IMPLEMENTATION OF PRE-SIGNALS FOR BUS PRIORITY

S. Ilgin Guler Monica Menendez

Traffic Engineering Group, SVT Swiss Federal Institute of Technology, Zurich (ETH Zurich)

Verkehrsingenieurtag

March 6, 2014

Institut für Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems

Outline

Introduction

- Background
- Types of pre-signals
- Operation of pre-signals
- Analytical and Empirical Evaluations
- Bounds of application
 - Pre-signals vs. mixed use lanes
 - Pre-signals vs. dedicated lanes
- Conclusions

Motivation

- Dedicated bus lanes can be used to give priority to buses to eliminate harmful interactions with cars
 - In urban setting this is typically done by <u>converting</u> an existing regular (i.e., car) lane to bus use only
 - However this might not always be feasible (or be the best solution)
- Bus delays can still be reduced without taking a lane fully away from cars, especially when bus flows are low.
 - Dynamic bus lanes

• How can public transportation be prioritized while reducing the negative effects on general traffic?

Outline

- Introduction
- Background
- Types of pre-signals
- Operation of pre-signals
- Analytical and Empirical Evaluations
- Bounds of application
 - Pre-signals vs. mixed use lanes
 - Pre-signals vs. dedicated lanes
- Conclusions

Background

• Dynamic bus lane strategies targeted at roadways:

- Intermittent bus lanes (IBL) (Viegas and Lu, 2001; 2004)
- Bus lanes with intermittent priority (BLIP) (Eichler and Daganzo, 2008)

Source: Viegas, Jose Manuel, et al. "The intermittent bus lane system: Demonstration in Lisbon." *Proceedings of the 86th Annual Meeting of the Transportation Research Board*. 2007.

Background

• Dynamic bus lane strategies targeted at roadways:

- Intermittent bus lanes (IBL) (Viegas and Lu, 2001; 2004)
- Bus lanes with intermittent priority (BLIP) (Eichler and Daganzo, 2008)
- Field tests:
 - Lisbon, Portugal → Increase bus speeds by 15-20 % (Viegas et al., 2007)
 - Melbourne, Australia → Increase in bus speeds not as significant as in Lisbon (Currie and Lai, 2008)

Background

- Other types of bus lanes also exist.
 - e.g., bidirectional bus lanes
- Usedat a few locations in Switzerland:
 - Chamerstrasse, Zug

Goal

- Investigating the use of additional signals to provide priority to buses at signalized intersections.
 - i.e, pre-signals close to the main signal to allow buses to jump the car queues.
- Cars can still use all lanes at the main intersection to fully utilize the capacity of the signal when buses are not present

Outline

- Introduction
- Background
- Types of pre-signals
- Operation of pre-signals
- Analytical and Empirical Evaluations
- Bounds of application
 - Pre-signals vs. mixed use lanes
 - Pre-signals vs. dedicated lanes
- Conclusions

Pre-signal

Two implementations of such strategies found in Switzerland

1) Langstrasse, Zurich - pre-signal which intermittently changes the *allocation* of one lane.

Pre-signal

- Two implementations of such strategies found in Switzerland
- 1) Langstrasse, Zurich pre-signal which intermittently changes the *allocation* of one lane.

Operation of pre-signal

SV

Direction changing pre-signal

- Two implementations of such strategies found in Switzerland
 - 2) Rapperswil, Jona pre-signal which intermittently changes the *direction* of one lane

Direction changing pre-signal

- Two implementations of such strategies found in Switzerland
 - 2) Rapperswil, Jona pre-signal which intermittently changes the *direction* of one lane

Outline

- Introduction
- Background
- Types of pre-signals
- Operation of pre-signals
- Analytical and Empirical Evaluations
- Bounds of application
 - Pre-signals vs. mixed use lanes
 - Pre-signals vs. dedicated lanes
- Conclusions

17

Example configuration for a mains signal with a pre-signal

Main signal

Main signal

Distance of the pre-signal from the main signal

Duration of the red time at the pre-signal:

Duration of the red time at the pre-signal:

Such that the last queued car at the pre-signal will also be the last queued car at the main signal

Duration of the red time at the pre-signal:

Such that the last queued car at the pre-signal will also be the last queued car at the main signal

Duration of the red time at the pre-signal:

Such that the last queued car at the pre-signal will also be the last queued car at the main signal

Duration of the red time at the pre-signal:

Such that the last queued car at the pre-signal will also be the last queued car at the main signal

Duration of the red time at the pre-signal:

Such that the last queued car at the pre-signal will also be the last queued car at the main signal

Red time at pre-signal is then a function of:

- Saturation flow at pre-signal
- Saturation flow at main signal
- Red time at main signal

Demand rate

Can be:

- Pre-determined
- Dynamically measured

Outline

- Introduction
- Background
- Types of pre-signals
- Operation of pre-signals
- Analytical and Empirical Evaluations
- Bounds of application
 - Pre-signals vs. mixed use lanes
 - Pre-signals vs. dedicated lanes
- Conclusions

Evaluation of pre-signals

- The theoretical car and bus delays incurred at an intersection with a pre-signal are theoretically determined with the use of:
 - Queuing theory
 - Kinematic wave theory
- A total of 11 different queuing patterns based on different bus arrival times are determined to model the car queues
- The theoretical model is then compared to data collected at Langstrasse, Zurich

Comparison of theoretical model to empirical data

Empirical Results

		Average Car Delay per Cycle (sec/veh)			Average bus
	Number of cycles	Upstream of pre- signal	Between pre-signal and main signal	Total	delay (sec/bus)
Bus not present	57	20.3	6.0	26.3	-
Bus present	11	20.7	7.8	28.5	10.8

Analytical Predictions

	Average Car Delay per Cycle (sec/veh)				Average bus
	Upstream of pre- signal	Between pre-signal and main signal	Stochastic (Webster's) Delay	Total	delay (sec/ bus)
Bus not present	14.5	3.4	8.0	25.9	-
Bus present	17.4	5.2	5.7	28.3	9.1

Comparison of theoretical model to empirical data

Empirical Results

		Average Car Delay per Cycle (sec/veh)			Average bus
	Number of cycles	Upstream of pre- signal	Between pre-signal and main signal	Total	delay (sec/bus)
Bus not present	57	20.3	6.0	26.3	-
Bus present	11	20.7	7.8	28.5	10.8
Analytical P	redictions	% of delay encountered upstream of the pre-signal:		77% 81%	
	ļ	Average Car Delay pe	7	Average bus	
	Upstream of pre- signal	Between pre-signal and main signal	Stochastie (Webst e r's) Delay	Total	delay (sec/ bus)
Bus not present	14.5	3.4	8.0	25.9	-
Bus present	17.4	5.2	5.7	28.3	9.1

Comparison of theoretical model to empirical data

Empirical Results

		Average Car Delay per Cycle (sec/veh)			Average bus
	Number of cycles	Upstream of pre- signal	Between pre-signal and main signal	Total	delay (sec/bus)
Bus not present	57	20.3	6.0	26.3	-
Bus present	11	20.7	7.8	28.5	10.8
Analytical P	redictions	% of delay encountered upstream of the pre-signal:		72% 77%	
	Average Car Delay per Cycle (sec/veh) Average bu				
	Upstream of pre- signal	Between pre-signal and main signal	Stochastie (Webst er 's) Delay	Total	delay (sec/ bus)
Bus not present	14.5	3.4	8.0	25.9	-

Comparison of theoretical model to empirical data

37

Empirical Results

Bus not present

Bus present

14.5

17.4

		Average Car Delay per Cycle (sec/veh)			Average bus
	Number of cycles	Upstream of pre- signal	Between pre-signal and main signal	Total	delay (sec/bus)
Bus not present	57	20.3	6.0	26.3	-
Bus present	11	20.7	7.8	28.5	10.8
Analytical P					
	Average bus				
	Upstream of pre- signal	Between pre-signal and main signal	Stochastic (Webster's) Delay	Total	delay (sec/ bus)

8.0

5.7

25.9

28.3

_

9.1

3.4

5.2

Comparison of theoretical model to empirical data

Empirical Results

		Average Car Delay per Cycle (sec/veh)			Average bus	
	Number of cycles	Upstream of pre- signal	Between pre-signal and main signal	Total	delay (sec/bus)	
Bus not present	57	20.3	6.0	26.3	-	
Bus present	11	20.7	7.8	28.5	10.8	
Analytical Predictions Average Car Delay per Cycle (sec/veh) Average bus						
		Average bus				
	Upstream of pre- signal	Between pre-signal and main signal	Stochastic (Webster's) Delay	Total	delay (sec/ bus)	
Bus not present	14.5	3.4	8.0	25.9	-	
Bus present	17.4	5.2	5.7	28.3	9.1	

Comparison of theoretical model to empirical data

Empirical Results

		Average Car Delay per Cycle (sec/veh)			Average bus	
	Number of cycles	Upstream of pre- signal	Between pre-signal and main signal	Total	delay (sec/bus)	
Bus not present	57	20.3	6.0	26.3	-	
Bus present	11	20.7	7.8	28.5	9.0	
Analytical Predictions						
	4	Average bus				
	Upstream of pre- signal	Between pre-signal and main signal	Stochastic (Webster's) Delay	Total	delay (sec/ bus)	
Bus not present	14.5	3.4	8.0	25.9	-	
Bus present	17.4	5.2	5.7	28.3	10.5	

Outline

- Introduction
- Background
- Types of pre-signals
- Operation of pre-signals
- Analytical and Empirical Evaluations
- Bounds of application
 - Pre-signals vs. mixed use lanes
 - Pre-signals vs. dedicated lanes
- Conclusions

- Compare the total person hours of delays of the system (buses and cars) :
 - Pre-signals
 - Mixed use lanes
- Determine <u>ratio of bus occupancy to car occupancy</u> for which the system-wide delays become equal.

- Compare the total person hours of delays of the system (buses and cars) :
 - Pre-signals
 - Mixed use lanes
- Determine <u>ratio of bus occupancy to car occupancy</u> for which the system-wide delays become equal.

Outline

- Introduction
- Background
- Types of pre-signals
- Operation of pre-signals
- Analytical and Empirical Evaluations

Bounds of application

- Pre-signals vs. mixed use lanes
- Pre-signals vs. dedicated lanes
- Conclusions

- Compare the total person hours of delays of the system (buses and cars) :
 - Pre-signals
 - Dedicated bus lanes
- Determine <u>ratio of bus occupancy to car occupancy</u> for which the system-wide delays become equal.

- Compare the total person hours of delays of the system (buses and cars) :
 - Pre-signals
 - Dedicated bus lanes
- Determine <u>ratio of bus occupancy to car occupancy</u> for which the system-wide delays become equal.
 Operation

Headway = Cycle Length = 1.5 minutes, Total number of lanes = 3

Outline

- Introduction
- Background
- Types of pre-signals
- Operation of pre-signals
- Analytical and Empirical Evaluations
- Bounds of application
 - Pre-signals vs. mixed use lanes
 - Pre-signals vs. dedicated lanes
- Conclusions

Conclusions

- Pre-signals can provide <u>lowest</u> overall system-wide person hours of delay for a wide range of bus occupancies
 - Even if not so, can improve bus operations not only in terms of travel times but also for reliability
- Barely over saturated situations are problematic for pre-signals
- The number of implementations of these strategies can be widely extended to provide bus priority

Thank You Questions?