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Abstract  
Logit Kernel is a discrete choice model that has both probit-like disturbances as well as an 
additive i.i.d. extreme value (or Gumbel) disturbance à la multinomial logit. The result is an 
intuitive, practical, and powerful model that combines the flexibility of probit (and more) with 
the tractability of logit. For this reason, logit kernel has been deemed the “model of the future” 
and is becoming extremely popular in the literature. It has been included in popular statistical 
software packages as well as a recent edition of a widely used econometrics textbook and two 
texts specializing on discrete choice. 

While the basic structure of logit kernel models is well understood, there are important 
identification issues that are often overlooked. Misunderstanding of these issues can lead to 
biased estimates as well as a significant loss of fit. This paper presents a general framework for 
identifying the logit kernel model. Many of the special cases of the logit kernel model are 
discussed in detail, including heteroscedasticity, error components, nesting structures, random 
coefficients, auto correlation, and application to panel data. Specification and identification 
issues related to each special case are identified. Finally the findings are demonstrated with 
empirical examples using both simulated and real data. The objectives of the paper are to present 
our specific findings, as well as highlight the broader themes and provide tools for uncovering 
identification issues pertaining to logit kernel models.  

Introduction 
The logit kernel model is a straightforward concept: it is a discrete choice model in which the 
disturbances (of the utilities) consist of both a probit-like portion and an additive i.i.d. Gumbel 
portion (i.e., a multinomial logit disturbance).  

Multinomial logit (MNL) has its well-known blessing of tractability and its equally well-known 
curse of a rigid error structure leading to the IIA property. The nested logit model relaxes the 
rigidity of the MNL error structure and has the advantage of retaining a probability function in 
closed form. Nonetheless, nested logit is still limited and cannot capture many forms of 
unobserved heterogeneity, including, for example, random taste heterogeneity. The logit kernel 
model with its probit-like (but even more general) disturbances completely opens up the 
specification of the disturbances so that almost any desirable error structure can be represented in 
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the model. As with probit, however, this flexibility comes at a cost, namely that the probability 
functions consist of multi-dimensional integrals that do not have closed form solutions. Standard 
practice is to estimate such models by replacing the choice probabilities with easy to compute 
and unbiased simulators. The beauty of the additive i.i.d. Gumbel term is that it leads to a 
particularly convenient and attractive probability simulator, which is simply the average of a set 
of logit probabilities. The logit kernel probability simulator has all of the desirable properties of a 
simulator including being convenient, unbiased, and smooth. 

There have been numerous relatively recent applications and investigations into the model, 
including Bekhor et al. (2002), Bhat (1997 & 1998), Bolduc, Fortin and Fournier (1996), 
Brownstone, Bunch and Train (2000), Brownstone and Train (1999), Goett, Hudson, and Train 
(2000), Gönül and Srinivasan (1993), Greene (2000), Mehndiratta and Hansen (1997), Revelt 
and Train (1998 & 1999), Srinivasan and Mahmassani (2000), and Train (1998) [need to 
update…]. A very important recent contribution is McFadden and Train’s (2000) paper on mixed 
logit, which both (i) proves that any well-behaved random utility consistent behavior can be 
represented as closely as desired with a mixed logit specification, and (ii) presents easy to 
implement specification tests for these models.  

While logit kernel has strong computational advantages and allows for rich specifications, 
empirical applications of the model turn out not to be straightforward, as there are many 
important issues that arise in identification. While the number of logit kernel applications in the 
literature is rapidly growing, the identification issue has been largely ignored. The objective of 
this paper is to lay out a procedure for identifying logit kernel models, and to analyze and 
develop identification rules for some of the most common forms of the logit kernel model. Just 
as there are standard identifying practices for a pure multinomial logit model (for example, 
constraining the scale to 1, or setting one of the alternative-specific constants to zero), a set of 
guidelines for identifying the logit kernel model must be developed. This is particularly 
important as the model is poised to become widely applied in the literature and in practice. 

Terminology 
There are numerous terms floating around the literature that are related to the logit kernel model 
that is discussed here. McFadden and Train (2000) and others have adopted the term “mixed 
logit” to reflect that the model is comprised of a mixture of logit models. The term logit kernel is 
also used for the same model, which refers to the fact that the core of the model (as well as the 
resulting probability simulator) is a logit formulation. The term “logit kernel probit” has also 
been used in the special case when the formulation is used to approximate or extend the probit 
model. There are also numerous terms that are used to describe various error specifications in 
discrete choice models, including error components, taste variation, random parameters 
(coefficients), random effects, unobserved heterogeneity, etc. When such models are specified in 
a form that includes an additive i.i.d. extreme value (or other GEV) term, then they fall within 
the same broad class of logit kernel (as well as mixed logit) class of models.  
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We choose to use the term logit kernel, because conceptually these models start with a logit 
model at the core and then are extended by adding a host of different error terms. In addition, the 
term is descriptive of the form of the likelihood function and the resulting logit kernel simulator. 

Organization of the Paper 
The paper begins with a discussion of the identification problem in econometrics, which is 
followed by a discussion of the Logit Kernel model and specific rules of identification. These 
rules are then used to analyze specific cases of logit kernel, including heteroscedasticity, nesting, 
and models with panel data. Finally, empirical results are presented that highlight the 
identification issues. 

The Identification Problem 
 

“We must face up to the fact that we cannot  
answer all of the questions that we ask.” 

–  Manski (1995) 
 

All econometric models require identification restrictions in order to be estimated. A model is 
specified based on some underlying theory or propositions. These models are a function of 
unknown parameters, and data are used to provide estimates of the unknown parameters. The 
issue that arises is that there does not exist a unique vector of parameters that solves (optimizes) 
the equation. In fact, without restrictions being imposed, there are infinite solutions as the 
objective function at the solution is a plateau (hyperplane). Furthermore, no amount of data can 
solve the problem. The identification problem is to determine what conclusions can or cannot be 
drawn from a model, and under what sets of assumptions.  

In the context of this paper, the identification problem can be described as determining the set of 
restrictions to impose in order to obtain a unique vector of parameter estimates. Identifying 
restrictions can be divided into two types. The first type is the most severe, in which any 
restrictions that are imposed change the behavior represented by the model, and, therefore, 
influences its prediction. Estimation of supply and demand equations is a classic example of this 
type of identification. Manski (1995) provides a good discussion of such identification issues. He 
points out that strong assumptions must be introduced to solve these problems, and these can 
lead to widely varying conclusions. 

The other type of identification problem is less severe, and is the focus of this paper. In this case, 
while there are still infinite solutions to the unrestricted model, any one of them is acceptable in 
that they all represent the same behavior and lead to the same prediction. That is, given the 
problem being studied, any one of these infinite solutions is adequate. In this case, the 
identification problem (often called normalization) is to impose constraints on a subset of 
parameters such that there is one unique solution, and to do so in a way such that this solution is 
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a member of the solution set for the unrestricted model. If such restrictions are not imposed to 
obtain a unique solution, then the standard errors of the estimated parameters cannot be 
determined, and therefore the statistical tools used for hypothesis testing (for example, t-
statistics) and confidence intervals are unavailable. Setting the scale in a discrete choice model, 
such as logit or probit, is a classic example of this type of identification, and this is closely 
related to the issues discussed in this paper.       

Model Formulation 

The Discrete Choice Model 
The discrete choice model can be written as follows. For a given individual n , 1,...,n N=  where 
N  is the sample size, and an alternative i , 1,..., ni J=  where nJ  is the number of alternatives in 
the choice set nC  of individual n , the model is written as:  

 1   if ,  for 1,...,

 0   otherwise
in jn n

in

U U j J
y

≥ =
= 


 ,  

in in inU X β ε= +  , 

where iny  indicates the observed choice, and inU  is the utility of alternative i  as perceived by 
individual n . inX  is a (1 )K×  vector of explanatory variables describing individual n  and 
alternative i , including alternative-specific dummy variables as well as generic and alternative-
specific attributes and their interactions with the characteristics of individual n . β  is a ( 1)K ×  
vector of coefficients and inε  is a random disturbance. The assumption that the disturbances are 
i.i.d. Gumbel leads to the tractable, yet restrictive logit model. The assumption that the 
disturbances are multivariate normal distributed leads to the flexible, but computationally 
demanding probit model. The logit kernel model presented in this paper is a hybrid between logit 
and probit and represents an effort to incorporate the advantages of each. 

In a more compact vector form, the discrete choice model can be written as follows: 

1[ ,..., ] '
nn n J ny y y=  ,     

n n nU X β ε= +  ,    (1) 

where ny , nU , and nε  are ( 1)nJ ×  vectors and nX  is a ( )nJ K×  matrix.  

The Logit Kernel Model with Factor Analytic Form 
The logit kernel model results from a particular specification of the disturbance, inε , in which 
there is a flexible probit-like term (often normal, although not necessarily) and an i.i.d. Gumbel 
random variate (or, more generally, GEV). The probit-like term captures the interdependencies 
among the alternatives. We specify these interdependencies using a factor analytic structure. The 
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factor analytic structure was first proposed for probit by McFadden (1984) as a means of 
reducing the dimensionality of the integral. The specification is used here because it is a flexible 
specification that includes all known (additive) error structures as special cases, as is shown in 
Ben-Akiva, Bolduc, and Walker (2002). 

Using the factor analytic form, the disturbance vector nε  is specified as follows: 

n n n nFε ξ ν= +  ,    (2) 

where nξ  is an ( 1)M ×  vector of M  multivariate distributed latent factors, nF  is a ( )nJ M×  
matrix of the factor loadings that map the factors to the error vector ( nF  includes fixed and/or 
unknown parameters and may also be a function of covariates), and nv  is a ( 1)nJ ×  vector of 
i.i.d. Gumbel random variates. For estimation, it is desirable to specify the factors such that they 
are independent, and therefore nξ  is decomposed as follows: 

n nTξ ζ=  ,     (3) 

where nζ  are a set of standard independent factors (often normally distributed), 'TT  is the 
covariance matrix of nξ , and T  is the Cholesky factorization of it. The number of factors, M , 
can be less than, equal to, or greater than the number of alternatives. To simplify the 
presentation, we assume that the factors have standard normal distributions; however, they can 
follow any number of different distributions, such as lognormal, triangular, uniform, etc. (See 
Kenneth Train’s mixed logit software and supporting documents.) 

Substituting Equations (2) and (3) into Equation (1), yields: 

   The Factor Analytic Logit Kernel Specification  
 

n n n n nU X F Tβ ζ ν= + +  ,   (4) 

cov( )nU = 2' ' ( / )
nn n JF TT F g Iµ+    (5) 

(which we denote as n n nΩ = Σ + Γ ),  

where: nU  is a ( 1)nJ ×  vector of utilities; 

 nX  is a ( )nJ K×  matrix of explanatory variables; 

 β  is a ( 1)K ×  vector of unknown parameters; 

 nF  is a ( )nJ M×  matrix of factor loadings, including fixed and/or unknown 

parameters; 

 T  is a ( )M M×  lower triangular matrix of unknown parameters, where 

' ( )n nTT Cov Tξ ζ= = ; 
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 nζ  is a ( 1)M ×  vector of i.i.d. random variables with zero mean and unit variance; 

and 

 nν  is a ( 1)nJ ×  vector of i.i.d. Gumbel random variables with zero location 

parameter and scale equal to 0µ > . The variance is 2g µ , where g  is the 

variance of a standard Gumbel ( 2 6π ). 

The unknown parameters in this model are µ , β , those in nF , and those in T . nX  are observed, 
whereas nζ  and nν  are unobserved. Note that if 0T =  then the model reduces to logit. This 
formulation assumes cross-sectional data, and will be modified later to address panel data. 

It is important to note that we specify the model in level form (i.e., ,  1,...,jn nU j J= ) rather than 
in difference form (i.e., ( ),  1,..., ( 1)

njn J n nU U j J− = − ). We do this for interpretation purposes, 
because it enables us to parameterize the covariance structure in ways that capture specific (and 
conceptual) correlation effects. It also represents the manner in which logit kernel models are 
specified in all estimation packages that we are aware of. Nonetheless, it is the difference form 
that is estimable, and there are multiple level structures that can represent any unique difference 
covariance structure, which is a critical point for identification. 

Response Probabilities 

The power of the logit kernel model derives from the ease with which complex disturbance 
structures can be estimated. If the factors nζ  in Equation (4) are known, the model corresponds 
to a multinomial logit formulation: 

( )

( )( | )
in in n

jn jn n

n

X F T

n X F T

j C

e
i

e

µ β ζ

µ β ζ
ζ

+

+

∈

Λ =
∑

 ,   (6) 

where ( | )ni ζΛ  is the probability that the choice is i  given nζ , and jnF  is thj  row of the matrix 

nF , 1,..., nj J= . Since the nζ  is in fact not known, the unconditional choice probability of 
interest is: 

( ) ( | ) ( , )MP i i n I d
ζ

ζ ζ ζ= Λ∫  ,   (7) 

where ( , )Mn Iζ  is the joint density function of ζ , which, by construction, is a product of 
standard univariate normals: 

1

( , ) ( )
M

M m
m

n Iζ φ ζ
=

= ∏  . 

( )P i  can then be estimated with an unbiased, smooth, tractable simulator, which is computed as:   
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1

1ˆ( ) ( | )d
n

d

P i i ζ
=

= Λ∑
D

D  ,   

where d
nζ  denotes draw d  from the distribution of ζ , thus enabling the estimation of high 

dimensional integrals with relative ease.  

Identification of Logit Kernel 
As described above, all discrete choice models require identification restrictions in order to be 
estimated. For example, the normalization required to set the scale of a logit model is a special 
type of identification restriction. Without such a restriction there does not exist a unique set of 
parameter estimates that maximize the likelihood. Without a unique solution, the standard errors 
of the estimated parameters cannot be determined, and therefore the statistical tools used for 
hypothesis testing (for example, t-statistics) and confidence intervals are unavailable. The 
problem is exacerbated in models that are estimated via simulation (as with the logit kernel), 
because the simulation can hide identification problems and lead to incorrect conclusions about 
the model and behavior being studied. The problem we face is to determine a set of restrictions 
such that a unique solution is obtained.  

For the logit kernel model, there are two sets of relevant parameters that need to be considered 
for identification: the vector β  and the unrestricted parameters of the distribution of the 
disturbance vector nε . Note that the nature of the identification problem is that there are infinite 
sets of restrictions that can be imposed in order to identify any particular model. One 
manifestation of this is that there is a choice as to whether to impose the restrictions on the 
disturbance parameters (in nε ) or the systematic parameters ( β ). For example, in a multinomial 
logit model, the scale can be set either by constraining the variance of the disturbance (for 
example, µ =1 or µ =2) or by constraining one of the systematic parameters (for example, a 
particular β =1 or β =2). Without loss of generality, the assumption made throughout this paper 
is that the conventional multinomial logit constraints are imposed on the vector β , for example 
as described in Ben-Akiva and Lerman (1985), and the scale is constrained through the 
disturbance. These assumptions allow us to focus solely on the identification of the distribution 
of the disturbance vector in the logit kernel model. This also best represents the manner in which 
logit kernel models are typically estimated using available statistical software packages, that is, 
there is a logit core that is specified as in a conventional multinomial logit specification, and the 
additional complexity is encased in the disturbance. 

A common tool used to establish identification of a particular model is to examine its 
information matrix (the expected second derivatives matrix of the log likelihood). While this is 
an invaluable method in checking for identification, it is typically employed after conventional 
identification rules are imposed on the model (for example, in multinomial logit, after the scale is 
set and an alternative specific constant is zeroed). This is simply because examining the 
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information matrix requires estimation of the model and is computationally complex to estimate. 
The focus in this work is to establish identification rules that can be applied to a logit kernel 
specification before estimation has begun, such as rules on how to normalize a heteroscsedastic 
logit kernel model or a logit kernel model with a nested specification. For this purpose, it is more 
straightforward to examine the covariance matrix directly, or, more specifically, the covariance 
matrix of utility differences, which is the approach used in this paper. This approach follows 
work presented in Bunch (1991) for the probit model, in which he implemented the use of the 
order and rank conditions to determine identification. 

In discussing the normalization of logit kernel, there are two different cases of interest. The first 
is where the disturbance does not vary based on characteristics of an individual or attributes of 
the alternatives, that is, it is cases in which n nF Tζ  is not a function of nX . This includes the case 
of an unrestricted covariance matrix, heteroscedasticity, nesting and cross-nesting, error 
components, and some panel data structures. The second situation is when the disturbances vary 
across the population, and the most common example is the case of random parameters on 
attributes of the alternatives (for example, cost) or characteristics of the decision-maker (for 
example, gender). This paper deals only with the former (alternative-specific) case. For readers 
interested in random parameters, see, Walker (2001, 2002). 

Logit Kernel with Alternative-Specific Disturbances 
Consider the case where the disturbance does not vary based on the characteristics of the person 
or attributes of the alternatives. We call this the alternative-specific portion of the disturbance 
structure, since it is not a function of nX  beyond the alternative specific dummy variables in nX . 
In this case, the individual subscript n  can be dropped from nF , and the utility equation is then: 

Logit Kernel with Alternative- 
Specific Disturbances   n n n nU X FTβ ζ ν= + +  

 
This is a broad class that includes unrestricted covariance structure, heteroscedasticity, nesting, 
cross-nesting, error components, and some panel data structures.  

The procedure involved in identifying the alternative-specific portion of the logit kernel model is 
described in detail below. Briefly, the steps are (1) to hypothesizing the model of interest, 
converting the model to differences in utilities (to set the location of the model), (2 and 3) to 
apply order and rank conditions to the covariance matrix of utility differences to determine the 
number of estimable parameters in the disturbance, and then (3) to determine a valid 
normalization such that the resulting choice probabilities of the model do not change. Each of 
these steps is expanded on below. After the description, the procedure will be applied to special 
cases. 

1. Hypothesize the model of interest.  
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Comments: This amounts to specifying nFTζ , which is the disturbance structure that is a 
priori assumed to exist. For example, one could hypothesize an unrestricted covariance 
matrix or various restricted covariance matrices such as heteroscedasticity or nesting. 

2. Determine the covariance matrix of utility differences of the hypothesized model: 
 

∆Ω = 2( ) ( / )n JCov U FTT F g Iµ′ ′ ′ ′∆ = ∆ ∆ + ∆ ∆ ,  
 
where ∆  is the linear operator that transforms the J  utilities into ( 1)J −  utility differences 
taken with respect to the thJ  alternative. ∆  is a ( 1)J J− ×  matrix that consists of a 
( 1) ( 1)J J− × −  identity matrix with a column vector of 1− ’s inserted as the thJ  column. 

Comments: A key point of identification is that while we write (and program) the logit 
kernel specification in levels form above (i.e., ,  1,...,jn nU j J= ), in estimation it is only the 
differences in utility that matter (i.e., ( ),  1,..., ( 1)

njn J n nU U j J− = − ). Taking the 
differences sets the “location” of the model, which is necessary for all random utility 
models (see Ben-Akiva and Lerman, 1985, for discussion). The logit kernel model is 
specified in level form rather than in difference form for interpretation purposes, because 
it enables the parameterization of the covariance structure in ways that capture specific 
(and conceptual) correlation effects (for example, nesting and heteroscedasticity). 
Estimation packages now available for logit kernel also employ a levels specification. 
Nonetheless, it is the difference form that is estimable, and the levels form is irrelevant to 
the estimation procedure. Furthermore, there are multiple level structures that can 
represent any unique difference covariance structure (as was clearly presented in Bunch 
(1991) and will be shown for nested logit kernel below).   

3. Apply the Order Condition, which states that the number of estimable alternative-specific 
disturbance parameters, S , adheres to: 

( 1)
1

2

J J
S

−≤ − . 

Comments: This upper bound is equal to the number of unique cells in ∆Ω  (which is 
symmetric) minus 1 to set the scale of the model (another necessity of random utility 
models). This is a necessary, but not sufficient, condition of identification. The limit 
imposed by the Order Condition is a function only of the number of alternatives, and 
therefore states that: 
 
with 2 alternatives, no alternative-specific covariance terms can be identified;  
with 3 alternatives, up to 2 terms can be identified;  
with 4 alternatives, up to 5 terms can be identified;  
with 5 alternatives, up to 9 terms can be identified; etc.  
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It is clearly shown in Bunch (1991) that the number of parameters that can be estimated 
is often less than suggested by the order condition, depending on the covariance structure 
postulated. Nonetheless, do not underestimate the usefulness of the Order Condition; it 
provides for a quick check to avoid major blunders, and there are models that have been 
published that do not pass this test. 

4. Apply the Rank Condition, which states that the number of estimable alternative-specific 
disturbance parameters, S , adheres to: 

( ( ( ))) 1S Rank Jacobian vecu ∆= Ω − , 

where vecu is a function that vectorizes the unique elements of ∆Ω  into a column vector. 

Comments: The rank condition is more restrictive than the order condition. The rank 
condition is sufficient to ensure identification in that there is a single solution to the 
normalized model. The order condition simply counts cells, and ignores the internal 
structure of ∆Ω . The rank condition, however, counts the number of linearly independent 
equations available in ∆Ω  (mathematically written above as taking the Rank of the 
Jacobian) that can be used to estimate the parameters of the error structure. The 
subtraction of 1 is necessary to set the scale of the model. 

5. Apply the Equality Condition, which states that any imposed normalization must adhere to: 

Normalized
∆ ∆Ω = Ω , 

where ∆Ω  is the covariance matrix of utility differences from any of the solutions in the 
unrestricted model (they are all the same) and Normalized

∆Ω  is from the normalized model. 

Comments: It is necessary to verify that the imposed normalization does not otherwise 
restrict the model, that is, that the probabilities remain the same as before the restriction 
is imposed. Keeping the probabilities the same means that the covariance matrix of utility 
differences also must remain the same, which is stated in the equation. The Equality 
Condition is sufficient to ensure that the correct model is being identified. 

Both the Rank Condition and the Equality Condition must hold for a model to be correctly 
identified. 

In the following sections, the general rules of identification that were established above will be 
used to address identification of specific instances of the logit kernel model. The objectives are 
to provide examples for how to apply the identification rules and also to establish rules of 
identification for common forms of the logit kernel model. In some cases (particularly the first 
one), the identification conditions will be applied very deliberately. In later cases, steps will be 
dropped and conclusions drawn. 
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Identification of Heteroscedastic Logit Kernel 
For this first case, each steps of identification will be followed precisely. The cases that follow 
will be discussed in a more streamlined fashion. 

Step 1: The Model 

In a heteroscedastic model, the disturbance of each alternative has a different variance. Thus, the 
model allows for situations in which the systematic portion of the utility better represents the 
utility of some alternatives more than others. For example, often the carpool alternative in a 
mode choice model has a higher variance than other alternatives, because it is more difficult to 
systematically explain why a traveler chooses to carpool.  

The heteroscedastic model, assuming a universal choice set (  nC C n= ∀ ), is written as: 

 n n n nU X Tβ ζ ν= + +  ,  ( M J=  and nF  equals the identity matrix JI ),  

T =

1

20

0 0

0 0 0 J

σ
σ

σ

 
 
 
 
 
 

 ( )J J× ,  nζ  ( 1)J × ,  

 and, defining 2( )ii iσ σ= , the ( )nCov U  is:  

Ω =

2
11

2
22

2

/

0 /

0 0

0 0       0      /JJ

g

g

g

σ µ
σ µ

σ µ

 +
 + 
 
 

+  

( )J J× .  

In scalar notation, the model is in in i in inU X β σ ζ ν= + + ,  i C∈ .  

Step 2: The Covariance Matrix of Utility Differences 

The identification conditions are worked through for a two alternative heteroscedastic model, a 
three alternative heteroscedastic model, and a four alternative heteroscedastic model, because the 
three models serve well to highlight various aspects of identification. The conclusions will be 
generalized to any number of alternatives at the end. The covariance structures for these three 
models are as follows: 

2 :J =  Ω =
2

11
2

22

/

0 /

g

g

σ µ
σ µ

 +
 + 

 , 
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3:J =  Ω =

2
11

2
22

2
33

/

0 /

0 0 /

g

g

g

σ µ
σ µ

σ µ

 +
 + 
 + 

 , 

4 :J =  Ω =

2
11

2
22

2
33

2
44

/

0 /

0 0 /

0 0 0 /

g

g

g

g

σ µ
σ µ

σ µ
σ µ

 +
 + 
 +
 

+  

 . 

The covariance matrices of utility differences are as follows: 

2 :J =  [ ]1 1J∆ = − ,  ∆Ω = 2
11 22 2gσ σ µ + +   , 

3:J =  
1 0 1

0 1 1J

− 
∆ =  − 

 ,  ∆Ω =
2

11 33
2 2

33 22 33

2

2

g

g g

σ σ µ
σ µ σ σ µ

 + +
 + + + 

 , 

4 :J =  

1 0 0 1

0 1 0 1

0 0 1 1
J

− 
 ∆ = − 
 − 

 , 

 ∆Ω =

2
11 44

2 2
44 22 44

2 2 2
44 44 33 44

2 /

/ 2 /

/ / 2 /

g

g g

g g g

σ σ µ
σ µ σ σ µ
σ µ σ µ σ σ µ

 + +
 + + + 
 + + + + 

 . 

Step 3: The Order Condition 

Each heteroscedastic model has 1J +  unknown parameters: J  iiσ ’s and one µ . The order 
condition then provides the following information regarding identification: 

2J = : 11 22{ , , }unknowns σ σ µ= ; 0s =    0  variances are identified  

3J = : 11 22 33{ , , , }unknowns σ σ σ µ= ; 2s =    up to 2  variances are identified 

4J = : 11 22 33 44{ , , , , }unknowns σ σ σ σ µ= ; 5s =   potentially all variances are identified  

Step 4: The Rank Condition 

The first step in applying the Rank Condition is to vectorize the unique elements of ∆Ω  into a 
column vector (we call this operator vecu):1  

                                                 
1 Note that there’s no need to continue with identification for the binary heteroscedastic case, since the order 
condition resolved that none of the error parameters are identified. 
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3:J =  vecu( ∆Ω ) = 

2
11 33

2
22 33

2
33

2

2

g

g

g

σ σ µ
σ σ µ

σ µ

 + +
 + + 
 + 

 , 

4 :J =  vecu( ∆Ω ) = 

2
11 44

2
22 44

2
33 44

2
44

2 /

2 /

2 /

/

g

g

g

g

σ σ µ
σ σ µ
σ σ µ

σ µ

 + +
 + + 
 + +
 

+  

 . 

By examination, it is clear that we are short an equation in both cases. This is formally 
determined by examining the Rank of the Jacobian matrix of vecu( ∆Ω ) with respect to each of 
the unknown parameters 2

11( ,..., , / )JJ gσ σ µ : 

3 :J =  

1 0 1 2

  0 1 1 2

( ) 0 0 1 1

Jacobian

matrix of

vecu ∆

 
 =  
 Ω  

, 3Rank =  →  
can estimate 2 of the parameters;

must normalize  and one .iiµ σ
 

4 :J =  

1 0 0 1 2

0 1 0 1 2
   

0 0 1 1 2
( )

0 0 0 1 1

Jacobian

matrix of

vecu ∆

 
 
 =
 

Ω  
 

, 4Rank =  →  
can estimate 3 of the parameters;

must normalize  and one .iiµ σ
 

So for both of these cases, the scale term µ  as well as one of the iiσ ’s must be normalized.  

Which iiσ  should be fixed? And to what value? This is where the Equality Condition comes into 
play, and it turns out that the normalizations for logit kernel models are not always arbitrary or 
intuitive. 

Step 5: The Equality Condition 

For application of the Equality Condition, we will use the three alternative model as an example. 
It is useful in the analysis to deal directly with the estimated (i.e., scaled) parameters, so we 
introduce the notation 2( )ii iσ µσ= . Say we impose the normalization that the third 
heteroscedastic term, 33σ , is constrained to some fixed value we denote as N

ffσ , the Equality 
Condition is then written as: 

2
11 33

2 2
33 22 33

( 2 )

( ) ( 2 )

g

g g

σ σ µ
σ µ σ σ µ

 + +
 + + + 

=
2

11
2 2

22

( 2 )

( ) ( 2 )

N N
ff N

N N N
ff N ff N

g

g g

σ σ µ
σ µ σ σ µ

 + +
 + + +  

 

where the matrix on the left represents the theoretical (non-normalized) model and the matrix on 
the right represents the normalized model. This relationship states that when the normalization is 
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imposed, the remaining parameters in the normalized model will adjust such that the theoretical 
(or true) covariance matrix of utility differences is recovered. It also provides the following three 
equations: 

2( )N
ff Ngσ µ+ = 2

33( )gσ µ+  , (8) 
2

11( 2 )N N
ff Ngσ σ µ+ + = 2

11 33( 2 )gσ σ µ+ +  , and (9) 
2

22( 2 )N N
ff Ngσ σ µ+ + = 2

22 33( 2 )gσ σ µ+ +  . (10) 

The question is, what values of N
ffσ  guarantee that these relationships hold? To derive the 

restrictions on N
ffσ , we first use Equations (8) to (10) to develop equations for the unknown 

parameters of the normalized model ( )2
11 22, ,  and N N

Nµ σ σ  as functions of the normalized parameter 
N
ffσ  and the theoretical parameters ( )2

11 22 33, ,   and µ σ σ σ , which leads to: 

2 2
33( ) ( )N

N ff g gµ µ σ σ= + +  ,   (11) 

( ) ( )11 11 11 33 33( ) ( )N N
ffg g gσ σ σ σ σ σ= + + − +  , and (12) 

( ) ( )22 22 22 33 33( ) ( )N N
ffg g gσ σ σ σ σ σ= + + − +  . (13) 

Additionally, the scales 2µ  and 2
Nµ  must be strictly greater than zero, and the variances 

11 22 33 11 22,  ,  ,  ,   and N N N
ffσ σ σ σ σ σ  must be greater than or equal to zero, which results in the 

following set of restrictions: 

2
33( ) ( ) 0N

ff g gµ σ σ+ + >  ,    (14) 

( ) ( )11 11 33 33( ) ( ) 0N
ffg g gσ σ σ σ σ+ + − + ≥  , and  (15) 

( ) ( )22 22 33 33( ) ( ) 0N
ffg g gσ σ σ σ σ+ + − + ≥  .  (16) 

Equation (14) will always be satisfied. Equations (15) and (16) are where it gets interesting, 
because solving for N

ffσ  leads to the following restrictions on the normalization: 

( )33 ( )
N
ff ii

ii

g
g

σ σ σ σ≥ − +     , 1,2i =  . (17) 

( 33σ  is the heteroscedastic term that is fixed.) 

What does this mean? Note that as long as alternative 3 is the minimum variance alternative, the 
right hand side of Equation (17) is negative, and so the restriction is satisfied for any 0N

ffσ ≥ . 
However, when alternative 3 is not the minimum variance alternative, N

ffσ  must be set “large 
enough” (and certainly above zero) such that Equation (17) is satisfied. This latter approach to 
normalization is not particularly practical since the iiσ are unknown (how large is large 
enough?), and it has the drawback that MNL is not a case nested within the logit kernel 
specification. Therefore, the following normalization is recommended: 
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The preferred normalization for the heteroscedastic logit kernel model is to constrain the 
heteroscedastic term of the minimum variance alternative to zero.  

A method for implementing this normalization is described later in the next section.  

Generalizing the Heteroscedastic Case 

These results for the heteroscedastic model can be straightforwardly generalized to the 
following: 

Identification 

2J =  none of the heteroscedastic variances can be identified.  

3J ≥  1J −  of the heteroscedastic variances can be identified. 

Normalization 

For 3J ≥ , a normalization must be imposed on one of the variance terms, denote this as 
N

jj ffσ σ=  where jjσ  is the true, albeit unknown, variance term that is fixed to the value N
ffσ .  

This normalization is not arbitrary, and must meet the following restriction: 

( ) ( )
N
ff jj ii

ii

g
g

σ σ σ σ≥ − +     , 1,...,i J=  . 

This restriction shows that the natural tendency to normalize an arbitrary heteroscedastic term to 
zero (typically the same normalization as the alternative specific constants in the systematic part 
of the utility) is incorrect. If the alternative does not happen to be the minimum variance 
alternative, the parameter estimates will be inconsistent, there can be a significant loss of fit (as 
demonstrated in the empirical section at the end of this paper), and it can lead to the incorrect 
conclusion that the model is homoscedastic. This is an important issue, which, as far as we can 
tell, is ignored in the literature. It appears that arbitrary normalizations are being made for 
models of this form (see, for example Gönül and Srinivasan, 1993, and Greene, 2000, Table 
19.15). Therefore, there is a chance that a non-minimum variance was normalized to zero, which 
would mean that the model is misspecified. It is important to note that it is the addition of the 
i.i.d. disturbance that causes the identification problem. Therefore, heteroscedastic pure probit 
models as well as the heteroscedastic extreme value models (see, for example, Bhat, 1995, and 
Steckel and Vanhonacker, 1988) do not exhibit this property. Walker (2001) shows that an 
arbitrary normalization is valid for a heteroscedastic probit model.  

Ideally, we would like to impose a normalization such that MNL is a special case of the model. 
Therefore, the best normalization is to fix the minimum variance alternative to zero. However, 
there is in practice no prior knowledge of the minimum variance alternative. A brute force 
solution is to estimate J  versions of the model, each with a different heteroscedastic term 
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normalized; the model with the best fit is the one with the correct normalization. This is 
obviously cumbersome as well as time consuming. Alternatively, one can estimate the 
unidentified model with all J heteroscedastic terms. Although this model is not identified (that 
is, there are infinite solutions that provide the best fit to the data), it will converge to one of these 
infinite (and correct) solutions and therefore reflect the true covariance structure of the model. 
(The problem with the results from an unidentified model is that the standard errors are not 
estimable.) Therefore, the heteroscedastic term with minimum estimated variance in the 
unidentified model is the minimum variance alternative, thus eliminating the need to estimate J  
different models. Examples of this method are provided in the applications section. 

Identification of Logit Kernel Models with Nesting 
Nesting and cross-nesting logit kernel is another important special case, and is analogous to 
nested and cross-nested logit. The nested logit kernel model is specified as follows: 

n n n n nU X F Tβ ζ ν= + +  ,  

where: nζ  is ( 1)M × , M is the number of nests, and one factor is defined for each nest.  

 nF  is ( )nJ M× , 
1   if alternative   is a member of nest  

0   otherwisejm

j m
f


= 


   

 T  is ( )M M×  diagonal, which contains the standard deviation of each factor.  

In a strictly hierarchical nesting structure (analogous to nested logit), the nests do not overlap, 
and 'n nF F  is block diagonal. In a cross-nested structure, the alternatives can belong to more than 
one group. This section discusses in order the cases of 2 nests, 3 nests, more than 3 nests, cross-
nested models, and other extensions. 

Models with 2 Hierarchical Nests (2 levels, no cross-nesting) 

The summary of identification for a 2 nest structure is that only 1 of the nesting parameters is 
identified. Furthermore, the normalization of the nesting parameter is arbitrary. This is best 
shown by example. Take a 5 alternative case (with universal choice set) in which the first 2 
alternatives belong to one nest, and the last 3 alternatives belong to a different nest. The model is 
written as: 

1 11 1

2 21 1

3 2 2 3

4 2 2 4

5 2 2 5

...

...

...

...

...

n nn

n nn

n n n

n n n

n n n

U

U

U

U

U

νσ ζ
νσ ζ

σ ζ ν
σ ζ ν
σ ζ ν

= + +
= + +
= + +
= + +
= + +

 , where: 

1 0

1 0

0 1

0 1

0 1

F

 
 
 
 =
 
 
  

  and 1

2

0

0
T

σ
σ

 
=  
 

 .  

We denote this specification as 1, 1, 2, 2, 2 (a shorthand notation of the matrix F ).  
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The covariance matrix is: 

Ω =

2
11

2
11 11

2
22

2
22 22

2
22 22 22   .

/

/

0 0 /

0 0 /

0 0 /

g

g

g

g

g

σ µ
σ σ µ

σ µ
σ σ µ
σ σ σ µ

 +
 + 
 +
 

+ 
 + 

  

And the covariance matrix of utility differences (with alternative 5 as the base) is as follows: 

∆Ω =

2
11 22

2 2
11 22 11 22

2 2 2

2 2 2 2

2 /

/ 2 /

/ / 2 /

/ / / 2 /

g

g g

g g g

g g g g

σ σ µ
σ σ µ σ σ µ

µ µ µ
µ µ µ µ

 + +
 + + + + 
 
 
  

  

It can be seen from this matrix that only the sum 11 22( )σ σ+  can be identified. This is verified by 
the rank condition as follows:  

vecu( ∆Ω ) = 

2
11 22

2
11 22

2

2

2 /

/

/

2 /

g

g

g

g

σ σ µ
σ σ µ

µ
µ

 + +
 + + 
 
 
  

   →    

1 1 2

Jacobian 1 1 1

matrix 0 0 1

0 0 2

 
 
 =
 
 
 

   →    RANK=2  

→  can estimate 1 of the parameters; must normalize µ  and one iiσ .  

Furthermore, unlike the heteroscedastic logit kernel model, either one of the variance terms can 
be normalized to zero (i.e., the normalization is arbitrary). This can be seen intuitively by 
noticing that only the sum 11 22( )σ σ+  appears in ∆Ω , and so it is always this sum that is 
estimated regardless of which term is set to zero. The parameters can also be constrained to be 
the same 11 22( )σ σ= . This can also be verified via the Equality Condition, as follows.  

2
11 22

2 2
11 22 11 22

2 2 2

2 2 2 2

( 2 ) /

( ) / ( 2 ) /

/ / 2 /

/ / / 2 /

g

g g

g g g

g g g g

σ σ µ
σ σ µ σ σ µ

µ µ µ
µ µ µ µ

 + +
 + + + + 
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=

2
11

2 2
11 11

2 2 2

2 2 2 2

( 2 ) /

( ) / ( 2 ) /

/ / 2 /

/ / / 2 /

N

N N

g

g g

g g g

g g g g

σ µ
σ µ σ µ

µ µ µ
µ µ µ µ

 +
 + + 
 
 
  

 Normalization 1: 22 0Nσ =  

=

2
22

2 2
22 22

2 2 2

2 2 2 2

( 2 ) /

( ) / ( 2 ) /

/ / 2 /

/ / / 2 /

N

N N

g

g g

g g g

g g g g

σ µ
σ µ σ µ

µ µ µ
µ µ µ µ

 +
 + + 
 
 
  

 Normalization 2: 11 0Nσ =  

=

2

2 2

2 2 2

2 2 2 2

(2 2 ) /

(2 ) / (2 2 ) /

/ / 2 /

/ / / 2 /

N
xx

N N
xx xx

g

g g

g g g

g g g g

σ µ
σ µ σ µ

µ µ µ
µ µ µ µ

 +
 + + 
 
 
  

 Normalization 3: 11 22
N N N

xxσ σ σ= =  

These equalities will always hold as each sigma term is greater than or equal to zero, and the 
following is always true: 

11 22 11

22

( )   from normalization 1

  from normalization 2  

=  2  from normalization 3

N

N

N
xx

σ σ σ
σ
σ

+ =
= . 

Therefore, while it is not possible to estimate both variance parameters of the 1, 1, 2, 2, 2 
structure, the following structures are all identified and result in identical covariance structures 
(i.e., identical models): 

{ 1, 1, 0, 0, 0 } = { 0, 0, 2, 2, 2 } = { 1, 1, 2, 2, 2 with 1 2σ σ=  } . 

These results straightforwardly extend to all hierarchical two nest structures regardless of the 
number of alternatives (as long as at least one of the nests has 2 or more alternatives).  

Relationship with Nested Logit 

How is it that only 1 of the nesting parameters is identified in Logit Kernel, whereas 2 nesting 
parameters (the logsum parameters) are estimable in a 2-nest Nested Logit model? The answer is 
that the covariance structure shown above for the 2-nest Logit Kernel model is different than that 
of a Nested Logit model. Nested Logit is a homoscedastic model in that the diagonal elements of 
the covariance structure are identical to one another. This can be exactly mimicked with Logit 
Kernel via a more complicated error component structure than what was used above. 
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1 1 1 2 3 1

2 1 1 2 4 2

3 2 2 2 5 3

4 2 2 1 6 4

5 2 2 1 7 5

...

...

...

...

...

n n n n

n n n n

n n n n

n n n n

n n n n

U

U

U

U

U

σ ζ σ ζ ν
σ ζ σ ζ ν
σ ζ σ ζ ν
σ ζ σ ζ ν
σ ζ σ ζ ν

= + + +
= + + +
= + + +
= + + +
= + + +

 ,  

where:

1 0 1 0 0 0 0

1 0 0 1 0 0 0

0 1 0 0 1 0 0

0 1 0 0 0 1 0

0 1 0 0 0 0 1

F

 
 
 
 =
 
 
  

 and 

1

2

2

2

1

1

1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

T

σ
σ

σ
σ

σ
σ

σ

 
 
 
 
 =  
 
 
 
  

 .  

The covariance matrix is: 

Ω =
2

11 22
2

11 11 22
2

11 22
2

22 11 22
2

22 22 11 22

/

/

0 0 /

0 0 /

0 0 /

g

g

g

g

g

σ σ µ
σ σ σ µ

σ σ µ
σ σ σ µ
σ σ σ σ µ

 + +
 + + 
 + +
 

+ + 
 + + 
 . 

The covariance matrix of utility differences is: 

∆Ω =  

2
11 22

2 2
11 22 11 22

2 2 2
11 11 11

2 2 2 2
11 11 11 11

2 2 2 /

2 / 2 2 2 /

/ / 2 2 /

/ / / 2 2 /

g

g g

g g g

g g g g

σ σ µ
σ σ µ σ σ µ

σ µ σ µ σ µ
σ µ σ µ σ µ σ µ

 + +
 + + + + 
 + + +
 

+ + + +  

 

. 

vecu( ∆Ω ) = 

2
11 22

2
11 22

2
11

2
11

2 2 2 /

2 /

/

2 2 /

g

g

g

g

σ σ µ
σ σ µ

σ µ
σ µ

 + +
 + + 
 +
 

+  

   →    

2 2 2

Jacobian 2 1 1

matrix 1 0 1

2 0 2

 
 
 =
 
 
 

   →   RANK=3  

→  can estimate 2 of the parameters; only need to normalize µ .  
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So, in this way a Nested Logit model can be exactly mimicked and the correlation within each 
nest estimated, but at the cost of 5 degrees of integration! 

Models with Three Hierarchical Nests (2 levels, no cross-nesting) 

The summary of identification for models with 3 or more hierarchical nests is that all of the 
nesting parameters are identified. To show this, we will again look at a 5 alternative model, this 
time imposing a 3 nest structure (1, 1, 2, 3, 3): 

1 1 1 1

2 1 1 2

3 2 2 3

4 3 3 4

5 3 3 5

...

...

...

...

...

n n n

n n n

n n n

n n n

n n n

U

U

U

U

U

σ ζ ν
σ ζ ν
σ ζ ν
σ ζ ν
σ ζ ν

= + +
= + +
= + +
= + +
= + +

 , where: 

1 0 0

1 0 0

0 1 0

0 0 1

0 0 1

F

 
 
 
 =
 
 
  

 and 
1

2

3

0 0

0 0

0 0

T

σ
σ

σ

 
 =  
  

 .  

The covariance matrix of utility differences is: 

∆Ω =

2
11 33

2 2
11 33 11 33

2 2 2
33 33 22 33

2 2 2 2

2 /

/ 2 /

/ / 2 /

/ / / 2 /

g

g g

g g g

g g g g

σ σ µ
σ σ µ σ σ µ

σ µ σ µ σ σ µ
µ µ µ µ

 + +
 + + + + 
 + + + +
 
  

 .  

A check of the rank condition verifies that all three variance parameters are identified: 

vecu( ∆Ω ) = 

2
11 33

2
11 33

2
33

2
22 33

2

2

2 /

/

/

2 /

/

2 /

g

g

g

g

g

g

σ σ µ
σ σ µ

σ µ
σ σ µ

µ
µ

 + +
 + + 
 +
 

+ + 
 
 
  

   →    

1 0 1 2

1 0 1 1

Jacobian 0 0 1 1

matrix 0 1 1 2

0 0 0 1

0 0 0 2

 
 
 
 

=  
 
 
 
 

   →   RANK=4  

→  can estimate 3 of the parameters; only need to normalize µ .  

It is an interesting result that 1, 1, 0, 2, 2 structure results in both variance parameters being 
identified (by virtue of having a 3 nest structure) whereas only one parameter of the 1, 1, 2, 2, 2 
structure is identified.  

Discussion of 2-Nest versus 3-Nest Identification Results 

Conceptually, the number of estimable parameters can be thought of in terms of the number of 
differences and number of covariances that are left in the utility differences. In a two nest 
structure, only one difference remains and no covariances and therefore one parameter is 
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estimable. Whereas in a three nest structure, there are two differences, plus the covariance 
between these two differences, and so three parameters are estimable. 

Models with Three or More Hierarchical Nests (2 levels, no cross-nesting) 

Th 3-nest finding can be extended to any model with 3 or more nests (where ‘nests’ can have 
only 1 alternative, as long as at least one nest has 2 or more alternatives) as follows. Without loss 
of generality, assume that the base alternative is a member of a nest with 2 or more alternatives 
(as in the example above). Define bm  as the group to which the base alternative belongs, and bbσ  
as the variance associated with this base. Recall that M is the number of nests. The covariance 
matrix of utility differences has the following elements: 

On the diagonal:  
22 /ii bb gσ σ µ+ +    bi m∀ ∉  ,  M-1 equations, (18) 

22 /g µ  , 1 equation. (19) 

On the off-diagonal:  
2/bb gσ µ+  ,    1 equation, (20) 

2/g µ  ,     irrelevant: a dependent equation,  
2/ii bb gσ σ µ+ +  for some bi m∉ , irrelevant: a dependent equation.  

Equations (18) through (20) provide identification for all nesting parameters, and the remaining 
equations are dependent. In the two-nest case, Equation (20) does not exist, and therefore is an 
equation short of identification. 

Cross-Nested Models 

There are no general rules for identification and normalization of cross-nested structures, and one 
has to check the rank condition on a case-by-case basis. For example, in the five alternative case 
in which the third alternative belongs to both nests (1, 1, 1-2, 2, 2), the (non-differenced) 
covariance matrix is: 

Ω =

2
11

2
11 11

2
11 11 11 22

2
22 22

2
22 22 22   .

/

/

/

0 0 /

0 0 /

g

g

g

g

g

σ µ
σ σ µ
σ σ σ σ µ

σ σ µ
σ σ σ µ

 +
 + 
 + +
 

+ 
 + 

 

A check of the order and rank conditions would find that both of the parameters in this cross-
nested structure are identified. However, note that the cross-nesting specification can have 
unintended consequences on the covariance matrix. For example, in the (1, 1, 1-2, 2, 2) 
specification shown above, the third alternative is forced to have the highest variance (at least in 
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the levels form). There are numerous possible solutions. One is to add a set of heteroscedastic 
terms, another is to add factors such that all the alternative-specific variances are identical as 
with the following specification: 

1 0 0 1 0 0

1 0 0 0 1 0

1 0 0 0 0 1

0 1 0 0 0 1

0 0 1 0 0 1

F

 
 
 
 =
 
 
  

 and 

1

1

1

2

2

2  .

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

T

σ
σ

σ
σ

σ
σ

 
 
 
 

=  
 
 
 
  

  

The covariance matrix of utility differences for this structure is as follows: 

∆Ω =

2
11 22

2 2
11 22 11 22

2 2 2
11 11 11

2 2 2 2
11 11 11 11  .

2 2 2 /

2 / 2 2 2 /

2 / 2 / 2 2 /

/ / / 2 2 /

g

g g

g g g

g g g g

σ σ µ
σ σ µ σ σ µ

σ µ σ µ σ µ
σ µ σ µ σ µ σ µ

 + +
 + + + + 
 + + +
 

+ + + +  

  

A check of the rank condition verifies that both variance parameters are identified for this 
specification. 

vecu( ∆Ω ) = 

2
11 22

2
11 22

2
11

2
11

2
11

2
11

2 2 2 /

2 /

2 /

2 2 /

/

2 2 /

g

g

g

g

g

g

σ σ µ
σ σ µ

σ µ
σ µ
σ µ
σ µ

 + +
 + + 
 +
 

+ 
 +
 

+  

   →    

2 2 2

2 1 1

Jacobian 2 0 1

matrix 2 0 2

1 0 1

2 0 2

 
 
 
 

=  
 
 
 
 

   →    RANK=3   

→   can estimate 2 of the parameters, only need to normalize µ . 

Extensions to Nested Models 

There are various complexities that can be introduced to the nesting structure, including multi-
level nests, cross-nested structures with multiple dimensions, and unknown parameters in the 
loading matrix ( F ). While we have investigated various special cases of these extended models, 
we have not yet derived general rules for identification. We recommend that identification be 
performed automatically on a case-by-case basis by working through the rank and order 
conditions. More importantly, research should be directed towards establishing more general 
findings. 
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Identification of Logit Kernel Models with Panel Data 
Another situation for which the Logit Kernel model is being used is for panel data, in which 
multiple choices ( )1,..., np P= are observed for a given individual. Typically, Equation (4) would 
be modified for a panel data context by making the choice a choice at a particular time period by 
adding subscripts p (or, more often t) to denote the time period of the choice and the explanatory 
variables for that choice. Since the interest here is covariance structure of the utilities, we will 
modify equation (4) such that there are n nJ P  utilities for each individual as follows: 

n n n n nU X F Tβ ζ ν= + +  ,    

cov( )nU = 2' ' ( / )
nn n JF TT F g Iµ+   

where: nU  is a ( 1)n nJ P ×  vector of utilities; 

 nX  is a ( )n nJ P K×  matrix of explanatory variables; 

 β  is ( 1)K × ; 

 nF  is ( )n nJ P M× ; 

 T  is ( )M M× ; 

 nζ  is ( 1)M × ; and 

 nν  is ( 1)n nJ P × . 

The key in terms of identification is that the covariance matrix to be examined for identification 
is now of dimension n n n nJ P J P×  . Unsurprisingly, this enables potentially many more 
disturbance parameters to be estimated. This is suggested by the Order Condition alone, which 
states that the maximum number of (alternative-specific) disturbance parameters may be as high 
as ( 1) 2 1JP JP − − . 

We are going to describe identification of two specific ways (of many) that Logit Kernel can be 
used in the panel data case. The first is an agent effect, in which it is assumed that the 
disturbances of an alternative are correlated across time periods. Bhat and Gossen (2003) used 
such a specification in a model of weekend activity type choice. The second is when a factor is 
included to represent a latent characteristic of the individual, such as environmental friendliness 
and health consciousness. Toledo (2003) used such a specification in a model of driver following 
and lane switching behavior, in which the latent factor represented aggressiveness.  

In both cases described below, we will use the situation of 3 alternatives ( 3J = ) and two time 
periods ( 3P = ). 
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Agent Effect 

The idea of an agent effect is that what is unobserved for one individual in one time period is 
probably the same as what is unobserved for the same individual in another time period. This is 
implemented as having person and alternative specific covariances that are repeated in all time 
periods for any given individual. The model is written as follows: 

1 1 1 1 1int

2 1 2 2 2

3 1 3 3 3

1 2 1 1 4

2 2 2 2 5

3 2 3 3 6

...

...

...

...

...

...

n n n

n n n

n n n

n n n

n n n

n n n

UU

U

U

U

U

U

σ ζ ν
σ ζ ν
σ ζ ν
σ ζ ν
σ ζ ν
σ ζ ν

= = + +
= + +
= + +
= + +
= + +
= + +

, 

1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

F

 
 
 
 

=  
 
 
 
 

 and 
1

2

3

0 0

0 0

0 0

T

σ
σ

σ

 
 =  
  

 . 

The covariance matrix is: 

Ω =

2
11

2
22

2
33

2
11 11

2
22 22

2
33 33

/

0 /

0 0 /

0 0 /

0 0 0 /

0 0 0 0 /

g

g

g

g

g

g

σ µ
σ µ

σ µ
σ σ µ

σ σ µ
σ σ µ

 +
 + 
 +
 

+ 
 +
 

+  

, 

and the covariance matrix of utility differences is: 
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Application of the Rank Condition leads to: 
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   →    RANK=4 .  
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All three sigmas are identified, and only the variance of the Gumbel has to be normalized. Unlike 
in the cross-sectional heteroscedastic case, the interactions between choices for the same 
individual (the equations in the lower left quadrant of the variance-covariance matrices) gets us 
the third parameter.  

Furthermore, since only the differences in utilities matter, the case above is identical to one in 
which: 
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and also identical to: 
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Only the differences matter, and since all three cases lead to the same variance matrix of utility 
differences, all three cases are statistically identical. The fact that they each say something 
different at the level of utility differences is irrelevant, as, statistically, the levels form does not 
exist. The value of recognizing the equality of the different specifications include not wasting 
effort by exploring redundant specification and also, more likely than not, one of the possible 
specifications will be easier to program than another. 

Furthermore, note that additional parameters are also estimable beyond the three in the model 
above. For example, a choice-specific covariance could be added as follows: 
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   →    RANK=5   

Therefore all 4 parameters are identified. However, our experience has been that real data have 
trouble supporting such an intricate specification, even if the specification is theoretically 
identifiable. Is it necessary to constrain the parameter associated with 4ς  to be equal to that of 

5ς ? Check the rank condition. 

 

Latent Variable 

This is the case in which a latent factor, which is a characteristic of the individual, is included in 
the model. The idea here is that there is a property of the individual (such as aggressiveness or 
environmentally friendliness) that is important to the choice behavior, but is unobserved to the 
analyst. This latent characteristic can be modeled as a factor 1ς . This characteristic enters all 
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utilities for the person (just as another characteristic such as Income would enter the utilities), 
and the impact of this characteristic on each utility varies as denoted by the different factor 
loadings 1f , 2f , and 3f  as follows: 
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and the covariance matrix of utility differences is: 
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   →    RANK=3   

→   can estimate only 2 of the parameters, need to normalize one f  and µ . 

Application of the Equality Condition will show that the normalization is arbitrary, that is, any 
one of the f s can be normalized. Intuitively, this is because unlike the heteroscedastic case in 
which the parameters ( 11 22,  ,  ...,  JJσ σ σ ) were restricted to be non-negative, the parameters in 
this agent effect case ( 1 2 3,  ,  f f f ) are not restricted. In fact, the parameters perform like the 
parameters of a socio-economic variable nX  such as income, where there is a base alternative 
(the one with 0if = ) and the other parameters can be either positive or negative to reflect 
relative preferences given a particular value of nX . 

Estimation Results 
In this section, a series of estimation results are presented that empirically verify the 
identification claims made above for the heteroscedastic and nesting cases. Both synthetic data 
and real data are used. 

Synthetic Data: Heteroscedasticity 
The first application concerns the heteroscedastic case, in which the findings were that one 
heteroscedastic variance must be normalized and the choice of which to normalize is not 
arbitrary. A synthetic dataset are used that consist of a choice situation among three alternatives. 
The model specification is as follows.  
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The true parameter values used to generate the synthetic data are: 
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1 2 1 2 31.5,   0.5,   1,   3,   2,   1,  and 1.α α β σ σ σ µ= = = − = = = =  

The explanatory variable, X , is simulated as a normal variable with a standard deviation of 3, 
independent across alternatives and observations. The utilities for each observation are generated 
by drawing a single random draw for each jnζ  from independent standard normal distributions 
and each jnν  from independent standard Gumbel distributions. The utilities are calculated, and 
the alternative with the highest utility is then the chosen alternative. 

Estimation results using the synthetic data are provided in Table 1, which presents estimation 
results regarding selecting and setting the base heteroscedastic term. Recall that only 1J −  
heteroscedastic terms are identified, and that it is necessary to either set the minimum variance 
term to zero, or set any of the other variance terms high enough according to Equation (17), 
which was derived earlier: 

( ) ( )
N
ff jj ii

ii

g
g

σ σ σ σ≥ − +     , 1,...,i J=  ,  

where jjσ  is the theoretical (true) variance that is fixed to the value N
ffσ . 

All of the models in Table 1a are estimated with 10,000 observations and 500 Halton draws. 
Walker (2001) provides estimation results that verify that 500 Halton draws are sufficient for this 
model. The first model shows estimation results for an unidentified model; this model is used to 
determine the minimum variance alternative, and it correctly identifies the third alternative as 
having minimum variance.2 Models 2 through 4 show identified models in which the minimum 
variance alternative is constrained to different values (0, 1, and 2); as expected, the log-
likelihoods of these models are basically equivalent and all of these represent correct 
specifications. Models 5 through 10 show identified models in which the maximum variance 
alternative is constrained to different values (0, 1, 1.5, 2.25, 3, and 4). Applying Equation (17) 
(repeated above), the model specification will be correct as long as 1σ  is constrained to a value 
above 2.2. The empirical results verify this. First, there is a severe loss of fit when the 1σ is 
constrained below 2.2. Second, the parameter estimates for the mis-specified models are biased. 
This can be seen by examining the ratio of the systematic parameters (for example, 1/β α ) across 
models. While the scale shifts for various normalizations (and therefore the parameter estimates 
also shift), the ratio of systematic parameters should remain constant across normalizations. A 
cursory examination of the estimation results shows that these ratios begin to drift with 
successively invalid normalizations. Finally, note that these results indicate a slight loss of fit 
when the base alternative is constrained to a high value ( 3σ =2 and 1σ =4), and this is due to the 

                                                 
2 We were able to calculate t-statistics for the unidentified model here (and elsewhere) for two reasons. First, 
simulation has the tendency to mask identification issues, and therefore does not always result in a singular Hessian 
for a finite number of draws. Second, the slight difference between the Gumbel and Normal distributions makes the 
unidentified model only ‘nearly’ singular, and not perfectly singular. 
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issue regarding the slight difference between the Gumbel and normal distributions. It must be 
emphasized that the normalization in heteroscedastic logit kernel models is not arbitrary. 

Table 1: Selecting and Setting the Base Alternative in a Heteroscedastic Model  
(Synthetic Data with 3 Alternatives) 

 
True

Parameter Value Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat

α1 1.5     1.27 (3.4) 1.24 (15.7) 1.51 (15.9) 2.18 (15.9) 0.97 (29.1) 1.02 (27.9) 1.08 (23.4) 1.24 (5.8) 1.57 (17.2) 2.03 (17.4) 

α2 0.5     0.43 (2.6) 0.42 (8.9) 0.53 (9.2) 0.76 (9.2) 0.37 (11.1) 0.40 (11.5) 0.41 (10.4) 0.42 (2.2) 0.54 (6.8) 0.70 (7.0) 

β -1.0     -0.80 (3.8) -0.78 (14.6) -0.94 (14.1) -1.36 (13.7) -0.51 (55.5) -0.57 (65.0) -0.64 (39.1) -0.78 (16.0) -0.98 (37.1) -1.27 (37.1) 

σ1 3.0     2.32 (2.9) 2.24 (9.7) 2.84 (10.3) 4.30 (11.0) 0.00 --- 1.00 --- 1.50 --- 2.25 --- 3.00 --- 4.00 ---

σ2 2.0     1.27 (1.9) 1.21 (4.7) 1.69 (5.9) 2.80 (7.7) 0.06 (0.1) 0.03 (0.3) 0.50 (1.8) 1.22 (6.6) 1.82 (11.7) 2.58 (14.5) 

σ3 1.0     0.35 (0.2) 0.00 --- 1.00 --- 2.00 --- 0.00 (0.9) 0.00 (1.6) 0.01 -(0.5) 0.16 (0.0) 1.07 (4.4) 1.78 (7.6) 

(Simul.) Log-Likelihood: -6837  -6837  -6837  -6838  -6907  -6865  -6845  -6837  -6837  -6838  

Model:  1 2 3 4 5 6 7 8 9 10

Unidentified Identified: Maximum Variance BaseIdentified: Minimum Variance Base

 
 

Empirical Application: Telephone Service 
In this section, we apply these methods to residential telephone demand analysis. The model 
involves a choice among five residential telephone service options for local calling. A household 
survey was conducted in 1984 for a telephone company and was used to develop a 
comprehensive model system to predict residential telephone demand (Train, McFadden and 
Ben-Akiva, 1987). Below we use part of the data to estimate a model that explicitly accounts for 
inter-dependencies between residential telephone service options. We first describe the data. 
Then we present estimation results using a variety of error structures.  

The Data 

Local telephone service typically involves the choice between flat (i.e., a fixed monthly charge 
for unlimited calls within a specified geographical area) and measured (i.e., a reduced fixed 
monthly charge for a limited number of calls plus usage charges for additional calls) services. In 
the current application, five services are involved, two measured and three flat. They can be 
described as follows:  

• Budget measured - no fixed monthly charge; usage charges apply to each call made.  

• Standard measured - a fixed monthly charge covers up to a specified dollar amount (greater 
that the fixed charge) of local calling, after which usage charges apply to each call made.  

• Local flat - a greater monthly charge that may depend upon residential location; unlimited 
free calling within local calling area; usage charges apply to calls made outside local calling 
area.  

• Extended area flat - a further increase in the fixed monthly charge to permit unlimited free 
calling within an extended area.  
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• Metro area flat - the greatest fixed monthly charge that permits unlimited free calling within 
the entire metropolitan area. 

The sample concerns 434 households. The availability of the service options of a given 
household depends on its geographical location. Details are provided in Table 2. In Table 3, we 
summarize the service option availabilities over the usable sample. 

Table 2: Telephone Data - Availability of Service Options 

Metropolitan Areas
Perimeter Exchanges 

Adjacent to Metro Areas
All Other

Budget Measured Yes Yes Yes

Standard Measured Yes Yes Yes

Local Flat Yes Yes Yes

Extended Flat No Yes No

Metro Flat Yes Yes No

Service Options
Geographic Location

 

 Table 3: Telephone Data - Summary Statistics on Availability of Service Options 

Service Options Chosen Percent Total Available

Budget Measured 73                 0.168 434                 

Standard Measured 123                 0.283 434                 

Local Flat 178                 0.410 434                 

Extended Flat 3                 0.007 13                 

Metro Flat 57                 0.131 280                 

Total : 434                 1.000 1595                  

Models 

The model that we use in the present analysis is intentionally specified to be simple. The 
explanatory variables used to explain the choice between the five service options are four 
alternative-specific constants, which correspond to the first four service options, and a generic 
cost variable (the natural log of the monthly cost of each service options expressed in dollars). 
We investigated three types of error structures: heteroscedasticity, nested, and cross-nested 
structures. Unless otherwise noted, all of the logit kernel specifications were estimated using 
1000 Halton draws; Walker (2001) provides evidence that this is a sufficient number of draws. 

Heteroscedastic 

The results for the heteroscedastic case are provided in Table 4. Model 1 is simply the 
multinomial logit specification. The rest are logit kernel models. Model 2 is the unidentified 
model. The results of the unidentified model suggest that there is no strong base alternative, and 
it could be either alternative 1, 2, 4, or 5. Models 3-8 are estimation results for identified 
heteroscedastic models. Again, to explore the issue of the minimum variance alternatives, 5 
identified models were estimated, each one with a different base heteroscedastic term. (Note that 
this defeats the purpose of estimating the unidentified model, but was done for illustration 
purposes only.) As indicated by the unidentified models, the identified model estimation results 
support the conclusion that any of alternatives 1, 2, 4, or 5 could be set as the base. However, 
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constraining 3σ  to zero results in a significant loss of fit as demonstrated by model 5, whereas 
constraining it to 4.0 brings it in line with the correctly specified model as demonstrated by 
model 8. Comparing the correctly specified heteroscedastic models with the MNL model, there 
is an obvious gain in likelihood from incorporating heteroscedasticity, primarily due to capturing 
the high variance of alternative 3. 

Table 4: Telephone Model - Heteroscedastic Specification (1000 Halton Draws) 

Parameter Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat

Altern. Specific constants

   Budget Measured (1) -2.46  (8.4) -3.28  (7.7) -3.27  (7.9) -3.27  (7.1) -5.03  (2.4) -3.28  (6.0) -3.27  (7.8) -3.91  (2.2) 

   Standard Measured (2) -1.74  (6.6) -2.53  (6.4) -2.53  (6.6) -2.52  (6.2) -3.85  (2.2) -2.53  (6.1) -2.52  (6.5) -3.02  (2.4) 

   Local Flat (3) -0.54  (2.7) -1.37  (3.6) -1.37  (3.8) -1.36  (3.2) -1.09  (2.1) -1.37  (3.6) -1.36  (3.7) -1.67  (3.3) 

   Extended Flat (4) -0.74  (1.1) -1.04  (1.3) -1.04  (1.3) -1.04  (1.3) -1.37  (1.5) -1.04  (1.4) -1.04  (1.4) -1.10  (1.2) 

Log Cost -2.03  (9.6) -2.68  (8.2) -2.68  (8.2) -2.67  (4.9) -3.24  (3.1) -2.68  (6.2) -2.67  (8.2) -3.33  (2.9) 

σ1 0.03  (0.2) 0.02  (0.1) 2.77  (1.8) 0.03  (0.0) 0.03  (0.3) 0.76  (0.4) 

σ2 0.14  (0.4) 0.13  (0.3) 3.27  (1.6) 0.14  (0.1) 0.14  (0.3) 0.70  (0.3) 

σ3 2.88  (3.4) 2.88  (4.9) 2.88  (2.4) 2.88  (3.3) 2.87  (3.8) 4.00  ----   

σ4 0.04  (0.1) 0.04  (0.1) 0.04  (0.1) 1.14  (0.5) 0.04  (0.1) 0.11  (0.1) 

σ5 0.09  (0.3) 0.09  (0.3) 0.09  (0.2) 0.01  (0.0) 0.10  (0.0) 1.33  (1.3) 

(Simul.) Log-Likelihood: -477.56  -471.20  -471.20  -471.20  -476.66  -471.20  -471.20  -471.42  

Model:  1 2 3 4 5 6 7 8

Unidentified 
Heteroscedastic

MNL Identified Heteroscedastic Model

 
 

Nested & Cross-Nested Structures 

In Table 5, the estimation results of various nested and cross-nested specifications are provided. 
Table 5a reports results for identified model structures (as can be verified by the rank condition). 
The best specification is model 3, in which the first two alternatives are nested, the last two 
alternatives are nested, and the third term has a heteroscedastic term. This provides a significant 
improvement in fit over the MNL specification shown in the first column of Table 4, and also 
provides a better fit than the heteroscedastic models in Table 4. The poor fit for many of the 
nesting and cross-nesting specifications is due to the fact that the variance for alternative 3 is 
constrained to be in line with the other variances. The heteroscedastic models indicated that it 
has a much higher variance. Table 5b shows that when an additional variance term for alternative 
3 is added to the nested and cross-nested models the fit improves further.3  

Table 5c provides results for the unidentified model in which the first two alternatives are nested 
and the last 3 alternatives are nested, and we attempt (incorrectly) to estimate both error 
parameters. The first model, estimated with 1,000 Halton draws, appears to be identified. 
However, the second model, estimated using different starting values, shows that this is not the 

                                                 
3 Therefore, the problem identified earlier with the cross-nested 1, 1, 1-2, 2, 2 structure does not apply to this 
dataset. In fact, as shown by the models in Table 5c, alternative 3 has an even larger relative variance than the 1, 1, 
1-2, 2, 2 structure provides. 
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case; it has an identical fit, but very different estimates of the error parameters. This is as 
expected, because only the sum of the variances 2 2

1 2( )σ σ+  can be identified, which are shown to 
be identical in all the models (equal to 3.05). The remaining columns show that it can take a very 
large number of draws to get the telltale sign of an unidentified model, the singular Hessian – in 
this case, 80,000 Halton draws. (Again, the actual number depends on the specification and the 
data, and part of the complication is the slight difference between the Gumbel and Normal 
distributions.) Table 5d shows that the normalization for the 2 nest model is arbitrary. The table 
presents three normalizations resulting in identical fits where { 1, 1, 0, 0, 0 } = { 0, 0, 2, 2, 2 } = 
{ 1, 1, 2, 2, 2 with 1 2σ σ=  }.  

Table 5: Telephone Model - Nested & Cross-Nested Error Structures 

Specification*:  

Parameter Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat Est t-stat

Altern. Specific constants

   Budget Measured (1) -3.63  (5.0) -3.63  (5.0) -3.79  (5.4) -3.80  (5.7) -3.80  (5.7) -2.83  (2.4) 

   Standard Measured (2) -2.85  (4.3) -2.85  (4.3) -3.00  (4.6) -3.01  (4.9) -3.00  (4.9) -1.90  (3.1) 

   Local Flat (3) -1.48  (3.1) -1.48  (3.1) -1.63  (3.1) -1.09  (3.6) -1.09  (3.5) -0.55  (2.3) 

   Extended Flat (4) -1.52  (1.5) -1.52  (1.5) -1.18  (1.3) -1.19  (1.4) -1.19  (1.4) -0.76  (1.0) 

Log Cost -3.05  (4.5) -3.05  (4.5) -3.19  (5.0) -3.25  (6.1) -3.25  (6.1) -2.40  (2.1) 

σ1 1.32  (1.1) 1.32  (1.1) 1.55  (1.5) 2.16  (3.0) 0.01  (0.8) 0.65  (0.6) 

σ2 3.02  (2.9) 3.02  (2.9) 3.34  (2.9) 3.04  (3.0) 

σ3 0.00  (0.0) 0.01  (0.1) 

(Simul.) Log-Likelihood: -471.26  -471.26  -470.70  -473.04  -473.05  -477.48  

Nested Structures

Table a: Identified Nesting & Cross-Nesting Error Structures

1, 1, 1-2, 2, 2
1, 1, 2, 2, 2     

( σ 1= σ 2)

1-2, 2-3, 3-4,    
4-5, 5-6        

(all σ  equal)
1, 1, 2, 2, 0 1, 1, 2, 2, 3

Cross-Nested Structures

1, 1, 2, 3, 3
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Table b: Nesting  / Cross-Nesting plus Heteroscedasticity (0, 0, 1, 0, 0)

Specification*:  

Parameter Est t-stat Est t-stat Est t-stat

Altern. Specific constants

   Budget Measured (1) -3.81  (5.5) -3.80  (5.3) -3.28  (7.3) 

   Standard Measured (2) -3.02  (4.7) -3.01  (4.6) -2.53  (6.3) 

   Local Flat (3) -1.64  (3.1) -1.64  (3.1) -1.37  (3.5) 

   Extended Flat (4) -1.19  (1.3) -1.18  (1.3) -1.04  (1.3) 

Log Cost -3.21  (5.2) -3.20  (5.0) -2.68  (8.0) 

σ1 3.37  (2.8) 3.38  (2.8) 2.88  (3.3) 

σ2 1.11  (1.6) 0.03  (0.3) 0.09  (0.2) 

σ3 1.55  (1.6) 

(Simul.) Log-Likelihood: -470.64  -470.69  -471.22  

2, 2, 1-3, 3, 3   
( σ 2= σ 3)

2, 2, 2-1-3, 3, 3
2-3, 3-4, 4-1-5,  

5-6, 6-7        
(σ 2… σ 7  equal)

Combined Models

 
Table c: Unidentified Nested Error Structures

Specification*:  

Parameter Est t-stat Est t-stat Est t-stat Est t-stat

Altern. Specific constants

   Budget Measured (1) -3.80  (5.7) -3.80  (5.7) -3.80  (5.7) -3.80  n/a 

   Standard Measured (2) -3.01  (4.9) -3.01  (4.9) -3.01  (4.9) -3.01  n/a 

   Local Flat (3) -1.09  (3.6) -1.09  (3.6) -1.09  (3.6) -1.09  n/a 

   Extended Flat (4) -1.19  (1.4) -1.19  (1.4) -1.19  (1.4) -1.19  n/a 

Log Cost -3.25  (6.1) -3.25  (6.1) -3.25  (6.1) -3.25  n/a 

σ1 2.65  (3.1) 0.78  (0.5) 2.55  (2.5) 1.93  n/a 

σ2 1.51  (2.2) 2.95  (3.3) 1.67  (3.8) 2.36  n/a 

 (σ12+σ22)1/2 3.05  3.05  3.05  3.05  

(Simul.) Log-Likelihood: -473.02  -472.99  -473.02  -473.02  

80000 Halton 
Draws

10000 Halton 
Draws

1, 1, 2, 2, 2 (Unidentified - can 

only estimate (σ12+σ22))
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Table d: Identical (Identified) Nested Error Structures

Specification*:  

Parameter Est T-stat Est T-stat Est T-stat

Altern. Specific constants

   Budget Measured (1) -3.80  (5.7) -3.80  (5.7) -3.80  (5.7) 

   Standard Measured (2) -3.01  (4.9) -3.01  (4.9) -3.01  (4.9) 

   Local Flat (3) -1.09  (3.6) -1.09  (3.6) -1.09  (3.6) 

   Extended Flat (4) -1.19  (1.4) -1.19  (1.4) -1.19  (1.4) 

Log Cost -3.25  (6.1) -3.25  (6.1) -3.25  (6.1) 

σ1 3.05  (3.0) 2.16  (3.0) 

σ2 3.05  (3.0)  2.16  ---

 (σ12+σ22)1/2 3.05  3.05  3.05  

(Simul.) Log-Likelihood: -473.02  -473.03  -473.04  

* the specification lists the factors (and sigmas) that apply to each of the five alternatives

1, 1, 0, 0, 0 0, 0, 2, 2, 2
1, 1, 2, 2, 2 

(σ1=σ2)

 

Other Identification Issues 
Near Singularity 

Finally, it turns out that the fact that pσ  must be constrained in a logit kernel model is not 
exactly correct. In a probit kernel model (i.e., with an i.i.d. normal term), it is true that pσ  must 
be constrained. In this case, there is a perfect trade-off between the multivariate normal term and 
the i.i.d. normal term. However, in the logit kernel model, this perfect trade-off does not exist 
because of the slight difference between the Gumbel and Normal distributions. Therefore, there 
will be an optimal combination of the Gumbel and Normal distribution, and this effectively 
allows another parameter to be estimated. This leads to somewhat surprising results. For 
example, in a heteroscedastic logit kernel model a variance term can be estimated for each of the 
alternatives, whereas probit, probit kernel, or extreme value logit requires that one of the 
variances be constrained. The same holds true for an unrestricted covariance structure. 
Nonetheless, the reality is that without the constraint, the model is nearly singular (i.e., the 
objective function is very flat at the optimum), as will be demonstrated in the estimation results 
that follow. Due to the near singularity, it is advisable to impose the additional constraint. 

Empirical Identification 

While this paper discusses theoretical identification, there is always the practical issue of 
whether or not the given data can support a given model specification. As Train (2003) has 
pointed out, “there is a natural limit to how much can be learned about things that cannot be 
seen”. Therefore, one always needs to be careful about asking more from the data than it can 
provide, and verifying that the parameter estimates are stable with increasing numbers of draws. 
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Conclusion 
This paper presents a procedure for determining identification of the logit kernel model, which 
consists of the Order Condition, Rank Condition, and Equality Condition. These conditions were 
described mathematically and used to determine identification of several important logit kernel 
specifications such as heteroscedasticity, nesting, and panel data. The paper also highlights a 
variety of issues that can lead to complications when estimating logit kernel models. Some of the 
findings are that (a) the logit kernel model requires different treatment than that of an analogous 
probit model (e.g., as with heteroscedasticity), and (b) the imposition of seemingly obvious 
identification restrictions can be incorrect (e.g., as with heteroscedasticity and nesting). 
Misspecification can lead to bias of the systematic parameters and incorrect conclusions being 
drawn from hypothesis tests. The nature of the impact varies dramatically based on the data and 
specification at hand, and it is difficult to draw generalizations.  

This paper just skims the surface of identification and estimation issues related to the logit kernel 
model. There is much more work to be done in terms of expanding the library of guidelines that 
we have for identification (such as those presented in this paper for heteroscedasticity and 
nesting), building robust estimation programs that detect identification errors (through, for 
example, automatic processing of the information matrix and explicit reporting of identification 
problems), developing methods for practically addressing complications that arise in 
identification, and better understanding the consequences of identification errors. This 
exploration is critical as the model is being included in textbooks, user-friendly estimation 
software is becoming widely available, and application of the logit kernel model is poised to 
explode in both the literature and practice. 

Finally, while the logit kernel model provides immense flexibility in terms of the richness that 
can be captured in the disturbance term, the identification issues highlighted in this paper raise 
computational and performance issues. For example, a large number of draws and multiple 
model estimation runs are required to verify identification and parameter stability. Therefore, an 
important area of research is to explore the tradeoffs between logit kernel and analogous model 
forms (logit kernel, probit, and GEV). Also promising is the idea of a GEV kernel, which allows 
some of the heteroscedasticity/covariance to be represented in the kernel (which has a closed 
form solution), thereby reducing the dimensionality of the simulation. 
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