

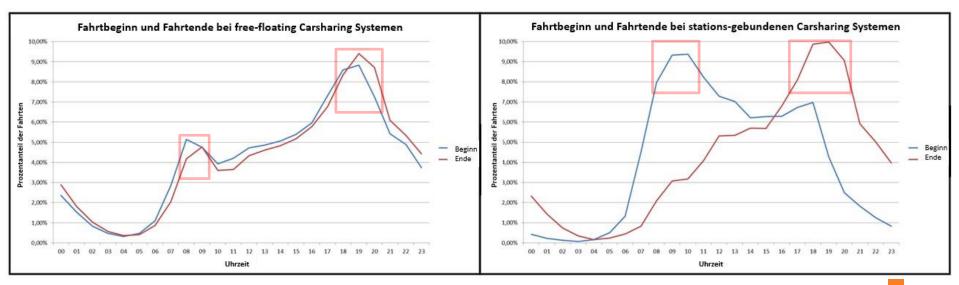
Free-Floating Carsharing Systeme – Wirkung und Optimierungsstrategien

Dipl.-Math. Simone Weikl, 30.09.2013

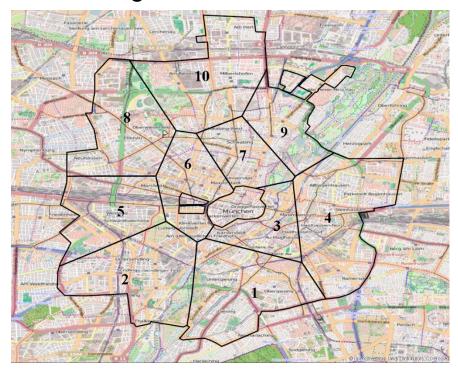
WiMobil

E-PLAN München

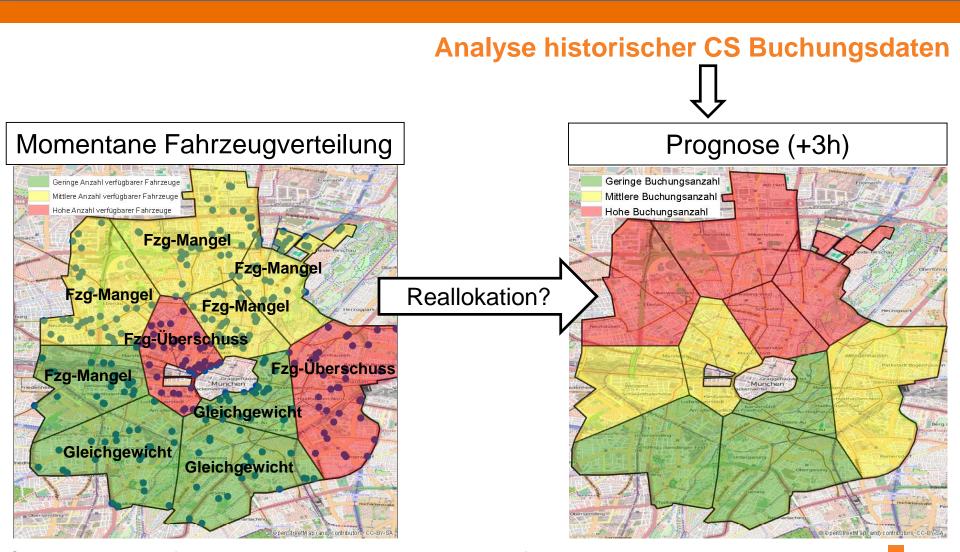
Car Sharing 2.0 – Free-Floating System (FFCS)



- Ermittlung von zeitlichen und räumlichen Buchungsschwerpunkten
- Clusteranalyse der Buchungen → Buchungsprognose


	Distanz	Buchungsdauer	Fahrtdauer	Parkdauer
DriveNow München	10 km	51 min	36 min	15 min
Flinkster München	115 km	837 min	811 min	-

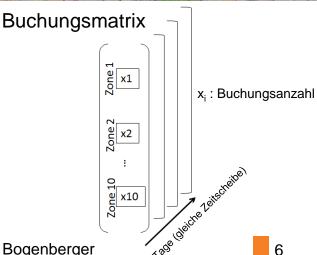
Das Reallokationsproblem bei FFCS


Geschäftsgebiet des betrachteten FFCS – Unterteilung in 10 Analysezonen

- FFCS: Ein-Weg-Fahrten
- Fahrzeuge werden ständig umgesetzt

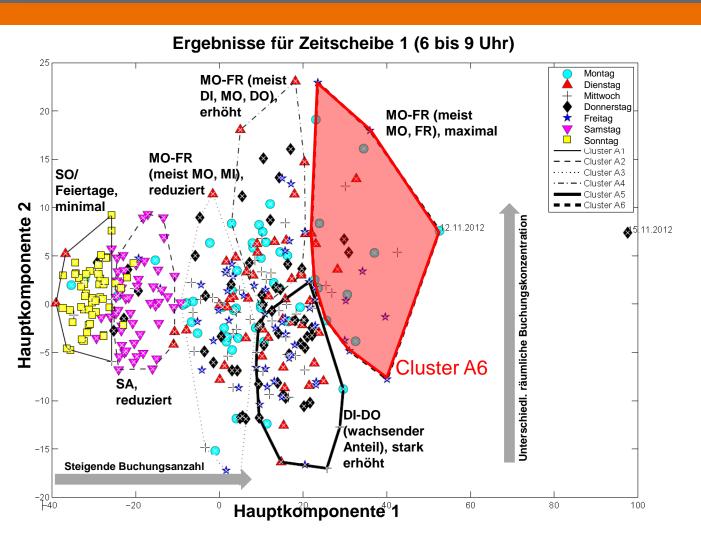
Das Reallokationsproblem bei FFCS

Vorhersage zukünftiger CS Buchungen



Clusteranalyse historischer Carsharing Buchungsdaten

- Buchungsdaten 6.2012-5.2013
- Unterteilung eines jeden Tags in 7 Zeitscheiben
- Für jede Zeitscheibe und jeden Tag: Buchungsanzahl pro Zone
- Buchungsmatrix für jede Zeitscheibe
- Hauptkomponentenzerlegung → Reduktion der Buchungsvektoren auf Dim=2
- K-means Clustermethode mit 6 Clustern
- Clusteranalyse bündelt Tage mit ähnlichen Buchungsmustern


Geschäftsgebiet

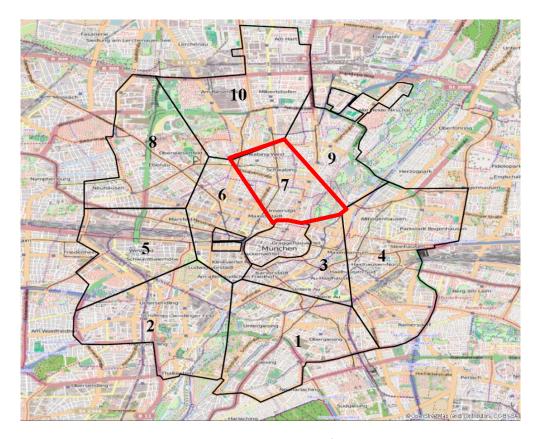
Vorhersage zukünftiger CS Buchungen

Vorhersage zukünftiger CS Buchungen

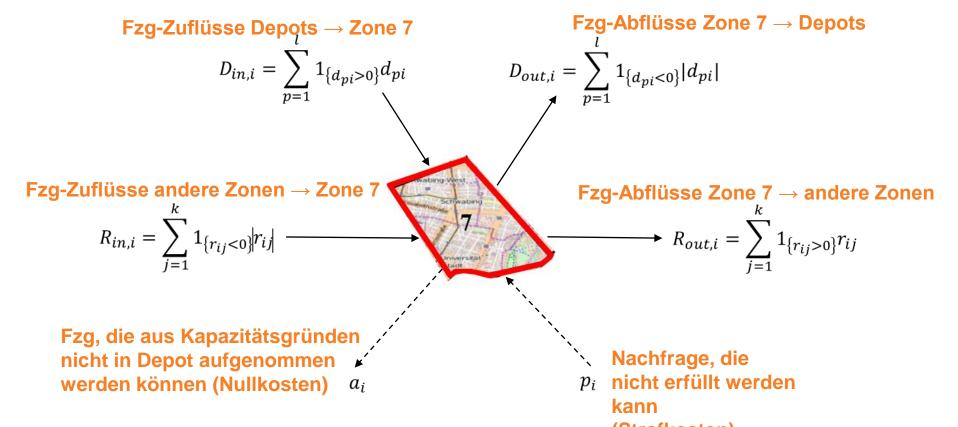
Zeitliche Entwicklung der Buchungscluster der Zeitscheibe 1

Cluster 9 - 12 Uhr

Cluster 6 – 9 Uhr	VON/ZU Cluster	B1	B2	В3	B4	B5	В6
	A1	42%	14%	33%	9%	2%	0%
	A2	10%	8%	14%	30%	2%	37%
	A3	40%	32%	16%	7%	3%	3%
	A 4	11%	29%	25%	15%	16%	4%
	A 5	2%	37%	12%	16%	26%	7%
	A6	0%	24%	3%	28%	41%	3%



- Integration von "Service Depots":
 - Zeitweise Aufbewahrung von (überschüssigen) Fahrzeugen zur Instandhaltung, Reinigung und Aufladung (von E-Fahrzeugen)
 - Entnehmen von Fahrzeugen bei Fahrzeugmangel
- Makroskopische Reallokation (auf Zonenebene)
 - Input: Abweichung zwischen prognostizierter Buchungsanzahl und aktueller Fzg-Anzahl pro Zone
 - Output: Optimale Reallokationen (zwischen Zonen bzw. zwischen Zonen und Service Depots)
- Nur betreiberbasierte Reallokationen



- **Output**: Reallokationsmatrix $R = (r_{ij})_{i,j=1:k}$ und Depotmatrix $D = (d_{ij})_{i=1:l,j=1:k}$
- Graphische Repräsentation der mögl. Zu- und Abflüsse von Zone 7 (i = 7):

- Output: Reallokationsmatrix $R = (r_{ij})_{i,j=1:k}$ und Depotmatrix $D = (d_{ij})_{i=1:l,j=1:k}$
- Graphische Repräsentation der mögl. Zu- und Abflüsse von Zone 7 (i = 7):

- Minimierung der Kosten f
 ür den CS Betreiber
- **Zeit- und distanzabhängige** Reallokationskosten (Benzin fp, Wertverlust lv, Personal w, etc.) und **Strafkosten** g_i (Opportunitätskosten)

$$\begin{aligned} & \textit{min} \quad c(R,D,P,A) = \sum_{i=1}^k \sum_{j=1}^k 1_{\{r_{ij}>0\}} * r_{ij} * \left(dist_{ij} * (fp+lv) + tt_{ij} * w\right) \\ & + \sum_{j=1}^k \sum_{i=1}^k sgn(d_{pi}) * d_{pi} * \left(dist_{pi} * (fp+lv) + tt_{pi} * w\right) \\ & + \sum_{j=1}^k \sum_{i=1}^k sgn(d_{pi}) * d_{pi} * \left(dist_{pi} * (fp+lv) + tt_{pi} * w\right) \\ & + \sum_{j=1}^k \sum_{i=1}^k sgn(d_{pi}) * d_{pi} * \left(dist_{pi} * (fp+lv) + tt_{pi} * w\right) \\ & + \sum_{j=1}^k \sum_{i=1}^k sgn(d_{pi}) * d_{pi} * \left(dist_{pi} * (fp+lv) + tt_{pi} * w\right) \\ & + \sum_{j=1}^k sgn(d_{pi}) * d_{pi} * \left(dist_{pi} * (fp+lv) + tt_{pi} * w\right) \\ & + \sum_{j=1}^k sgn(d_{pi}) * d_{pi} * \left(dist_{pi} * (fp+lv) + tt_{pi} * w\right) \\ & + \sum_{j=1}^k sgn(d_{pi}) * \left(dist_{pi} * (fp+lv) + tt_{pi} * w\right) \\ & + \sum_{j=1}^k sgn(d_{pi}) * \left(dist_{pi} * (fp+lv) + tt_{pi} * w\right) \\ & + \sum_{j=1}^k sgn(d_{pi}) * \left(dist_{pi} * (fp+lv) + tt_{pi} * w\right) \\ & + \sum_{j=1}^k sgn(d_{pi}) * \left(dist_{pi} * (fp+lv) + tt_{pi} * w\right) \\ & + \sum_{j=1}^k sgn(d_{pi}) * \left(dist_{pi} * (fp+lv) + tt_{pi} * w\right) \\ & + \sum_{j=1}^k sgn(d_{pi}) * \left(dist_{pi} * (fp+lv) + tt_{pi} * w\right) \\ & + \sum_{j=1}^k sgn(d_{pi}) * \left(dist_{pi} * (fp+lv) + tt_{pi} * w\right) \\ & + \sum_{j=1}^k sgn(d_{pi}) * \left(dist_{pi} * (fp+lv) + tt_{pi} * w\right) \\ & + \sum_{j=1}^k sgn(d_{pi}) * \left(dist_{pi} * (fp+lv) + tt_{pi} * w\right) \\ & + \sum_{j=1}^k sgn(d_{pi}) * \left(dist_{pi} * (fp+lv) + tt_{pi} * w\right) \\ & + \sum_{j=1}^k sgn(d_{pi}) * \left(dist_{pi} * (fp+lv) + tt_{pi} * w\right) \\ & + \sum_{j=1}^k sgn(d_{pi}) * \left(dist_{pi} * (fp+lv) + tt_{pi} * w\right) \\ & + \sum_{j=1}^k sgn(d_{pi}) * \left(dist_{pi} * (fp+lv) + tt_{pi} * w\right) \\ & + \sum_{j=1}^k sgn(d_{pi}) * \left(dist_{pi} * (fp+lv) + tt_{pi} * w\right) \\ & + \sum_{j=1}^k sgn(d_{pi}) * \left(dist_{pi} * (fp+lv) + tt_{pi} * w\right) \\ & + \sum_{j=1}^k sgn(d_{pi}) * \left(dist_{pi} * (fp+lv) + tt_{pi} * w\right) \\ & + \sum_{j=1}^k sgn(d_{pi}) * \left(dist_{pi} * (fp+lv) + tt_{pi} * w\right) \\ & + \sum_{j=1}^k sgn(d_{pi} * (fp+lv) + tt_{pi} * w\right) \\ & + \sum_{j=1}^k sgn(d_{pi}) * \left(dist_{pi} * (fp+lv) + tt_{pi} * w\right) \\ & + \sum_{j=1}^k sgn(d_{pi} * (fp+lv) + tt_{pi} * w\right) \\ & + \sum_{j=1}^k sgn(d_{pi} * (fp+lv) + tt_{pi} * w\right) \\ & + \sum_{j=1}^k sgn(d_{pi} * (fp+lv) + tt_{pi} *$$

+ mehrere zu erfüllende Nebenbedingungen

die nicht erfüllt werden können

- Modellierung: MATLAB/TomSym
- Optimierung: TOMLAB solver package CPLEX

Wichtige Modellerweiterungen

- Nutzerbasierte Zu- und Abflüsse im Optimierungsintervall ✓
- Begrenzte Anzahl möglicher Reallokationen pro Zeitintervall ✓
- Vorgabe maximaler/ minimaler Fzg-Anzahlen pro Zone (z.B. durch lokale Behörden) ✓
- Zonen höherer Priorität ✓
- E-Fahrzeuge: Ladestände, Anzahl freier Ladestationen etc.
- Wiederholte dynamische Nachfrageprognose und Optimierung

Zusammenfassung und Ausblick

- Makroskopisches Optimierungsmodell für das Reallokationsproblem bei FFCS
- Integration von Service Depots
- Nächste Schritte:
 - ➤ Formulierung eines mikroskopischen Optimierungsmodells → optimale Ausführungspläne für die makroskopischen Reallokationen
 - Anwendung auf reales CS System und anschließende Evaluierung

Free-Floating Carsharing Systeme – Wirkung und Optimierungsstrategien

Vielen Dank für die Aufmerksamkeit!

Dipl.-Math. Simone Weikl Institut für Verkehrswesen und Raumplanung Universität der Bundeswehr München

Tel.: 089/6004-2442

Email: Simone.Weikl@unibw.de

Homepage: http://www.unibw.de/ivr