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Visual Analytics

Enabling synergetic work of humans and computers
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Types of spatio-temporal data

Spatial events

(id, location, time, attributes)

Spatial time
series

Spatial
distributions

Local time
series
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Transformations of spatio-temporal
data structures

Integration

e —

Extraction, disintegration

Extraction Extraction

Spatial time
series
Projecy wj‘ection
Local time Spatial
series distributions
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Transformations enable multi-perspective
analysis of movement data

Moving objects

Trajectories

Locations
. Movement data
Spatial events

Spatial event data

Local time series
Spatial time series <
Jimes
\/ Spatial distributions
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Running example dataset: QO CTO

The reliable wa

trajectories of cars in Milan

GPS-tracks of 17,241 cars in Milan, Italy

Time period: from Sunday, the 1st of April,
to Saturday, the 7th of April, 2007 ’

Received from Octo Telematics
Wwww.octotelematics.com
special thanks to T.Martino
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Data structure:

B Anonymized car identifier
B Date and time

B Geographic coordinates
B Speed

The trajectories from one O™ _ Rl Y
day aredrawnonamap 5 o O AF ' \
with 5% opacity N o ey \A__ -
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Perspective 1:

Movement data in the form of trajectories
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Density-based clustering of trajectories:
What distance measure to use?

M Trajectories are time series of spatial positions and other movement attributes

M Trajectories are complex objects with heterogeneous properties: positions in
space and in time, shape, dynamics of speed, ...

B A single distance measure accounting for all properties would be hard to
implement and results would be hard to interpret

B Itis more feasible to create a library of simple distance measures (a.k.a.
distance functions) addressing different properties. For example,

spatial distance between origins and/or between destinations,
average spatial distance between corresponding points along the routes,
average spatial distance between points reached at the same times, ...

B Different aspects of trajectories are studied using different distance functions.
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DB clusters of trajectories (example 1)

Distance function: the average spatial distance between the origins and between the destinations;

R=750m, N=5 Only 18 largest clusters are shown.

W04 W 5(97) IV 23 (30) [V 14 (36) ¥ 3(50) [V 25 (58)
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Summarised representation of clusters of
trajectories

I iE (1047 ¥ 5(97) W 23 (90} ¥ 14 (26) v 3(50) W 25 (58)

Minor flows are omitted for a clearer view.
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DB clusters of trajectories (example 2)

Distance function: “route similarity”, i.e., the average spatial distance between the corresponding points
along the route; R=750m, N=5
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The same clusters represented in a

summarised form

v 12 (128) W 1(121)

¥ 29 (96) ¥ 26 (89) W 15 (36)

¥ 7 (47) ¥ B (42)

v 9(108)

|

¥ 17 (81)

v 48 (32)

W 3(97)




Interactive progressive clustering

Applying different distance measures at different steps

Data: trajectories of cars in Milan
Step 1: clustering according to the spatial proximity of the end points

Distance function: “common ends”
Question: what are the most frequent destinations of car trips?

(571 v 2 (448) M 3(403) W 8(257) W B (209) W 12 (175)

W 4(141) ¥ 14 (110} ™ 5(103) ™ 18 (95) v 939 ¥ 13 (76)




Interactive progressive clustering
Applying different distance measures (2)

Data: one (or more) selected cluster(s) from the previous step
Step 2: clustering according to the similarity of the routes (shapes)

Distance function: “route similarity”
Question: what routes are usually taken to get to the selected destination?

v 1 (58] W &(70) W 7 (55) ¥ 3(23) W 2010 M 5@
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Clustering of very large sets of
trajectories

B Problem: clustering of complex objects (such as trajectories) involving non-
trivial distance functions (such as “route similarity”) can only be done in RAM,
l.e. for a relatively small dataset

B Our approach:
Take a subset (sample) of the objects suitable for processing in RAM.

Discover clusters in the subset.

Load the remaining objects into RAM by portions.

Classify each object = identify to which of the discovered clusters the object
belongs.

Store the result of the classification in the database.

Take the objects that remained unclassified and apply steps 1 to 3 to them.
Repeat the procedure until no meaningful new clusters can be discovered.

B Question: how to identify the cluster where an object belongs?

S CITY UNIVERSITY ZZ Fraunhofer
+\ /5 LONDON 1AIS




Classifier, the main idea

B From each cluster C; select one or more representative objects (prototypes) and
respective distance thresholds:
{ (pty, dy), ..., (pt,, d,) } such that YoeC, 3k, 1<k<n: distance (o, pt,) < d,

The set of all cluster prototypes with the respective distance thresholds defines the classifier
B A new object o' may be ascribed to the cluster if the same condition holds for it.
= For each object from a large database:
measure the distances to all prototypes;

take the closest prototype among those with the distances below the thresholds
and ascribe the object to the respective cluster;

If no such prototypes found, label the object as unclassified.
M To select prototypes:

Divide the cluster into “round” subclusters

Take the medoid of each subcluster as one of the prototypes

Take the maximum of the distances from the subcluster medoid to the
subcluster members as the distance threshold for this prototype
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Dividing a cluster into round sub-clusters:
an illustration using points
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This can be done by a variant of the K-medoids clustering algorithm
where the desired maximum radius of a subcluster is a parameter.
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Division of a cluster of trajectories into
round” subclusters
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To obtain meaningful results, the analyst may
needs to review and, possibly, edit the classifier

Should | keep
the three
branches in
one cluster?

Or should |

divide the cluster
into two or three

clusters?
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Example of interactive editing
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What are the most frequent routes on Wednesday?

Result of clustering of single-day trajectories by route similarity
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How frequent are these routes during the whole week?

Result of building a classifier and applying it to the whole set of trajectories
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Further analysis of the trajectories

B The analysis is continued by loading a subset of the unclassified trajectories
(“noise”) to RAM, applying clustering to it, building a new classifier, and
applying the classifier to the whole set of unclassified trajectories.

B Empirical experience:

With each new iteration step, the number and the sizes of discovered
clusters substantially decrease in comparison to the previous step.

After 4-5 steps of the procedure, only very small clusters can be discovered.
The analyst’s effort needed for editing of the classifier also decreases.

The editing effort is high for big clusters with high internal variation, which
mostly appear in the first step; the following clusters are smaller and “cleaner”.

B Unfortunately, no formal criterion for terminating the procedure.
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Where to read more

G.Andrienko, N.Andrienko, S.Rinzivillo, M.Nanni, D.Pedreschi, F.Giannotti

Interactive Visual Clustering of Large Collections of Trajectories
IEEE Visual Analytics Science and Technology (VAST 2009)
Proceedings, IEEE Computer Society Press, 2009, pp.3-10
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Analysis of movement attributes

Investigate speed variation along a selected route: single day

SPEED
< 5,00
5.00 - 10.00
10.00 - 15.00
15.00 - 30.00
30.00 - 50.00
50.00 - 75.00
75.00 - 100.00
>100.00
NaN

IeeEOO0OE.

Average Duration
23
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Analysis of movement attributes

Investigate speed variation along a selected route: whole week

< 5.00

5.00 - 10.00
10.00 - 15.00
15.00 - 30.00
30.00 - 50.00
50.00 - 75.00
75.00 - 100.00 Sat
= 100.00
NaN

] | [wjmimiw] | |

Thu
Average Duration

23

Trajectory Count

Speed (km/h) Average Duration R



Perspective 2:
Movement data In the form of spatial events

Movers

/ Trajectories

Spatial events'/

Spatial eventdata

Movement data\

Spatial time series

Locations

Local time series

Jimes

Spatial distributions
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Example of analysis focusing on
movement events

B Data: trajectories of cars in Milan

B Task: find places of traffic congestions and determine their characteristics
(times of the congestions, durations, numbers of cars involved, ...)

B Traffic congestion ~ dense spatio-temporal cluster of low speed movement
events

Movement direction must be taken into account

B Places of interest: areas where at least one traffic congestion occurred ~
areas containing the clusters

B Characteristics of places: time series of event counts, vehicle counts, ...
B Data transformations:
Trajectories — Events — Places — Spatial time series

S22 CITY UNIVERSITY ZZ Fraunhofer
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Step 1: extract low speed events from the
trajectories A ——

!
R
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o
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Low speed := speed < 10 km/h



Vertical dimension <« time




Step 2: density-based clustering of events

by spatio-temporal positions and directions

Distance function: (o, if(ds>Dg)or3i|(d;>D;), i=0..n
( d. d d
D, * max (—s, .y —“) if (a) — neighbourhood defined as a cube
Ds Dﬂ Dn
d=1

A\ O gdp
D, * (D_) + Z (E) , if (b) —neighbourhood defined as a sphere
5 0 i

i=
Lok

D, — spatial distance threshold; D,,D4,...,Dy - distance thresholds for other attributes

d.,d,.d,,...,dy — distances; d, — distance in space

Distance in time (t,, t, are intervals): | Distance for a cyclic attribute (V is the cycle length):

ﬁmﬂ' _I_lend gfﬁz_lem’ < I_;srara‘ d(u . V) _ { |U1 — Vs |, |U1 — U2| = V;’Z
< < 1 V2, - .
V — |v1 — V3 , otherwise
a]'I (1‘1:33) — Iiﬂ'arr . I_;?w" Uﬂrlsrarr ~ I_;m"

0 otherwise
E.g., direction: V = 360°; d(5°,355°, 360°) = 10°
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B Representation method:

Clualitative colouring

Clusters by spatio-temporal
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The STD-clusters, noise hidden
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Step 3: unite STD-clusters in SD-clusters

Cluster the events from the STD-clusters by the spatial positions and directions

The result of the density-based clustering with the spatial distance
threshold of 100 m and direction distance threshold of 20°




Events that occurred in same or
close places but in different times
were formerly in different clusters,
but now they are in the same
clusters.

One SD-cluster includes one or
several STD-clusters.
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Step 4: outline the places of interest

Build spatial buffers around the SD-clusters of events
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Belt road north-south on the east of the city (A50)

Extended areas of
congested traffic
directed to the south——>f§¢ _ S Y\
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obstructed movement
directed to the north
and northwest

Very long area of
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Step 5: aggregate data by the places

and by suitable time intervals, e.g., hourly

M eve‘rjts by hiours
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Place-referenced time series of the counts of slow movement events



=] m Buffers 50m i l:

around 5D
clusters

The temporal
diagrams show the
variation of the
attribute value
(vertical dimension)
over time (horizontal
dimension).
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Map fragment (northwest) enlarged

'

EWCongested traffic in the afternoon in the direction
out of the city (northwest)

Congested traffic in the morning in the direction
to the south

&2, CITY UNIVERSITY ZZ Eraunhofer
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Other map fragments enlarged ¢ 0o
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Where to read more

IEEE VAST 2011 paper (best paper award)

G.Andrienko, N.Andrienko, C.Hurter, S.Rinzivillo, S.Wrobel
From Movement Tracks through Events to Places:

Extracting and Characterizing Significant Places from Mobility Data
IEEE Visual Analytics Science and Technology (VAST 2011),
Proceedings, IEEE Computer Society Press, 183-192

Extended version, covering also scalable clustering of events

G.Andrienko, N.Andrienko, C.Hurter, S.Rinzivillo, S.Wrobel
Scalable Analysis of Movement Data for Extracting and Exploring

Significant Places
IEEE Transactions on Visualization and Computer Graphics,
2013, 19(7), 1078-1094
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Perspective 3:
Movement data in the form of spatial
situations

Movers

Trajectories
Locations
Spatial events Movement data Local time series

Spatial eventdata Spatial time series

Jimes
v Spatial distributions

\

o, CITY UNIVERSITY = Fraunhofer
. LONDON 1AIS



Spatio-temporal aggregation
of trajectories
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f the territory

IVISION O

D

Cluster centres — seeds for Voronoi

tessellation

Detalils:

Natalia Andrienko, Gennady Andrienko

Spatial Generalization and Aggregation of Massive Movement Data

IEEE Transactions on Visualization and Computer Graphics (TVCG), 2011, v.17 (2), pp.205-219

http://doi.ieeecomputersociety.org/10.1109/TVCG.2010.44



Spatial situations: presence

IS0
© Fraunhofer-Institut flr Intelligente C[TY UN[VERSITY % FraunhOfer
\! /.. LONDON

Analyse- und Informationssysteme IAIS 1AIS



Spatial situations: flows

"‘ opera. | |

M moves by time intervals

91.00

\

CITY UNIVERSITY Z Fraunhofer
<\ /2 LONDON IAIS



Clustering of spatial (flow) situations
similarity

L Fn Ares
B "‘\%\ N

f 1E \‘E‘ i[‘?_l%
AN R N

rize cluster=1]

iy o

NoLrs sum
i




Comparison of clusters of spatial
situations

9 have been

. subtracted from
values for all
other clusters




Where to read more

N.Andrienko, G.Andrienko, H.Stange, T.Liebig, D.Hecker
Visual Analytics for Understanding Spatial Situations from

Episodic Movement Data

Klnstliche Intelligenz, 2012, v.26 (3), pp.241-251
http://dx.doi.org/10.1007/s13218-012-0177-4

>, CITY UNIVERSITY ZZ Fraunhofer
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Perspective 4:

Movement data in the form of local time

Movers

series

Trajectories

M
Spatial events /

Spatial eventdata

ovementdat

2

Locations

Local time series

Spatial time series

Jimes

Spatial distributions

> CITY UNIVERSITY ZZ Fraunhofer
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An alternative view of spatial time series:
a set of local time series

|£:| Time graph 1: Aggregated moves of cars EIE@
M maves by hours
69.00 A 69.00
B0
a0

40

a0

20

10 e

0.00

D112 DEDD 0212 DEDD 0312 DdDD 0412 DSDD 0512 DEDD 0512 DTDD DT12

. — - - - - |
22 01;00 07,23

01:00 167 hours 07,23
& fix & fix ™ fix

iTime ERTEHTKDisplav‘Transfnrmatiun‘EventsKTrend‘SegmentatiunKCIaSSiﬂcatiun‘R statistics‘SelectiuniQuenr—

© Fraunhofer-Institut fur Intelligente " A CITY UN[VERS[TY A FraunhOfer
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An alternative view of spatial time series :
a set of local time series

Time graph 1: Aggregated moves of cars - |EI|5|
M mayes by hours
G9.00 G9.00
i i) : f\ f\l’n'll %
f KR 014

\ AN link_009_137: 45

J } \ v

| k% |

W NN
- ol / 1 . s -
0100 0112 0200 0212 0300 0312 (0400 0412 0500 0512 O0R00 0812 0700 D712

V¥ Show only selected objects W value flow W Value classes W Grid; Vert.grid period: |24 offset; |D

kTime ementkDiﬁmaﬁfKTransfurmatinnKTrend‘Segmentatinn‘CIassiﬂcatinnKR statistics‘SelectinnIQuew—

We wish to represent the essential characteristics of the ST-variation
explicitly by a formal model or a set of models.

GBS CITY UNIVERSITY ZZ Fraunhofer
", LONDON 1AlS



Methods for spatio-temporal modelling
(e.g. STARIMA)

M Account for spatial and temporal dependencies

B Require prior specification of multiple weight matrices expressing impacts
among locations for different temporal lags

may be difficult (the impacts are not easy to quantify)
® Build a single global model of the entire spatio-temporal variation
It does not necessarily perform better than a set of local temporal models

B Assume spatial smoothness of the modelled phenomenon, i.e., closer places
are more similar than more distant ones

May be not very suitable for spatially abrupt phenomena

S
w
]
|

., CITY UNIVERSITY ZZ Fraunhofer
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Existing techniques for time series
modelling

+ Widely available in numerous statistical packages and libraries — can be
applied to spatially referenced time series

- The modelling methods are designed to deal with singular time series — hard
to use for a large number of time series

- Separate consideration of each time series ignores the phenomenon of
spatial dependence (relatedness and similarities among spatial locations or
objects)

- Separate consideration of each time series does not allow data abstraction
and generalisation over space

S
w
]
|
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Combination of spatial and temporal
modelling

W Approach 1:
Model the temporal variation independently for each location

Model the spatial variation of the parameters of the temporal models, e.g.,
as a random field

Assumes that the character of the temporal variation is the same
everywhere and only the parameters differ

W Approach 2:

Model the spatial variation independently for each time step, e.g., as a
random field

Model the temporal variation of the parameters of the spatial models at
each location

B Both approaches assume spatial smoothness of the phenomenon

8
SAAX

CITY UNIVERSITY ZZ Fraunhofer
Wa 4.., LONDON 1AIS




Our approach

Details:
Natalia Andrienko, Gennady Andrienko

A Visual Analytics Framework for
Spatio-temporal Analysis and Modelling

Step O:

Data Mining and Knowledge Discovery, 27(1), 55-83, 2013

Prepare
data

N

Step 1: Group time series

N

Clustering

»

Progressive

clustering

\/

Interactive
re-grouping

http://dx.doi.org/10.1007/s10618-012-0285-7

F-——mm——— =

For each group:

Step 2: Analyse and model

method parameters

Select L, Set :

Step 4:
Compute and
P \ ——>' Store model

view model
set

Step 3: Evaluate model

Predict values Visualise and
and compute P analyse
residuals residuals

_____________________________________________________________



Step 1: Clustering
of local TS

B Here: k-means (Weka)
but may be another
partition-based method

B Tried different k from 5 to 15

B Immediate visual response
facilitates choosing the most
suitable k

ggregated move: |

PE ]
of cars

EA Representation method
Qualitative colouring
Aggregated moves of cars

Clusters by k-means (7)

I 1220 ojeets (10.2%)

[ 2126 objsets (5.89)

[] 3 84 objects (3.9%)

B 4 129 onjsets (5.0%)

] = a0 objects (37%)

B 6 357 objscts (12.4%)

B 71119 objects (51.9%)

Total: 2155 objects

B Places

Total: 451 objects

m] - Google Maps

hykrid map
Total: 0 objects

m] - Google Maps

terrain map
Total: 0 objects
=] - Open Street Maps
Total: 0 objects
Territory: Milan, Italy
Background

001 m
—

|£) Time graph 1: Aggregated moves of cars

I moaves by hours
-

63.00

G0

a0

40

an

L 000

[~ Show only selected objects ¥ Value flow [~ Value classes ¥ Grid; Vert.arid period: 24 offset 0
Statistics: [ Average [ i
Classes (lines)  + | = 'v 1w 2[¥ 3V 4% 5% 6¥ 7[¥ remainder

\

VERSITY ZZ Fraunhofer

Classes (lows). + —n_2|_3 5
LTime e;dentXDisplaYKTransformation‘Events Trend ASegmentation CIassiﬂcation[R statistics[SeIectionIQuerv_ J 1AIS



Step 1: Re-grouping by progressive
clustering

Clusters by k-means (7} Erisel ) Clusters by k-means (4
7{1119) I

6 (397)
1(220)

v 4(129) diid
L 20126) ' ¢ [ 2
| 364
_____ v 5(80)
7 classes infotal | |7 9639

Hide au| Showalll S 55)

9 classes intotal

Hide all | Show all |

M moves by hours, mean

CITY UNIVERSITY % Fraunhofer
LONDON IAIS

© Fraunhofer-Institut fur Intelligente
Analyse- und Informationssysteme IAIS

EST 1894



Step 2: Analysis and modelling

i

|£:| Time series analysis (o llE s
M moves by hours
63.00 649.00
al
25 ) A N
g NN !
DDDIA T 1 T 1 T 1 T ) T 1 T T II T : T I T ‘DDD
01,00 01,12 02,00 0212 03,00 0312 0400 04,12 0500 0512 06,00 0612 07,00 0F12 0800 08,12 09,00 09,12 10,00 1012 11;00

Check the presence of cyclic-\fariation ofthe data:

v Cycle: daily Step: 1 hour N of steps in cycle: 24

Cycle start in data: step

v Cycle: weekly Step: 1hour M ofsteps incycle: 168 Cycle start in data: step

Update classes | Take other classes B

Perform modelling based onthe ¢ percentile |50 & mean ¥ excluding 5 % ofthe ¥ highest W lowestvalues c l

Currentclass: 4 -

previous

Modelling method:  triple exponential smoothing (Holt-Winters) - D | [” Show residuals Store model | Restare mode |

(Temporal cycles: (’ single cycle; length= 24 steps Cycle start step 24

¢~ two cycles; inner cycle length = | 24 steps; outer cycle consists of |7 inner cycles Use 0 - additionaltime series E

L alpha (overall smoothing)=  0.816406 beta (trend smoothing)= 0.0 gamma (seasonal smoothing)= 0.0

iMDdE”inQ‘Time extent (model)‘Time extent (\riew)(Displa\,r‘Selection

A) Check automatically detected time cycles in the data.

B) Select the current class (cluster) for the analysis and modelling.
C) Build the representative TS.

D) Select the modelling method.

E) View and modify model parameters (this section changes depending on the selected modelling method).



Step 2: Analysis and modelling

M moves by hours

F
£9.00 69.00
&0
75
0.00 ¥ ; 0.00

0100 0112 D200 0212 0300 0312 0400 04,12 S;IZID 0512 DE00 DE12 OF.00 0712 0800 0812 0900 0912 1000 10;12 11,00
Check the presence of cyclicvariation of the data:

[V Cycle: daily Step: 1 hour
¥ Cycle:weekly Step: 1 hour

M of steps in cycle: 24 Cycle startin data: step 0

M of steps in cycle: 168 Cycle startin data: step 24

Curentclass: 4 = previous | next| Update classes | Take other classes |

% ofthe [V highest ¥ lowestvalues

Perform modelling based onthe (" percentile & mean ¥ excluding 5

[™ Show residuals

Store model

Restore model

Temporal cycles: single cycle; length = 24 steps

alpha {overall smoothing) =

Maodelling method:  triple exponential smoothing (Holt-Winters) -

0.816406 beta (trend smoothing) =

" two cycles: inner cycle length =steps; outer cycle consists of innercycles

0.0

Cycle start: step

Use (0 » additionaltime series

gamma (seasonal smoathing) =

24

0.0

Store model set ‘

© Fraunhofer-Institut flr Intelligente
Analyse- und Informationssysteme IAIS

EST 1894

CITY UNIVERSITY % Fraunhofer
LONDON IAIS



Step 2: Analysis and modelling

M moves by hours

649.00

a0

0.00 2% : :
01:00 01:12 000 0212 D200 0312 04:00 0412 05:00 0512 DB:00 0B:12 07.00 0712 0B:00 0812 02:00 09:42 10:00 10:12 1100

r
g9.00

Check the presence of cyclicvariation of the data:
¥ Cycle: daily Step: 1 hour M of steps in cycle: 24 Cycle startin data: step o
V¥ Cycle: weekly Step: 1 hour M of steps in cycle: 168 Cycle startin data: step 24

Curentclass: 4 = previous | next| Upcate classes | Take other classes

Perform modelling based onthe ¢ percentile 50 - |® mean W excluding 5 % ofthe [v highest ¥ lowestvalues

M mowes by hours
f9.00

Madelling m

Temporal

a0 A

"::. - 1
| AL RS A | ey

25 [ 8 ¢ ) ' | '

\ \/ e | A

0100 0112 0200 0212 0300 03,12 04:00 0412 0500 0512

0600 0612 07,00 0712 08;00 0812 08;00 0912 1000 10,12 11;00

4
69.00

0.00

alpha (overall smoothing)= 0.8 beta (trend smoothing)=  0.03 gamma (seasonal smoothing)= 0.1

© Fraunhofer-Institut fur Intelligente

Analyse- und Informationssysteme IAIS LONDON

EST 1894

CITY UNIVERSITY % Fraunhofer
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Step 2: Analysis and modelling

M moves by hours

649.00

a0

0.00 2% : :
01:00 01:12 000 0212 D200 0312 04:00 0412 05:00 0512 DB:00 0B:12 07.00 0712 0B:00 0812 02:00 09:42 10:00 10:12 1100

r
g9.00

Check the presence of cyclicvariation of the data:
[V Cycle: daily Step: 1 hour
V¥ Cycle:weekly Step: 1 hour

Cycle startin data: step 0
M of stepsin cycle: 168 Cycle startin data: step

M of steps in cycle: 24

24

Curentclass: 4 = previous | next| Upcate classes | Take other classes

Perform modelling based onthe ¢ percentile 50 - |® mean W excluding 5 % ofthe [v highest ¥ lowestvalues

M moves by hours
F9.00

Madelling m

Temporal
a0

24

l""‘ii-l

L ot

01,00 0112 02,00 0212 0300 0312 0400 04,12 0500 0512 06,00 06,12 07,00 0712 08,00 0812 0900 0912 10:00 10,12 11;00

r
69.00

.00

& two cycles; inner cycle length = 24 steps; outer cycle consists of 7 inner cycles Use

alpha (overall smoothing)= 0.7 beta (trend smoothing) = 0.01 gamma (seasonal smoothing) =

10 » additional time series

05




Step 3: Model evaluation (analysis of
residuals)

B The goal is not to minimise the residuals

The model should not reproduce all fluctuations and outliers present in the
data

This should be an abstraction capturing the characteristic features of the
temporal variation

High values of the residuals do not mean low model quality

B The goal is to have the residuals randomly distributed in space and time
(no detectable patterns)

This means that the model correctly captures the characteristic, non-
random features of the temporal variation

S CITY UNIVERSITY ZZ Fraunhofer
+\ /5 LONDON 1AIS



Analysis of residuals (example)

|£:| Time graph 1: Aggregated moves of cars EI@

L-32.53

v Value classes [ Save Order: j

Breaks: 3253 -1500-5.005.00150025.00 2840 | I ] L
+ T +
\Time extent‘DispIay‘Transformat\on‘Events‘Trend‘Segmentat\onkUaSSiﬂcaﬁUﬂ‘R statistics‘selectionrauew_

B No systematic bias: approximately equal numbers of positive and negative errors in each time
step

No periodic increases and decreases at the level of the whole group
However, we are not sure about individual objects

A% CITY UNIVERSITY 25 Fraunhofer
; ;3" LONDON 1AIS




More detailed analysis by subgroups

Mode| residuals

r
28.48

[ mirror =

Show labels

Refine projection |
Re-run projection

9 Niterations: 1000

Tesse\latel ; ; 02,00 0242 0300 0312 0400 0412 0500 0512 0600 0612
Value flow ¥ Value classes ¥ Grid; Vert.grid period: 24 offiset 0

L-32.53

o
Group radius (%) 20 e
P ) Statistics: [~ Average [~ Median Quanties: 10 « [ Save

‘Put classes in table column || Classes (ines):

I™ Broadcast colors

Put coordinates in table

Classes (flows):

Subclasses of cluster 4

by residuals Model residuals
v 3(20) 2848 28,48
v 2(10)
v 0(9) 128
v 1 (3) a0
v 5(3)
v 7(8) 125
v 4(6)
v o) -3-3552 -32.483
v 8(5) 0100 0112 0200 0212 0300 0312 04.00 0412 DSUD 0512 UE oo 06,12 o700 071z -
v B (2) I~ Show only selected objects [~ Value flow ¥ Value classes ¥ Grid; Vertgrid period: offset:
Statistics: [~ Average [~ Median Quantiles: 10 10 ~T Save
Classes (lines): o 12 3 4 5[ aligl 8 9 remainder

Classes (flows):

It may be reasonable to consider this subgroup separately -> back to re-grouping



Use of a model for prediction

B  We obtain a common model for a group (cluster) of time series

Predicts the same values for all objects/places of the group

The statistical properties of the distribution of the predicted values in each place differ from the
distribution of the original values

B Adjustment of the prediction for individual objects/places:

Compute and store the basic statistics (quartiles) of the original values for each object/place i:
Q1i1 I\/Ii’ Q3i

Compute the statistics of the model-predicted values for the same time steps as the original
values: Q1, M, Q3 (common for the cluster)

Shift (level adjustment): S = M, — M

| | M, — Q1, Q3 —-M
Scale factors (amplitude adjustment): F,,,, = =

Let vt be the model-predicted value for an arbitrary time step t and V¢, the individually adjusted

value for the place/object i )
PIazeron) M+ F-(Vi— M)+ S, if vi< M

vt =

" | M+ Fgn(vi= M) + S, otherwise

\

o2, CITY UNIVERSITY ZZ Fraunhofer
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Use of a model for prediction: example

Common prediction for a cluster:

0.0a n.0ao
17M0/2011;00 18M10/2011;00 19M10/2011;00 201 @r2011;00 21110/2011;00 221 r2011;00 2311r2011;00

Set of individually adjusted predictions for this cluster:

M moves by hours
-

0.00 0.00
17201100 1810/2011;00 191106201100 2001 072011;00 21100201100 221 072011;00 231 002011;00

median




Prediction based on the models

::-‘-! Time interval for prediction?

Model name:

Modelled attribute:

Objects described by the attribute:
Object classes

Start time

End time:

MNumber of steps:

daily: step length 1
weekly. steplength 1

Check model information:
Variation of N moves by hours: daily and weekly
M moves by hours
Aggregated moves of cars
Clusters by k-means (9)
01; 00H
07, 23H
168

Time cycle(s):

hours; number of steps 24

hours; number of steps 168

Annotation:

Periodic daily and weekly variation

Specify the time interval for the prediction:

from  19/09/2011;00

Dateftime template:

dd/mmiyyyy;hh

to  25/09/2011,23
(edit if needed)

ok

@ |£:| Time graph 1: Clusters by k-means (9): N moves by hours from 19/09/2011;00 to 25/09,/2011;23 EI@
LM moyes by hours
48.00 49.00
0 DDI\ 0.0o
1960972011;00 20008i2011;00 21/0872011;00 22608r2011;00 2350872011;00 24i09/2011;00 25008/2011;00
I~ Show only selected objects W Value flow ¥ Value classes ¥ Grid: Vert.grid period: 24 offset 0
Statistics: [ Average” Median Quanties: 1 =
5 Classes (lines) +|-W 1w 2 3V 4V 5¥el¥ 7V 8v¥ 9% remainder

Classes (flows). + a2 3I—II— SI—FI— 9 remainder
\Time extentxDiSp|aY‘Transformatiun‘Evems Trend Segmentation‘CIassiﬂcat\on‘ﬂ statist\cs‘SeIectiunIQuew_

wves of cars: N moves by hours from 19,/09/2011;00 to 25/09,/2011;23

Cancel

AV SN 3

21/09r2011,00

YA

20iM952011;00

‘ 19/09/2011;00

19/09/2011;00 167 hours
e fix " fix

A AN A

25i09/2011,00

\Time EXTEm‘Di5pIay‘Transformation‘Events‘Trend‘Segmentation‘CIasswﬂcalion‘R statistics‘SeIectionIQuer\f_

L 0.0

25/09/2011;23

25/08/2011,23
" fix

TR T




i |£| Time graph 1: Aggregated moves of cars: N moves by hours from 19/09/2011;00 to 25/09/2011;23

Predicted:

Original:

M moyes by hours
60.00

i
=
0.00 =5 N Cherar s v par

L 0.00

24/09r2011,00

19i09/2011,00 A 20/0972011;00 21/0972011,00 22i09/2011,00 23i09/2011,00 25i09/2011,00

"\ | 1900201100

25/09/2011;23

19/09/2011;00 167 hours 25/09/2011,23
Monday \ o . Saturday o
LTime EﬁdenT‘Di5pIay‘Transm&nation‘Events‘Trend‘Segmematiun‘o\assiﬂcalion‘R Statistics‘SeIectionrQuer\f
\
\

|| Time graph 1: Aggregated mov\s of cars

i moyes by haurs

01,00 167 hours 0723
0+ fix  fix I fix
\Tlme BXIBmKD\Splay‘Transformation‘EventsKTrendKSegmentation‘CIassiﬂcatiunKR statwsticsKSeIeclionIQuery_
X ¢ i |

J. LONDON
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Comparison of actual values with
predicted (e.g., In monitoring)

Absolute differences Normalized differences

Actual M moves by hours - predicted Actual M moves by hours - predicted divided by
variance of predicted

-33.00 |
-10.00 -9.091
© Fraunhofer-Institut fiir Intelligente 10.00 CITY UNIVI -3.000
Analyse- und Informationssysteme |A 28.00 LONDON 3.000

EST 1894 ESGUU




Analysis and modelling of relationships
between two time-variant attributes

/ flow magnitudes

69.00

5520 | [ S

2287

S CITY UNIVERSITY % Fraunhofer
<\ /2 LONDON 1AIS



Data transformation and

clustering

B Dependency of attribute A(t) on attribute B(t):
Divide the value range of B into intervals

For each interval, collect all values of A that co-
occur with the values of B from this interval

Compute statistics of the values of A: minimum,
maximum, median, mean, percentiles ...

For each of these, there is a series B — A, or A(B)

P4
_Moline $sgrena y AN

Max of Average speed (km/) depending on N maoves per hour

Max of M maoves by hours depending on Average speed (km/h)

2287

E:)epen:dehcigas pf |;'na:xirr;1al ime:ani spiee@j o§n f!om{ m:aglhitu:de

2.0}

2287

2.0

69.00

:\,\éi&illl

3.00 9.00 1500 2100 27.00 3300 3900 4500 5100 5700  63.00

5.0 170.0

69.00

1.00

Dependencies of maximal flow magnitude on mean speed




Dependency modelling: flow - maximal

mean speed

Max of Average speed (kmih) depending on M moves per hour

3.00 .00 15.00 21.00

27.00

33.00

39.00

45.00

51.00 57.00

63.00

59.00

75.00

1721

Maodelling method:

paolynomial regression -

polynomial order =

4

3.00

9.00

33.00

39.00

© Fraunhofer-Institut fir Intelligente
Analyse- und Informationssysteme IAIS

EST 1894

CITY UNIVERSITY % Fraunhofer

LONDON
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Dependency modelling: mean speed —»
maximal flow

Max of M maves by hours depending on Average speed (kmih)
69.00 / ) £9.00
1.00 e e 1.00
20.0 45.0 70.0 §5.0 120.0 145.0 170.0 195.0

Modelling method:  polynomial regression - polynomial order= 5

20.0 450 70.0 a5.0 200 450 70.0 55.0
polynomial order= 6

-
© Fraunhofer-Institut fur Intelligente CITY UNIVERSITY % FraunhOfer
Analyse- und Informationssysteme IAIS LONDON 1AIS

EST 1894



Graphical representation of the models
built

9th decile of Average speead (km/h) by hours
130.3

0.4 .
224 504 784 1064 1344 1624 14904 2184 2464 2744 3024

e of M moves*al depending on Average speed (kmih)
2383

2000

1500

© Fraunhofer-Institut fir Intelligente CITY UNIVERSITY % FraunhOfer
LONDON IAIS
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Use of the models:

simulation of extraordinary traffic from given places

The simulation requires the following prediction models:

1. (Place_1, Place_2 Time)-= M of cars

A set oftime series maodels predicting the regular number of moves
{flowd from ane place to another by time intervals.

Variation of N moves by hours *50: daily and weekly

Select from available models

2 (Place_1, Place_2, N of cars) -= Possible speed

21 A set of dependency models predicting the maximal average speed of
maoving from one place to another depending on the place link load, i.e.,
nurmber of cars that try to move.

Variation of Max of Average speed (kmih) depending on N moves

Lr.‘! Transition times? s..‘
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Selectthe attribute defining the transition times.

Start ID
EndID

M of moves
Length L
B
Awverage speed (kmih); total

lA\rerage path length; km

Awverage path length ratio to link length

M trajectories; total *50

| »

M moves; total *50 -
Select from available models ¥ Use the weights of the links defined by the atiribute:
1 3. (Place_1, Place_2, Possible speed) -= N of cars | Length ) _ _ o
[ I Average move duration (minutes); total

A set of dependency madels predicting the maximal number of cars

fowd that will he ahle ta mowve fram one place to another within a given

time interval depending on the maximal average speed with which the
i cars can move,

|| Variation of Max of N moves*50 depending on Average speed (kmih)

|
Ll
|| Scale factor for the model-predicted values:

[l Done |

:Select from available models |

1.0

Cancel |

Awverage speed (kmih); total

Average path length; km

Awverage path length ratio to link length
M trajectories; total *50

M moves; total *50

Median of N moves by hours *50

Max N moves by hours *50

1|

ll ﬂl Cancel |
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Step 2 of the simulation:

Distribute moving objects among the destinations and routes

A given number of moving ohjects will be distributed among the
passible destinations, i.e., places from the layer Places,

The places need to have weights defined by some numeric
attribute.

Selectthe attribute defining the weights:

M visits

M staris

M ends

M visitors total

M visits total

l||M ends after 18:00

3000

i Localize the places on map |

The given nurmber of objects will be distributed among the 3
selected places of origin.

Continue |
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Re-route traffic? The bottlenecks can be revealed even before

Flease check ifthe expected link loads are reasonable.

W ITnot, it rmay be desirable to re-route a part of the traffic to other links, if the sSimu Iatlon

possible.

This is modelled by madifying the link weights.

Ifyou decide to do 5o, modify the weights or choose another attribute defining ' T ——)
the weinhts and press "Re-compute routes”. e e

Otherwise, press "Continue with current routes”.
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Stop the process |

Qualitative colouring
Possible paths from 171,134, 224
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Origin

. 134: 624 objects (35.7%)
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Expected link load

Max 3574
N

Bollt ft[ ;
[ 3 L
. | \vﬁ% [ s -4
N ‘h_.-"

Total: 1749 objects

H - Marks ofthe places of

the arigin of the
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| Total: 3 objects
=] “ Flows of cars

FA Representation method: Line
thickness

Flows of cars
Expected link load
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[ Total: 2155 objects
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| EI | Places
| Total: 451 objects

=] - Open Street Map
Total: 0 ohjects

I
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| Territory: Milan, laly
Background

1.015 km
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Min: 0

[~ invertfocus

[~ Dynamic map update

Manipulate

Iris, Descartes, CommonGIS, V-Analytics 1995-2010: Milan cars data aggregated by 1km areas




Simulated trajectories

Some traffic re-routed to the south:
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The speeds on the northern motorway
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Animation of simulation results
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Presence and flows for selected time intervals
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Multi-perspective analysis of movement

Trip destinations, routes...

Moving objects

Periodic variation of flow volumes;
Dependencies volume vs. speed

Trajectories

Movement data
Spatial event data Spatial time series :
Jimes
w Spatial distributions

Low speed events — traffic jams Periodic (daily and weekly)
variation of spatial situations

Locations

Local time series

Spatial events
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Movers

Trajectories

Movement data

Locations

Spatial events Local time series

Spatial eventdata

Spatial time series

Jimes

Spatial distributions
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