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Abstract 
Activity-based modeling treats travel as being derived from the demand for personal activities.  
Travel decisions, therefore, become part of a broader activity scheduling process based on 
modeling the demand for activities rather than merely trips.  This approach provides better 
understanding of travel behaviour compared to traditional modeling and enables a better 
analysis of response to policies and their effect on traffic and air quality.  While the topic has 
been widely discussed in the travel demand literature, only a few advanced applications can be 
found in Europe and North America. 
This paper describes an advanced activity-based model system currently being developed for 
the City of Tel-Aviv in Israel.  The model is developed as part of a new transportation master 
plan project for the city.  In developing the model, emphasis was put on evaluating the response 
to different transportation policies such as parking restrictions and pricing in addition to 
improved and new infrastructures and transit services.  Some of the innovative aspects in this 
new model system are based on a combination of data sources including a tour-based stated-
preference survey, a three-day trip diary database enriched in communities adjacent to a rail 
corridor, and a detailed parking survey that includes information on parking demand and 
supply. 

While the paper presents work in progress, initial results show that it will provide a powerful 
and a practical tool to better understand travel behaviour helping policy-makers to better 
analyze the benefits and costs from implementing different transportation policies.  The wide 
variety of data enable the model to include important new policy variables such as congestion 
pricing, parking search time and walking time from the parking to the destination.  This model 
estimates travelers’ response to policies affecting such variables based on people responses to 
these specific variables and in a comprehensive framework that can analyze their effect on the 
person’s daily activity schedule therefore making the estimated response more realistic.   
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Activity-based modeling, tours, stated-preference, mode choice, International Conference on 
Travel Behaviour Research, IATBR 
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1. Introduction 

Activity-based modeling treats travel as being derived from the demand for personal 
activities.  Travel decisions, therefore, become part of a broader activity scheduling process 
based on modeling the demand for activities rather than merely trips.  This approach provides 
better understanding of travel behaviour compared to traditional modeling and enables a 
better analysis of response to policies and their effect on traffic and air quality.  While the 
topic has been widely discussed in the travel demand literature, only a few advanced 
applications can be found in Europe and North America. 

This paper describes an advanced activity-based model system currently being developed for 
the City of Tel-Aviv in Israel.  The model is developed as part of a new transportation master 
plan project for the city.  In developing the model, emphasis was put on evaluating the 
response to different transportation policies such as parking restrictions and pricing in 
addition to improved and new infrastructures and transit services.  Some of the innovative 
aspects in this new model system are based on a combination of data sources including a tour-
based stated-preference survey. 

2. Literature Review 

Activity-based modeling has been discussed in the literature since the 1970s, but practical 
applications have been implemented only recently.  Tour-based and activity-based models 
have been estimated and applied in the U.S., among them the Boise urban model (Shiftan, 
1999), the New Hampshire statewide model (Rossi and Shiftan, 1997) and the Activity 
Mobility Simulator (Kitamura et al, 1996) that was applied in Washington, D.C. (Kitamura et 
al 1995).  In Europe, tour-based models have been developed in the Netherlands (Gunn and 
Van der Hoorn, 1998), in Norway (HCG and TOI, 1990), in Sweden (Algers et al, 1995; 
Algers et al, 2000), in Germany (Ruppert, 1998) and in Italy (Cascetta & Biggiero, 1997).  

Activity-based modeling treats travel as being derived from the demand for personal 
activities.  Travel decisions, therefore, become part of a broader activity scheduling process 
based on modeling the demand for activities rather than merely trips.  In activity-based 
modeling the basic travel unit is a tour defined as the sequence of trip segments that start at 
home and end at home.  For a more detailed discussion of activity-based models and their 
developments see among others:  Ettema and Timmermans (1997), Axhausen and Garling 
(1992), Ben-Akiva and Bowman (1998), Bowman and Ben-Akiva (2001), and Bhat and 
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Koppelman (1999).  Activity-based modeling continues to attract a lot of attentions in the 
research, see for example:  Recker (2001), Scott and Kanaroglou (2002), and Kharoufeh and 
Goulias (2002). 

Activity-based modeling has an important value for the analysis of travel and emission 
impacts of travel demand management (TDM) measures.  A major advantage of activity-
based modeling lies in its ability to give a better understanding and prediction of traveler 
responses to TDM measures and other types of transportation policies.  These improved 
estimates of the changes in important transportation variables, then, provide the basis for the 
development of more accurate estimates of emission reductions that would result from the 
implementation of one or more TDM strategies.  For a more detailed discussion of the 
advantages of activity-based models for TDM analysis see among others Shiftan and Suhrbier 
(1998) and Kitamura et al (1996). 

Few authors have tried to use the activity-based approach to analyze the potential effects of 
TDM.  Recker and Parimi (1999) used an activity-based approach with the Portland data as a 
case study to show the potential of TDM to reduce vehicle emissions.  Shiftan and Suhrbier 
(2002) used the Portland activity-based model to demonstrate reduction in vehicle mile of 
travel and emission for various sustainable transportation policies.  Kitamura et al (1995) used 
a dynamic and integrated micro simulation forecasting approach to test few TDM in the 
Washington D.C. area (see also Pendyala et al, 1997).  Kitamura (1997) also provided a 
review of studies in which activity-based models have been applied to demand forecasting 
and policy analysis comparing structural equation model systems and microsimulation model 
systems.  Other attempts to forecast behavioural changes to transportation policies using 
activity-based approach include Bonnel (1995), the STARCHILD model (Recker et al, 1986) 
the SCHEDULER model (Garling et al, 1994), and Arentze et al (in press). 

3. DATA 

Various available data sources in addition to data collected specifically for this model 
development are used for model estimation including: 

• A three-day trip diary database that was collected as part of the Israeli 
national travel habit survey (NTHS).   

• An extension of the trip diary survey conducted for this project in 
communities adjacent to a rail corridor.   

• A stated-preference survey that was conducted for a previous study to 
analyze the potential of a new rapid transit system for the city. 
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• A tour-based stated-preference survey that was designed and conducted 
specifically for this project.   

• A detailed parking survey that includes information on parking demand and 
supply. 

The next paragraphs describe these surveys with some more details. 

The National Travel Habit Survey (NTHS) 

This survey conducted in 1996 all over Israel samples one percent of the population and 
includes about 8,000 households in the Tel Aviv metropolitan area.  The survey includes 
socioeconomic data in addition to detailed travel activity data for all household members of 
age eight and older. 

The Rail Corridor Survey 

This survey was conducted in response to the lack of observations with trips made by rail in 
the NTHS.  Rail service in the Tel Aviv metropolitan area was limited in 1996 but has 
continuously been improved since then and is becoming an integrated part of the Tel Aviv 
transportation plans, providing an important public transit alternative.  A new survey was 
needed to include rail service as an alternative in the mode choice model.  Therefore, this 
survey focuses on a stratified sample of travelers along the rail corridor to supplement the 
existing NTHS revealed-preference data with new observations that will include rail riders.  
The survey was designed similarly to the NTHS survey, so they can be easily integrated.   

A Previous Stated-Preference Survey 

A previous stated-preference survey referred to as the NTA survey was previously conducted 
by the same research team to develop a mode choice model to analyze various mass transit 
alternatives for the city.   

The Stated-Preference Survey 

This innovative tour-based stated-preference survey focused on auto users and their potential 
responses to auto restrain policies.  The survey asked respondents about actual tours they 
made including the details of this tour:  modes and access mode used, purpose, number of 
stops and time of travel.  The stated-preference part then present respondents with various 
auto restrain policies including various parking charges and congestion pricing and gave 
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respondents various response alternatives to choose from including changing mode and access 
mode, changing the number of stops and changing the time of travel.  Each respondent was 
asked to respond to six choice experiments.   

This survey includes 1,194 completed questionnaires distributed roughly equally among four 
trip purposes:  work, education, shopping and other.  The interviews includes only people of 
16 years age or older.  Twenty-one percent of the respondents didn’t have a car available in 
the household and 32 percent didn’t have a driver license.  Forty-eight percent of the 
respondents drove in their selected outward trip with addition 15 percent as car passengers.  
98 respondents didn’t use the same mode for the return leg as for the outward leg.  72 
respondents (six percent) made an intermediate stop on their way to their main destination 
with 11 out of them making more than one stop.  On the way back home, 132 respondents 
made an intermediate stop, with 20 out of them making more than one stop.  The behaviour 
with regards to the number of stops was not very sensitive to the scenarios although there is 
some switching.  Most respondents also didn’t choose to change their departure time although 
there is some switching.  Two different answers categories were possible for time choice 
depending on the actual departure time of the respondent.  The respondents traveling during 
the morning peak hours (6:30 a.m. to 9:30 a.m.) were presented the following options: 

• Keep traveling during the peak hours; 

• Travel before the peak hours; 
• Travel after the peak hours. 

The respondents who traveled outside the peak hours could choose between the following 
options: 

• Depart one-half hour before the actual departure time;  

• Depart at the actual departure time;  
• Depart one-half hour after the actual departure time 

The responses to the SP questions showed that 39 percent of the respondents never switched 
mode, 20 percent always switched and 41 percent switched sometimes.  In general car drivers 
don’t switch easily to a public transport mode, but it does happen in 21 percent to 23 percent 
of the observations (not including taxi in public transport).  Car passenger switch mode more 
easily, and bus users chose mainly bus.  
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4. MODEL DESIGN 

The model system is developed as a system of logit and nested logit models assuming a 
hierarchy of the model components.  Figure 1 shows the model system.  At the highest level 
of the model system there is an auto availability model predicting the probability of having 
various number of autos available to the household.  In additional, an aggregated auto 
ownership model was prepared to produce control values at the aggregated level in order to 
validate the Auto Availability Model.  Following this model, the primary activity model 
determines a person’s primary activity.  The alternatives include work, education, shopping, 
other types of activity out of home, and staying at home.  For activities outside the home, the 
model then determines the destination of the primary activity and the main mode of the tour.   
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Figure 1 The Model Structure
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Figure 1 The Model Structure (continued)

“Before Stop” Type
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Destination choice models are estimated using the full set of over 1,200 traffic analysis zones 
as choice alternatives.  The main mode of the tour model is a combined revealed-preference 
and stated-preference model where both the SP and the RP comprise two different data 
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sources as described above.  Estimating the model using all these data sources provides a 
reliable model that is sensitive to policies not currently implemented in the City of Tel-Aviv.  

Subsequent models determine if there is an intermediate stop on the way from the home to the 
primary destination and/or from the primary destination back home.  For each such additional 
stop the model determines the destination of the stop considering the additional disutility 
caused by adding this stop to the tour.  This additional disutility is calculated using a logsum 
term from the trip segment mode choice model, which determines the mode of the trip 
segment leading to the intermediate destination.  Once all the details of the tour that include 
the main activity of the day are determined, the model estimates if there are additional tours.  
A similar set of models is used for the secondary tours in the dataset (not shown in Figure 1). 

Finally a time of day model estimates the time of day for each segment of the tour.  Time of day 
is arranged as a sequence of discrete choice models.  The sequence is formed from four 
submodels for the four types of possible segments in the tour: 

• Model for estimating the period of the day for beginning the tour; 

• Model for estimating the period of day for the trip originating at the primary 
destination; 

• Model for estimating the period of day for the trip from the intermediate 
stop to the main destination;  

• Model for estimating the period of day for the trip from the intermediate 
destination back home. 

As shown in Figure 1, the model structure links the various model components.  Each model 
depends on the model above it in the model hierarchy and is linked to models at the “lower 
level” through “logsum” variables.  These variables reflect the attractiveness (composite 
utility) of lower-level choices.  For example, the decision to make a stop for shopping on the 
way from the main destination home depends on all the models at higher level including the 
main destination purpose and destination and the main mode of the tour.  It also depends on 
the accessibility of the various shopping destinations; therefore, a logsum variable from the 
secondary stop destination model is included as an explanatory variable in the intermediate 
stop model.  A more detailed description of the model structure and its main components is 
provided in the following sections. 

4.1 Activity and Tour Structure and the Intermediate Stops Model 

There are numerous possible activity-based structures and tour structures that one can 
participate in.  One of the decisions in each activity-based models is how to simplify and 
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aggregate these various structures to a reasonable number of alternatives to include in the 
model.  In this model it was decided to include up to one intermediate stop on the leg from 
home to the main destination and up to one intermediate stop on the leg from the main 
destination to home.  Therefore there are only four possible tour structures: 

• Home-Main-Home 
• Home-Intermediate-Main-Home 

• Home-Main-Intermediate-Home 
• Home-Intermediate-Main-Intermediate-Home 

The model structures considers the choice of the main destination and the main mode of the 
tour as higher hierarchy choices, and the choice of the tour structure is following these models 
and done by estimating a model of whether one make a stop on the way to the primary 
destination, on the way back and for what purpose.  The choices from these models determine 
the tour structure and the stop various purposes.  Avoiding the need to model more than one 
intermediate stops in each leg significantly simplified the model without loosing a lot of 
information as these four alternatives include about 95 percent of all the tours.  Table 1 shows 
the distribution of these tour types for primary tours and secondary tours. 

 

The structure of the daily activity pattern is determined by the main tour and by similar set of 
models to determine if there is a secondary tour and the details of this secondary tour similar 
to the details of the main tour.  Table 2 shows that roughly 40 percent of the activity patterns 

Table 1 Tour-Type Distribution   

   Tour Type Frequency Percentage 

   Main   

Home-Main-Home 22,373 79.0 
Home-Intermediate-Main-Home 2,188 7.7 

Home-Main-Intermediate-Home 3,015 10.6 
Home-Intermediate-Main-Intermediate-Home 759 2.7 

Secondary    
Home-Main-Home 5,766 83.7 
Home-Intermediate-Main-Home 519 7.5 

Home-Main-Intermediate-Home 471 6.8 
Home-Intermediate-Main-Intermediate-Home 131 2.0 
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in the NTHS dataset include no tours.  Almost half of the records consist of a singly tour and 
another 11 percent have a total of two tours per day.  Since only two percent of the records 
have three or more tours, and to simplify the model structure it was decided to model only up 
to two tours per day. 

Table 2 Number of Tours Per Day in the NTHS Dataset 

      No Tour 1 Tour 2 Tours 3 Tours 4 Tours 5+ Tours 

      18,637 

(39.9%) 

22,192 

(47.5%) 

4,939 

(10.6%) 

723 

(1.6%) 

141 

(0.3%) 

55 

(0.11%) 

      
 

4.2 Mode Choice Modeling 

In defining the main modes of the tour and the submodes for the trip segments of the tour 
three main issues were considered.  First the modes should be responsive to policy issues 
likely to be tested, Second, they should be supported by the data, third, they should be as 
consistent as possible with the previous NTA model to best make use of both data sources. 

There are two main approaches for mode choice analysis in activity-based models, the first 
approach defines each combination of modes in the tour as an alternative and the second use a 
two-tier type models, where, first the main mode choice of the tour is determined as one of 
few main modes, and a second tier where the exact mode of each segment of the tour is 
determined given the main mode of the tour.  Data analysis in support of the decision 
regarding the mode choice model structure showed that about 91 percent of all tours are single 
mode tours.  Out of the other nine percent tours little more than half are combinations of bus 
and auto passengers and the rest are small frequencies of a lot of different combinations. 

Therefore, more emphasis was devoted to the tour main mode, and secondary efforts to model 
segments’ modes as deviations from the tour main mode.  The tour main mode was defined as 
the mode of the segment leaving home.  Given that more than 90 percent of the tours have a 
single mode for all segments the definition is of secondary importance, as alternative 
definitions will not change the tour main mode for most of the tours.  However, defining the 
tour main mode as the mode leaving home makes sense as this constrains the modes of the 
following segments.  For example, if you left without a car you are not likely to use car for 
following segments.  The segment mode choice model will model deviation from the main 
mode in each of the tour segments following the first segment. 
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The tour main mode model is being estimated using all available data sources including the 
NTA SP data, the new SP data, the NTHS RP data and the Rail Corridor RP data.  First a joint 
SP model on the two SP data sources was estimated.  In the next phase a joint RP model on 
the two RP data sources will be estimated, and finally a combined RP-SP model will be 
estimated.  The tour main modes are defines as follow: 

• Auto driver 

• Auto passenger 
• Premium transit 

- Walk access 
- Bus access 

- Kiss-and-Ride (K&R) access 
- Park-and-Ride (P&R) access 

• Bus only 
- Walk access 

- Kiss-and-Ride (K&R) access 
- Park-and-Ride (P&R) access 

• Taxi 
• (Employer Provided Transportation) 

Employer Provided Transportation (EPT) is not part of the mode choice model but will be 
determined externally to the model.  EPT is nine percent of all tours as tour main mode and 
while not included in the mode choice they are included for all other model components.  The 
taxi mode has a share of only 1.3 percent in the NTHS, but 18 percent of the travelers in the 
SP chooses taxi.  While part of this may be bias, it also may show that it may be an important 
mode for policy response and it is therefore an important mode. 

The same modes are used for the tour segments mode choice model.  In most cases the mode 
of the segment will be the same as the tour mode, however it may be any other mode with 
some availability constraints.  Both multinomial and nested models were tested.  In the nested 
version the first level is a decision between:  Same – meaning the mode of the segment is the 
same as the main mode; and Switch – meaning the person is switching to another mode.  
Under the switch there is a nest with the possible alternative modes. 
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5. Selected Model Estimation Results 

As this is a work in progress only few models have been estimated to date and the results are 
intermediate ones, as all model estimation will be revised once all the data sources will be 
used.  In nested models we start the model estimation from the lower levels to the higher 
ones, so we can calculate logsum variables from lower-level models to be includes as 
accessibility variables in higher-level models.  The lowest-level model is the segment mode 
choice for the secondary tour.  However, only 384 out of the 15,032 trip segments in 
secondary tours had different modes than the main mode.  In other words in 97.4 percent of 
the cases there was no mode switching in secondary tours.  Therefore, it was decided to have 
this as a deterministic model, assuming all trips of secondary tours have the same mode 
choice as the main mode chosen for the tour. 

5.1 Secondary Tour Intermediate Stop Destination Choice 

Given that there is no mode choice model for trips of the secondary tours this is the lowest 
model estimated in the model hierarchy.  This model estimates the probability that a person 
making an intermediate stop in a secondary tour will choose each zone as his destination.  The 
model includes stops made before and after the main activity in the secondary tour.  Both the 
Tel-Aviv household survey data and the rail corridor survey data have been used in the 
estimation of this model. 

In calculating the level of service variables the concept of “additional travel time” is used.  
This variable represents the additional travel time due to the destination being added to the tour 
as previously defined.  For example, in the case of an intermediate stop before the main 
destination, this travel time equals the time from home to the intermediate stop plus the time 
from the intermediate stop to the main destination minus the time from home to the main 
destination.  In other words, this is the additional travel time the person has to make from his 
home to the main destination because he decided to make a stop in between.   

The mode of travel for the trips in the secondary tour are all determined by the tour mode 
choice model which is of higher hierarchy, and therefore, there is no need to calculate log sum 
from lower-level mode choice models and the LOS variables of the chosen mode are used.  
Similar to the additional travel time, there are other additional LOS variables, such as 
additional transfers, additional parking cost, and additional wait time. 

There are a total of 1,248 observations for intermediate stop destinations, most of them for the 
“other” purpose and only about 100 observations for each of the work (including commute, 
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work-related and education) and shop purposes, therefore one model was estimated for all 
purposes.  There are 1,219 destination choice zone alternatives for each individual and all 
1,219 were modeled as alternative choices.  Only 448 zones (37 percent) out of these 1,219 
zones were actually chosen as intermediate stop destinations. 

Table 3 shows the model estimation results for this model.   

Table 3 Intermediate Stop Destination Choice Model 

    
Variable Coeff. t-Statistic Description 

    Auto Travel Time -0.1119 -41.4 Additional auto travel time in minutes 

Parking Walk Time -0.0103 -0.4 Time to walk from parking to destination in minutes 

Parking Search Time -0.1053 -2.0 Time to search for parking in minutes 

Transit Travel Time -0.0531 -5.5 Additional transit travel time in minutes 

Number of Transfers -0.2039 -0.8 Additional number of transfers for transit passengers 

Area Type Indicators 

Cultural area indicator 

Educational area 
indicator 

Office area indicator 

Shop area indicator 

Other area type indicator 

 

0.1751 

0.2124 

0.3882 

-0.0265 

0.1900 

 

2.9 

3.0 

5.4 

-0.4 

2.8 

These are not mutually exclusive 

0/1 indicator if zone has cultural centers 

0/1 indicator if zone has educational centers 

0/1 indicator if zone has office centers 

0/1 indicator if zone has shopping centers 

0/1 indicator if zone has other type centers 

Zone Classification 

Open space 

CBD zone dummy 

Fringe CBD zone dummy 

Industrial zone dummy 

Residential zone dummy 

 

0 

0.2975 

-0.3481 

-0.8474 

-0.2907 

 

 

1.8 

-2.5 

-4.7 

-3.3 

These are mutually exclusive 

Takes value 1 if zone is classified as CBD, else 0 

Takes value 1 if zone is classified as just outside 
CBD, else 0 

Takes value 1 if zone is classified as industrial, else 0 

Takes value 1 if zone is classified as residential, else 
0 

Total Employment 0 0 Total employment in the zone 

Population -0.2155 -1.2 Total population in the zone 

Summary Statistics 

Log likelihood at zero 
Log Likelihood at Constants 
Final Log Likelihood 
“Rho-Squared” w.r.t. Zero 
“Rho-Squared” w.r.t. 
Constants 

 

-8868.02 
-7293.26 
-6286.17 

0.291 
0.137 
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All the level of service variables have the expected negative signs with auto travel time, 
parking time, and transit time being significant, and parking walk and number of transfers not 
significant.  These measures of impedance reflect the greater attractiveness of closer-by (as 
measure by the “additional” concept) destination zones for intermediate stops during the 
secondary tour.  Travel time sensitivity is greater among auto drivers than transit riders.  In 
model estimation we also tried to test the effect of the parking cost variable but it resulted 
with a counterintuitive positive coefficient.  This variable is highly correlated with the area 
type dummies and may simply indicates that people prefer going to the CBD to fulfill their 
needs despite the cost incurred due to parking.  The location dummies clearly indicate the 
attractiveness of intermediate stops located in the CBD compared to any other type of 
destination (least attractive being the industrial zones).  It is important to note from the data 
that open spaces are not truly empty spaces.  Zones indicated as open spaces in the data have 
various types of employment and population residing in them.  The “qualitative” zone 
indicator variables highlight the greater attractiveness of zones with offices, cultural 
attractors, and zones with “other” attractors.  Finally, total employment and population are the 
size variables showing the higher probability of larger zones to be selected as destination 
zones.  The employment is used as the reference variable with smaller contributions by 
population.  One should remember that these coefficients are in exponent forms and the actual 
size coefficients are therefore positive.  

5.2 The SP Main Mode Choice 

As discussed above the main mode (or the tour mode) choice SP model is a combined model 
using both the stated-preference collected for this master plan study (SPMP) and the NTA 
Stated-preference (NTASP) data previously available. 

Separate models were estimated for each travel purpose.  We present here the structure and 
results for the work trips purpose.  For the SPMP survey, a distinction could be made between 
primary and secondary tours:  two-thirds of the observations belong to primary tours, one-
third to secondary tours.  The NTASP data cannot give information on this.  This means that 
we could try to have some coefficients in the SPMP split between primary and secondary 
tours.  However if we would do this, it is no longer possible to have common coefficients in 
SPMP and NTASP.  We tried separate primary and secondary tour models on the SPMP data 
alone and only for ‘other’ purposes were we able to get acceptable split estimation results.  In 
the combined NTASP and SPMP model we did not use this distinction because we want to 
have common coefficients on both databases. 
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In the SPMP model 10 alternatives were defined: 

• Alternative 1 bus with walk access 

• Alternative 2 bus with kiss-and-ride (K&R) access 
• Alternative 3 bus with park-and-ride (P&R) access 

• Alternative 4 mass transit (MT) with walk access 
• Alternative 5 MT with K&R access 

• Alternative 6 MT with P&R access 
• Alternative 7 MT with bus access 

• Alternative 8 car driver 
• Alternative 9 car passenger 

• Alternative 10 taxi 

In the NTASP model nine alternatives were defined (as in the report ‘NTA model 
improvement study:  development of the mode choice model’ by Hague Consulting Group, 
2000): 

• Alternative 11 bus with walk access 

• Alternative 12 bus with K&R access 
• Alternative 13 bus with P&R access 

• Alternative 14 MT with walk access 
• Alternative 15 MT with K&R access 

• Alternative 16 MT with P&R access 
• Alternative 17 MT with bus access 

• Alternative 18 car driver 
• Alternative 19 car passenger 

In the estimation of the combined SPMP – NTASP model system, the utility functions of the 
SPMP and NTASP models share as much coefficients as possible.  This implies that the 
tradeoffs (or marginal rates of substitution) among some of the attributes are the same in the 
SPMP and NTASP data.  Other coefficients are specific to either the MP or to the NTA utility 
functions.  The level of randomness in the data sources may vary and their relative difference 
is captured by the NTA scale parameter. 

The structure of the model is displayed in Figure 2.  The tree for the combined estimation has 
two subtrees.  The NTASP subtree on the right side of the figures is augmented with nine 
dummy nodes at the bottom.  These dummy nodes are there to include a different scale for the 
NTASP model. 
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Figure 2 Combined SPMP – NTASP Model Structure for Work Trips
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Table 4 presents the coefficient names and definitions used in the SPMP and NTASP utility 
equations and the estimation results.  As can be seen from the table all of the level of service 
variable have the right sign and are significant except the bus and mass transit number of 
transfers.  This model is unique in the number and variety of the level of service variables 
available for policy analysis including in addition to the traditional cost, in vehicle travel time, 
wait and walk time for the various modes, car parking search time, car parking walk time, and 
car parking cost both for the car mode and for the car as an access mode to public 
transportation. 
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Table 4 The Work Purpose SP Model Estimation Results 

    
Coef. Name Coef. 

Estimate 
t-
statistic 

Definition 

    bkco -3.28 -18.4 Bus with K&R access constant 
mtwco 0.499 3.6 MT with walk access constant 
mtkco -1.31 -7.3 MT with K&R access constant 
Mtpco 0.810 1.5 MT with P&R access constant 
Cardco -1.45 -4.0 Car driver constant 
Carpco -2.23 -7.5 Car passenger constant 
Taxico -0.845 -3.9 Taxi constant 
Binvt_c -0.0419 -14.0 Bus in vehicle travel time 
Bovt_c -0.0487 -8.1 Bus wait time and transfer time 
Minvt_c -0.0357 -13.9 MT in vehicle travel time 
Movt_c -0.0507 -7.6 MT wait time and transfer time 
Cinvtd_c -0.0456 -10.7 Car driver in vehicle travel time 
Cinvtp_c -0.0263 -4.8 Car passenger in vehicle travel time 
Ttime_c -0.0191 -3.4 Taxi in vehicle travel time 
Cfueld_c -4.5e-4 -3.9 Car driver fuel cost 
Cfuelp_c -0.0014 -6.0 Car passenger fuel cost 
Ctolld_c -2.9e-4 -2.7 Car driver toll costs 
Ctollp_c -5.0e-4 -2.0 Car passenger toll costs 
Tcost_c -0.0015 -13.0 Taxi cost 
Ptcost_c -0.0014 -13.8 Public transport fare 
Bxfer_c 0.0929 1.6 Bus number of transfers 
Mxfer_c -0.0445 -0.8 MT number of transfers 
Cpcost_c -2.5e-4 -3.1 Car parking cost 
Cpst_c -0.0476 -3.9 Car parking search time 
Cpwt_c -0.0442 -3.6 Car parking walk time 
LRT_c -0.461 -4.1 MT Light Rail train mode 
SR_c -0.616 -5.4 MT Suburban Rail mode 
EB_c -0.842 -6.6 MT Enhanced Bus mode 
LRT_SR_c -0.348 -3.0 MT Light Rail/Suburban Rail mode 
LRT_M_c -0.448 -4.1 MT Light Rail/Metromode 
LRT_EB_c -0.486 -4.5 MT Light Rail/Enhanced Bus mode 
SR_EB_c -0.604 -5.4 MT Suburban Rail/Enhanced Bus mode 
SR_M_c -0.301 -2.9 MT Suburban Rail/Metro mode 
M_EB_c -0.606 -5.5 MT metro/Enhanced Bus mode 
Busage60+ 1.36 4.0 Dummy for bus passenger of 60 years and older 
Cpsage1625 0.613 2.6 Dummy for car passenger in the age of 16 to 25 
Cdredu14 0.366 3.1 Dummy for car driver who studied more than 14 years 
Taxedu14 0.569 3.7 Dummy for car passenger who studied more than 14 years 
cpsoccuwpt -1.70 -3.9 Dummy for car passenger who work part-time 
Ptawt_c -0.0826 -12.8 Public transport access walk time 
Ptadt_c -0.0427 -8.2 Public transport access drive time 
Ptapc_c -0.0014 -6.4 Public transport access parking cost 
Ptapws_c -0.0390 -2.5 Public transport access parking walk and search time 
Ptakca1 0.171 4.3 Public transport with K&R access one car availability 
Ptapca1 -3.77 -7.6 Public transport with P&R access one car availability 
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Ptakca2 0.330 6.3 Public transport with K&R access two car availability 
Table 4 The Work Purpose SP Model Estimation Results (continued) 

    Coef. Name Coef. 
Estimate 

t-
statistic 

Definition 

    Ptapca2 -3.56 -7.1 Public transport with P&R access two car availability 
Cdca1 0.935 3.4 Car driver one car availability 
Cdca2 1.49 5.4 Car driver two or more cars availability 
Cpca1 -0.379 -2.3 Car passenger one car availability 
Cpca2 0.0516 0.3 Car passenger two or more car availability 
Bakr -1.03 -11.4 Bus with K&R access constant 
Bapr 2.98 5.9 Bus with P&R access constant 
Mawalk 0.763 7.1 MT with walk access constant 
Makr -0.386 -3.1 MT with K&R constant 
Mapr 3.85 7.5 MT with P&R constant 
Mabus 0.164 1.4 MT with bus access constant 
Cardr -1.50 -4.5 Car driver constant 
Carpass -0.987 -4.1 Car passenger constant 
delay -0.0206 -3.3 Public transport probability of delay more than 10 minutes 
Seat 0.0284 3.5 Public transport probability of finding a seat 
Logsum1 0.618 12.1 NTA scale coefficient 
Logsum2 0.655 10.0 NTA scale coefficient 
Scale 2.58 11.2 NTA scale factor to combine with MP 
Final log likelihood -7090.5   
No. observations 5612   
Rho-sq. (0) 0.307   
Rho-sq. (C)   0.142   
    

 

The resulting values of time from this model are 18 NIS ($ 1 = 4.5 NIS) for bus, 15.3 NIS for 
mass transit, 60.8 NIS for car driver, 11.3 NIS for car passenger and 7.6 NIS for taxi.  These 
values are reasonable, expect the taxi value of time that is somewhat low.  

6. Application 

The application of the model for forecasting uses a ‘sample enumeration’ approach with a 
representative sample of households.  A Monte Carlo simulation is used to estimate the 
decisions of the prototype sample and expand it to the entire population.  The model simulates 
for each individual the decisions regarding his main activity for the day, the location of this 
activity, and all the related travel decisions, including the mode used to travel there, the 
number and type of stops made on the way there or back, and the timing of all these different 
activities and trips.  Once the model creates tours for the whole population, these tours are 
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broken down to trip segments to create a daily person origin-destination trip tables by mode 
for purposes of network assignment.   

6.1 Population Generation and Forecasting 

The first step in the application procedure is to generate the base year synthetic population 
and to forecast it for the future year.  In creating the base year synthetic population the 
following data will be used: 

• The 1996/1997 Census data 

• The NTHS sample 
• Forecast of marginal demographic data (similar to the type of information 

appear in the census data) 

The objective is to create a synthetic population over TAZs that maintain the statistical 
characteristics of the Census.  However, the Census data do not provide cross-classified 
demographics.  Because the NTHS contains complete household records we can obtain cross-
classified estimates from this sample.  The general idea is to use iterative proportional fitting 
(IPF) of the census summaries to the cross-classified values obtained from the NTHS.  In 
other words, the NTHS represents a sample/seed and the Census data gives the marginal 
totals.  IPF estimates the entries in the sample multi way table to make them exactly match the 
known margins while maintaining the sample table’s correlation structure.  The same 
procedure can be used to update the synthetic population for future years.  Future forecasts of 
variables will be used as the new margins instead of those based on the Census for the base 
year. 

7. Conclusions 

This paper presented the development of a new activity-based model for Tel-Aviv.  
Continuous increases in traffic congestion and other transport negative externalities has led to 
increasing need for policy-makers to implement travel demand management policies.  
Traditional modeling tools, however, are not sufficient to understand travelers’ response to 
such policies.  While this paper presents work in progress, initial results show that it will 
provide a powerful and a practical tool to better understand travel behaviour helping policy-
makers to better analyze the benefits and costs from implementing different transportation 
policies.  The model benefits from a wide variety of data including a tour-based stated-
preference survey and a detailed parking survey, enabling the model to include important new 
policy variables such as congestion pricing, parking search time and walking time from the 



10th International Conference on Travel Behaviour Research 
______________________________________________________________________________ August 10-15, 2003 

22 

parking to the destination.  This model estimates travelers’ response to policies affecting such 
variables based on people responses to these specific variables and in a comprehensive 
framework that can analyze their effect on the person’s daily activity schedule therefore 
making the estimated response more realistic.  Further research and applications are needed to 
better develop and implement this approach for a wide variety of policy analysis. 
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