PARKING AS A TRAFFIC CONTROL MECHANISM – IDEAS AND CONSTRAINTS

Lectures at the Institute for Transport Planning and Systems Swiss Federal Institute of Technology (ETH), Zurich 20th April 2015

> Dr Michael MacNicholas Consulting Engineer and Visiting Professor, University of Ulster

PARKING?

TECHNICAL ASPECTS – BUSINESS ASPECTS

DIFFERENT PARTIES – DIFFERENT OBJECTIVES

Retail and Business Operators

Customers

Private Parking Industry

Municipal Authority - Responsibility for Traffic and Parking

URBAN VEHICULAR TRIP CLASSIFICATION

Parking Element - Trip Type 1, 2 and 3 Proportions Depend on City

Trip Type 4

ECONOMIC CASE FOR CONGESTION REDUCTION

Private Costs

Social Costs

Parking Fees

New Equilibrium Point

Traffic Flow

COMPETITION FOR STREET SPACE

TIME AND SPACE ELEMENTS OF A PARKING SYSTEM

Use of Zones

Collection of Event Data – Use of Technology

Creation of Models

PARKING AS INPUT- OUTPUT SYSTEM

Similarity With Other Systems

Portability of Techniques

Hydrology of a River System Population Studies Electrical Devices

<u>SLIDE 7</u>

A SIMPLE REPRESENTATION OF A PARKING SYSTEM

Continuous Functions for Traffic Flows

$$G(t) = \bigcup_{0}^{t} g(t) dt$$

and
$$H(t) = \bigcup_{0}^{t} h(t) dt$$

Number Parked = A(t) = G(t) - H(t)

MEASURES OF PARKING USAGE

Parking Load and Volume

Parking Load = L

$$L = \bigcup_{0}^{T} G(t)dt - \bigcup_{0}^{T} H(t)dt$$

Average Parking Duration

Average Turnover

Average Parking Duration = \overline{t}

$$\overline{t} = \frac{L}{V}$$

Average Parking Turnover per Space = \overline{d}

$$\overline{d} = \frac{V}{N}$$

PARKING ACCUMULATION DURING A DAY

Use of R Factor

Т $L = \hat{0} A(t) dt = RTN$

ELEMENTARY CHOICES FOR A PARKING CONTROL AREA

Average Duration or Average Turnover

 $\overline{t} = \frac{RTN}{\overline{d}N} = \frac{RT}{\overline{d}}$

MORE SOPHISTICATED MODELS OF TRAFFIC/PARKING USAGE

Continuous or Discrete?

Basic Requirements?

SYSTEM IDENTIFICATION

Known Input G and Output H, where GP = H

What is P?

Maximum Entropy

Initial best estimate of the matrix **P**

Initial Matrix
$$\mathbf{P} = \begin{bmatrix} \hat{e} \overrightarrow{p}_{11} & \overrightarrow{p}_{12} & \overrightarrow{p}_{13} & \overrightarrow{p}_{14} \dot{\mathbf{u}} \\ \hat{e} & \mathbf{0} & \overrightarrow{p}_{22} & \overrightarrow{p}_{23} & \overrightarrow{p}_{24} \dot{\mathbf{u}} \\ \hat{e} & \mathbf{0} & \mathbf{0} & \overrightarrow{p}_{33} & \overrightarrow{p}_{34} \dot{\mathbf{u}} \\ \hat{e} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \overrightarrow{p}_{44} \dot{\mathbf{u}} \end{bmatrix}$$

where $\mathbf{P} \mathbf{E}^{\mathbf{T}} = \mathbf{E}^{\mathbf{T}}$

We want to refine this matrix by some procedure to a value that satisfies the basic matrix equations below.

Initial \vec{P} -Final \hat{P} where \hat{P} satisfies equations $G\hat{P} = H$ $\hat{P}E^{T} = E^{T}$

In other words, it has to be done logically in such a way that it is consistent with the accurately recorded entry and exit flows G and H, and still retains a memory of the initial P.

IMPACT OF PRICE INCREASE AND/OR TIME CONTROLS

Numbers In and Out

$$\mathbf{B} = \begin{bmatrix} \hat{e} & \mathbf{b}_{11} & \mathbf{b}_{12} & \mathbf{b}_{13} & \mathbf{b}_{14} & \hat{\mathbf{U}} \\ \hat{e} & \mathbf{b}_{22} & \mathbf{b}_{23} & \mathbf{b}_{24} & \hat{\mathbf{U}} \\ \hat{e} & \mathbf{b}_{33} & \mathbf{b}_{34} & \hat{\mathbf{U}} \\ \hat{e} & \mathbf{b}_{44} & \hat{\mathbf{U}} \end{bmatrix}$$

Adjustment Factors

$$\mathbf{K} = \begin{bmatrix} \hat{e} & k_{11} & k_{12} & k_{13} & k_{14} & \hat{U} \\ \hat{e} & k_{22} & k_{23} & k_{24} & \hat{U} \\ \hat{e} & & k_{33} & k_{34} & \hat{U} \\ \hat{e} & & & k_{44} & \hat{U} \end{bmatrix}$$

Array Multiplication

 $\mathbf{B}^{\text{AFTER}} = \mathbf{K}^* \mathbf{B}^{\text{BEFORE}}$

Whole System

 $\mathbf{B} = \mathbf{K}_1 * \mathbf{B}_1 + \mathbf{K}_2 * \mathbf{B}_2 + \mathbf{K}_3 * \mathbf{B}_3 + \mathbf{K}_4 * \mathbf{B}_4$ etc.

SLIDE 14

INPUTS TO DECISION PROCESS

DUBLIN AS A CASE STUDY

Modal Split

Land Use Planning

Parking Inventory

POPULATION	NUMBER	
City Area	506,000	
Total Urban Area	1,045,000	

	ON-STREET PARKING	NUMBER	CONTROL
	Controlled On-street Spaces		
	in Urban Area (including CBD)	33,000	Price and Time
			Determined by
			Municipal Authority
	Gross Revenue	€26,800,000	
	Net Revenue	€22,600,000	
CITY			
	OFF-STREET PARKING	NUMBER	CONTROL
	Multistorey etc, Open to Public	6,000	Price Determined
			by Operator
	Private Non-Residential	7,000 est.	None
	OFF-STREET PARKING	NUMBER	CONTROL
SUBURBS			
	Retail and Office Developments	15,000 est.	Mostly Free

Available Controls?

Attainable Objectives?