Verkehrsingenieurtag – 6. March 2014

### Carsharing: Why to model carsharing demand and how

F. Ciari





Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- 1. Introduction: What's going on in the carsharing world?
- 2. Why to model carsharing demand?
- 3. Modeling carsharing with MATSim
- 4. Summary and future work

### 1. Introduction: What's going on in the carsharing world?

- 2. Why to model carsharing demand?
- 3. Modeling carsharing with MATSim
- 4. Summary and future work

## Worldwide growth of carsharing

leet

Carsharing in terms of members / vehicles is growing fast



#### Worldwide and Regional Membership (2006-2010)





Source: Shaheen and Cohen, 2012

- The actors involved are increasingly large
  - Car manufacturers → Daimler, BMW, Pegeout
  - Traditional car rental companies  $\rightarrow$  Avis, Sixth
  - Public transport operators  $\rightarrow$  DB

### Competition

- The level of **competition** on the market is increasing
  - At the start of modern carsharing operations (90's Switzerland and Germany) and until recently, operators mostly were "local monopolists"
  - Now many cities boast several carsharing operators

- The world of shared mobility is **evolving fast** and **new services** are coming to the market to **challenge/complement** the **old ones** 
  - Round trip-based carsharing (Mobility)
  - One-way (station based) carsharing (Autolib)
  - Free-floating carsharing (Car2go, DriveNow)
  - Peer-to-peer carsharing (RelayRides)
  - Bike-sharing
  - Carpooling
  - Dynamic ride sharing
  - Slugging
  - ...

1. Introduction: What's going on in the carsharing world?

### 2. Why to model carsharing demand?

- 3. Modeling carsharing with MATSim
- 4. Summary and future work

Why do we need to model carsharing demand?

Models are used to get insight on the behavior of a transportation system under given circumstances

but

Is carsharing relevant?

- Still small but conceptually "mainstream" ("Shared economy")
- Fits well with some **societal developments** ("Peak car")
- Is often mentioned when it comes to make transport more **sustainable** (but the mechanisms aren't clear)

- The **actors** involved are increasingly **large** → Able to have a "big bang" approach, implies **large investments**
- The level of competition on the market is increasing → Higher investment risk
- The world of shared mobility is **evolving fast** → Incertitude about **integration/competition** among different modes/systems

• Build a **predictive** and **policy sensitive model** that can be used by **practitioners (operators)** and **policy makers** 

- Inherent limitations of traditional models representing carsharing – the importance of CS availability at precise points in time and space is not fitting with vehicles per hour flows
- **Travel** is the result of the **individual need** performing out-of-home **activities** at different locations this matters for carsharing even more than for other modes! (according to the length / location of the activities)

- 1. Introduction: What's going on in the carsharing world?
- 2. Why to model carsharing demand?
- 3. Modeling carsharing with MATSim
- 4. Summary and future work

It sketches **individuals' daily life** using the agent paradigm.

Agents have **personal attributes** (age, gender, employment, etc.) which influence their behavior

Agents **autonomously** try to **carry out a daily plan** being able to **modify** some dimensions of their **travel** (time, mode, route, activity location)

High temporal and spatial resolution

**MATSim** = Multi-agent transport simulation (www.matsim.org)

### **Carsharing model in MATSim – Current status**

- **Traditional carsharing** + **Free-floating** (by senozon)
  - Agents always **walk** from the starting facility to the **closest car**
  - Time and distance dependent fare
  - Stations are located at the **actual carsharing locations** in the modeled area
  - Carsharing is available **only to members**
  - Actual **vehicle availability** is **accounted** for

Part of a German project called "**Berlin elektroMobil**" → **Berlin**, **Germany** as a test case

Goals:

- Understand the **behavior** of the whole **transportation system** under different **carsharing scenarios**
- Finding **strategies** to **extend** the **carsharing supply** in Berlin and get hints on how to **combine free-floating** (FF) and **station-based** (SB) carsharing

### **Scenarios**

- Scenario I: SBCS (Basis, station based only, reflecting actual supply)
- Scenario II: Expanded SBCS (Station based only, additional stations and members)

### • Scenario III: Scenario II + Free-floating

|                                 | Scenario I | Scenario II | Scenario III |
|---------------------------------|------------|-------------|--------------|
| Population                      | 4'422'012  | 4'506'058   | 4'506'058    |
| # Members CS SB & FF            | 20'000     | 38'000      | 38'000       |
| # Members CSFF                  | -          | -           | 194'000      |
| <b># CS Stations</b>            | 82         | 152         | 152          |
| # Vehicles (Station based)      | 175        | 329         | 329          |
| <b># Vehicles Free-floating</b> | -          | -           | 2`500        |
| # Members traveling (any mode)  | 16'489     | 31'358      | 191'819      |

### **Statistics overview**

|                          | CS SB<br>(Scenario I) | CS SB<br>(Scenario II) | CS SB<br>(Scenario III) | CS FF<br>(Scenario III) |
|--------------------------|-----------------------|------------------------|-------------------------|-------------------------|
| # Trips                  | 496                   | 1'298                  | 1'379                   | 10'708                  |
| Avg. Trip Duration [min] | 22.9                  | 23.5                   | 27.5                    | 20.1                    |
| Avg. OD-Distance [km]    | 5.8                   | 5.3                    | 5.3                     | 5.7                     |
| Total travel time [Days] | 7.9                   | 21.2                   | 26.5                    | 149.8                   |
| Total distance [km]      | 2'900                 | 6'900                  | 7'300                   | 60'600                  |

- **Over-proportional increase** of **SB** rentals (increasing stations / cars)
- Trips (distance and travel time) essentially unchanged
- Adding FFCS (2'500 cars) →
  ~ 10'000 additional trips and SBCS grows
- **SB** (S III) **shorter** trips (distance), **FF** slightly **longer but faster** trips.

### Purpose



#### FF CS has more Work and less Leisure travel compared to SB CS

### **Modal substitution**

#### Mode substituted by free-floating carsharing



- **Car travel** is the mode which is **reduced the most** (> 30%) of the free-floating trips were car trips before its introduction
- Overall **car travel** (VMT) **grows** with FF compared to SB only → **modal substitution** patterns for free-floating carsharing might be problematic
- Relatively few agents changed from SB to FF carsharing

### Conclusions

- Untapped potential for SBCS in Berlin Over-proportional growth of SB doubling # carsharing cars
- **SB** carsharing is **used more intensively** after **FF** carsharing is introduced
- Some differences in the use of the two CS modes (purpose, time, distance)
- Substitution patterns are a possible concern for FF
- Apparently **FF** and **SB** are rather **complementary**

Goals:

- Understand the **behavior** of the whole **carsharing system** under different (carsharing) **pricing scenarios**
- Get hints on the **interactions** between traditional **station based** carsharing and **free-floating carsharing** under such **scenarios**

### Scenarios

|                     | Scenario I   | Scenario II    | Scenario III   | Scenario IV                                                | Scenario V     |
|---------------------|--------------|----------------|----------------|------------------------------------------------------------|----------------|
| SB Time Fee         | 4.52 SFr./h  | 4.52 SFr./h    | 4.52 SFr./h    | 4.52 SFr./h                                                | 4.52 SFr./h    |
| SB Distance<br>Fee  | 0.18 SFr./Km | 0.18 SFr./Km   | 0.18 SFr./Km   | 0.18 SFr./Km                                               | 0.18 SFr./Km   |
| FF Time Fee         | _            | 0.237 SFr./min | 0.118 SFr./min | 0.118 SFr/min<br>(10-16)<br>0.237 SFr/min<br>(rest of day) | 0.237 SFr./min |
| FF Distance<br>Fee  | -            | 0.29 SFr./Km   | 0.29 SFr./Km   | 0.29 SFr./Km                                               | 0.29 SFr./Km   |
| FF Free<br>Distance | -            | 20 Km          | 20 Km          | 20 Km                                                      | 0 Km           |

### **Vehicles in Motion**



### **Modal substitution**



Modes substituted by free-floating carsharing in scenarios II to V as compared to scenario I. The secondary axis shows the number of free-floating rentals for the scenario





|       | Scenario I | Scenario II | Scenario III | Scenario IV | Scenario V |
|-------|------------|-------------|--------------|-------------|------------|
| RT CS | 1h23'9''   | 1h39'7''    | 1h44'7''     | 1h24'28''   | 1h26'29''  |
| FF CS | -          | 2h45'58''   | 2h16'56''    | 2h34'38''   | 2h12'45''  |
| Car   | 3h58'2''   | 3h58'14''   | 3h58'        | 3h57'53''   | 3h57'47''  |

### Conclusions

- The **impact** of different **pricing schemes** is **not limited to** increasing or reducing the **aggregate level of usage**
- **Pricing** strategy **structurally affects** the **interactions** between the two carsharing types
- **Complex interactions** between **spatiotemporal availability** of carsharing vehicles and users are observed
- The realism of some aspects (i.e. purpose, modal substitution) is still unclear

- 1. Introduction: What's going on in the carsharing world?
- 2. Why to model carsharing demand?
- 3. Modeling carsharing with MATSim
- 4. Summary and future work

### Summary

- **Carsharing** is **growing fast** and is becoming **«mainstream**»
- Instruments for the modeling of carsharing are becoming necessary
- Traditional models are not well suited to model carsharing
- **MATSim** is already able to **simulate carsharing** and to evaluate **complex scenarios**...

...but there are still **many limitations** 

- Improving the existing membership model
- Testing our implementations of free-floating and one-way carsharing

- Further validation of the existing results with empirical data
- Applying the tool for analysis on **new scenarios**, possibly relying on **new empirical data**
- Improve the simulation with **better behavioral models**
- New case studies where different shared mobility options (Autonomous Vehicles, Ride Sharing) are combined

# Thank you for your attention!

www.matsim.org