data are valid. The 

database administrator communicates with a CDatabase object from the ODBC Database 

Support library to carry out low-level database session commands. The 

DatabaseAdministrator is a singleton class with the only instance being managed by the 

Application class.  

 

Figure 9 DatabaseAdministrator Class Diagram 

CDatabase

<<virtual>> ~CDatabase()
<<virtual>> Open()
<<virtual>> OpenEx()
<<virtual>> Close()
<<virtual>> OnSetOptions()
<<virtual, const>> AssertValid()
<<virtual, const>> Dump()
<<virtual, const>> Check()
<<virtual>> BindParameters()
<<virtual>> ThrowDBException()

(from ODBC Database Support)

Application

DatabaseAdministrator

closeDB()
openDB()
dropTables()
saveWorld()
<<const>> loadWorld()
createTables()
<<const>> showError()
dropAllTables()
performDropTables()
DatabaseAdministrator()
<<virtual>> ~DatabaseAdministrator()

-myDB

-myDatabaseAdministrator

 

5.5 The Record Set Subclasses 

A number of subclasses of the CRecordset class are used to perform the actual transfer of 

state information to and from the database. These classes override the virtual interface shown 

in Figure 10. For simplicity, this diagram only shows the interface of the base class. The 

derived classes, one per ILUTE agent, implement the actual methods for data exchange 

between the in-memory representation and the on-disk representation. The use of parallel 

CRecordset subclasses makes it very easy to manage and extend the database classes. 
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Figure 10 The CRecordset Class Diagram 

CRecordset

<<virtual>> ~CRecordset()
<<virtual>> Open()
<<virtual>> Close()
<<virtual>> OnSetOptions()
<<virtual, const>> AssertValid()
<<virtual, const>> Dump()
<<virtual, const>> Check()
<<virtual>> ThrowDBException()
<<virtual>> Move()
<<virtual>> SetRowsetSize()
<<virtual>> CheckRowsetError()
<<virtual>> AddNew()
<<virtual>> Edit()
<<virtual>> Update()
<<virtual>> Delete()
<<virtual>> Requery()
<<virtual>> GetDefaultConnect()
<<virtual>> GetDefaultSQL()
<<virtual>> DoFieldExchange()
<<virtual>> DoBulkFieldExchange()
<<virtual>> SetRowsetCurrencyStatus()
<<virtual>> PreBindFields()
<<virtual>> GetLBFetchSize()
<<virtual>> GetLBReallocSize()

(f rom ODBC Da tabase S upport)

CObject

<<virtual>> ~CObject()
<<virtual>> Serialize()
<<virtual, const>> AssertValid()
<<virtual, const>> Dump()

(from CObject Classes)

CDBPersonSiblingList

CDBPersonExSpouseList

CDBPersonChildList

CDBPerson

CDBHousehold

 

6. Submodels 

As a formal test of the integrity and extensibility of the ILUTE prototype, three submodels of 

representative complexity were implemented: the Auto Transaction submodel, the (Resale) 

Housing Market submodel, and the Activity Generation submodel.  

6.1 Housing Market Submodel 

The Housing market submodel is responsible for processing all of the households that are 

active in the housing market. These households include both those looking to rent as well as 

those looking to purchase. ILUTE uses a three-step process for modelling residential mobility: 

1) a mobility decision, 2) a search process, and 3) a bid. Mobility decisions are generally 

triggered by a stress manager, but may also be triggered on a random basis. Once the decision 
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to enter the housing market has been made, it is the role of the housing market submodel to 

complete the search and bidding processes. It should be noted that the decision to become 

active in the housing market does not force a household to follow through with a purchase.  

In the ILUTE architecture, the World class manages the housing market (it contains the 

singleton myHousingMarket object, which is the sole instance of the HousingMarket class). 

The HousingMarket class maintains a list of households that are active in the housing market. 

The HousingMarket class also contains a number of processes that are responsible for 

managing the housing market. The list of dwelling units available for sale is stored inside the 

Neighbourhood class. 

6.2 Auto Transactions Submodel 

The theoretical (mathematical) portion of the auto transactions submodel was developed by 

Kouros Mohammadian (2002). The auto transactions submodel is a properly estimated 

empirical model that uses a nested logit equation with calibrated real-world parameters. The 

submodel uses attributes of the households, owners, drivers, their current vehicle bundle, and 

the attributes of each vehicle to determine if the household will maintain its existing auto 

ownership level, purchase a vehicle, dispose of a vehicle, or trade a vehicle.  

The auto transactions submodel was converted from its theoretical form to C++ code as a test 

case for submodel implementation. As a representative model, it is anticipated that many 

models can be implemented in the same fashion. As with all fully evolved submodels, the 

auto transactions submodel is very demanding in terms of its data requirements. Moreover, it 

is also representative of models that have been calibrated with data from a fixed year.  

6.3 Activity Submodel 

The activity generation submodel was added as a test case for household and person activity 

scheduling. Specifically, it was added to ensure that the widely varying temporal needs of the 

main model and the activity submodel could be properly accommodated. In the current 

ILUTE operational prototype, the Activity class is at the core of the activity generation 

submodel. Activities occur in space and time and have various scheduling dependencies. A 

variety of activity types were incorporated into the submodel including work, school, 

shopping, other, and free time. The integration of a more formal model for activity 

participation is a likely next step in the evolution of the ILUTE prototype.  
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6.4 Output and Visualization 

One of the most challenging problems in working with complex microsimulation systems is 

understanding what is happening in the system. Microsimulation models provide an 

incredibly powerful ability to follow the lives of individual entities as they move through the 

system. Understanding the cumulative effect of these individual lives, however, is a different 

matter entirely. While aggregate statistical measures are traditionally used to understand the 

changes that occur in a complex system over time, newer technology for visualizing these 

changes using computer animation are emerging.  

 

Figure 11 Sample Rendering of Night Travel Time to the CBD 
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ILUTE seizes the opportunity to explore this potential advance by outputting to a 3D 

animation software package called Houdini6. In the ILUTE prototype, an animated 3D surface 

is used to visualize the behaviour of the model with additional information conveyed by 

colour and overlaid features. Key frames are established at fixed times (e.g. one year 

intervals) and the software automatically generates intermediate frames to animate the 

changes from one time step to another. The amount of information that can be compressed 

into a single 3D animation is impressive. The model uses several techniques to maximize the 

amount of information delivered to the user. Figure 11 shows a static, false colour rendering 

of travel times (to the CBD) superimposed on a map of the GTA. In the animated version, the 

colours shift as the travel times change over time. The year also updates to show the current 

year represented by the animation. As early tests with changing legend scales proved less 

intuitive to the viewer, the current implementation uses a fixed legend scale. 

7. Future Work and Concluding Remarks 

While the prototype described in this paper has created a solid foundation for future ILUTE 

researchers, there is a vast amount of work that remains to be done. This section proposes a 

number of future research and development tasks that will help take ILUTE from an 

operational prototype to a fully functioning urban systems model: 

1. The TASHA activity scheduler (Miller and Roorda, 2003) should be integrated with 

the ILUTE prototype to replace the current activity generator.  

2. Census-calibrated population synthesis routines (Guan, 2001, 2002) should be 

integrated with the ILUTE prototype to supplement the current synthesis routines. It is 

recommended that the current routines be left in place as they enable the development 

of small test sets. Once integrated, the synthesis routines need to be expanded to 

generate object types other than persons and households (e.g. buildings, dwelling 

units, jobs, firms, establishments, etc.). 

3. The housing supply side, based on Haider (2003), needs to be implemented to ensure 

that housing supply keeps up with housing demand. In the current ILUTE prototype, 

housing becomes scarce as the population grows and the housing supply does not. 

Similarly, other supply side models need to be incorporated.  

                                                

6 A non-commercial version of this software is available for free download – see www.sidefx.com for more 

information.  
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4. The ILUTE model currently represents jobs, but has no representation of firms and 

establishments. Submodels for these classes are under development by other members 

of the ILUTE team (Douglas Hunt and John Abraham at the University of Calgary). 

The integration of these submodels will provide the analogue to the person and 

household classes currently implemented in the ILUTE prototype.  

5. It would be beneficial to calculate travel times directly within the model (or with a 

dynamically integrated third party package). Changes within the urban environment 

(including changes to the transportation network itself) should be reflected in travel 

times7 as the use of out-of-date travel times can hurt the model’s accuracy. Manually 

running a new network assignment after every time step is prohibitively expensive. 

More generically, support for the "live" exchange of in-memory data (through third-

party APIs, for example) would enable the efficient integration of third-party 

packages.  

6. In the ILUTE prototype, a mechanism exists to adjust prices from one time period to 

another. However, this mechanism does not account for relative differences in the 

price of different types of goods over time. For example, gasoline prices do not 

necessarily track the overall consumer price index. Having separate consumer price 

indexes for different types of goods would solve this problem.  

7. Future work for the temporal data manager includes implementing a spline 

interpolation option and an extrapolation option. 

8. While it should be a matter of straightforward development (the framework is largely 

in place), the ILUTE prototype needs to be extended to handle temporally varying 

spatial areas. 

9. The current ILUTE user interface was written for test purposes only. The formal 

ILUTE interface should allow the user to manage simulation runs and model 

parameters. Data logging and agent tracing mechanisms also need to be exposed 

within the interface.  

10. The ability to visualize spatiotemporal data as an animated 3D surface opens the door 

to wonderful possibilities. Finding the most visually meaningful way to show each 

                                                

7 Although lagged travel times are useful in activity scheduling to represent a person’s travel time experience. 
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type of research phenomenon will be a challenging but exciting task for future 

research.  

11. Once the model has progressed to the point where it contains real-world data, the job 

of calibration and validation testing will begin. While ILUTE attempts to endogenize 

as much behaviour as possible, some submodels remain externally calibrated. Testing 

the stability of the ILUTE model is also an important consideration as multiple model 

runs (in cases where random effects exist) might result in significantly different end 

results. While earlier research suggests that the main model will be relatively stable 

(Salvini, 1998), the individual submodels may serve to destabilize the end product.  

7.1 Concluding Remarks 

The development of a comprehensive dynamic microsimulation model of urban systems is by 

no means a small task. The success or failure of the overall model will depend largely on the 

ability of the individual submodels to credibly capture the behaviour of real-world entities. It 

will also depend on the ability of these submodels to communicate through the main ILUTE 

framework. While the operational prototype presented in this thesis represents an important 

early step in the development of a working model, much work remains.  

It is uncertain how well this model will capture the actual behaviour of our urban areas. 

Indeed, it is even unclear if this new generation of models will do much better than the early 

models at long-run forecasting. While the model is definitely a more accurate representation 

of our real world, it is unknown whether this new level of accuracy is sufficient. But lest the 

end product be discouraging, it is important to note that the journey itself holds great promise. 

Developing ILUTE presents a rare opportunity to look inside a very complex system and 

understand, at least at a basic level, its intricate and interconnected nature.  

For transportation engineers, ILUTE provides the opportunity to explore transportation's role 

in shaping an urban system. Specifically, it allows transportation issues to be examined within 

a broader context. For planners, ILUTE provides an opportunity to experiment with many of 

the variables that affect urban systems and understand the relationships between them. For 

others, and perhaps even for the public, it is a chance to understand that the consequences of a 

given change are not always easy to predict. Even if the results do not ultimately match those 

of the real world, a wealth of insight is sure to be obtained.  

As a final thought, perhaps it is worth taking a few steps back to contemplate the implications 

of having a perfect urban systems model. If we could accurately predict the future of an urban 
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area, how would we use that information? Would we be able to agree on a common vision for 

what constitutes an ideal urban system? Would our society be willing to make individual 

sacrifices on the promise of a better future? Will we be able to balance our short-term desires 

with our long-term needs? 
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