
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Urban Parking Space Management via Dynamic Performance-Based Pricing

Daniel Mackowski, Yun Bai, Yanfeng Ouyang Department of Civil and Environmental Engineering

The Parking "Pain"

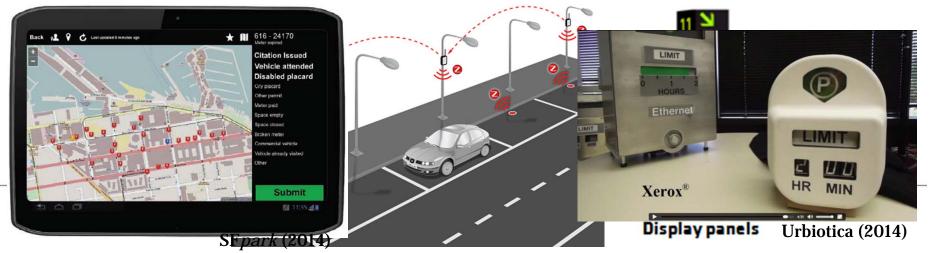
- A large share (~30%) of city traffic is from cars looking for parking (Shoup, 2006)
 Parking Pain Point
 - High congestion
 - Excessive emissions
 - Wasted productivity
- 60% of drivers abandon looking for parking at least once/yr (IBM, 2011)
 - Lost economic opportunity

The time and frustration of finding parking decreases users' quality of life

The U.S. Parking Industry

- \$25+ billion annual gross revenue
 - 100+ million parking spaces
 - ~5 million parking meters
- Limited parking supply
 - \$16,167 to build one new space
- Consumer parking decision based on:
 - Cost (34%), security (29%), and location (25%)
- How can we better manage existing parking infrastructure taking consideration of user behavior?

Source: International Parking Institute (2014).


illinois.edu https://www.parking.org/media/overview-of-the-us-parking-industry.aspx

Solution - "Smart Parking"

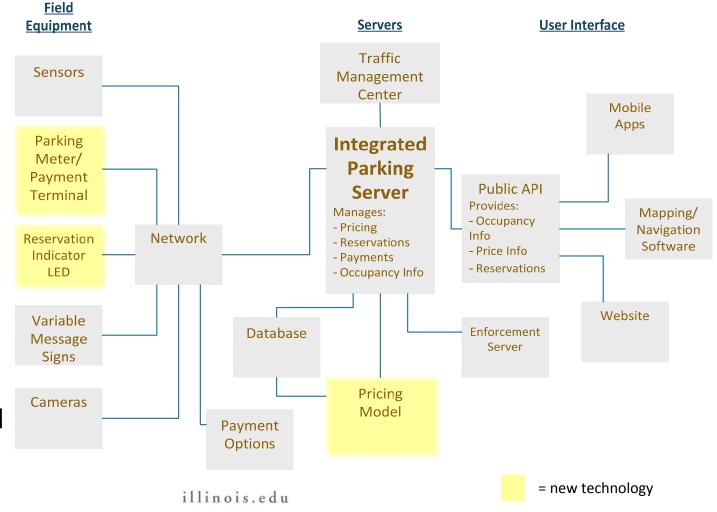
- Parking management systems that utilize information technology
 - Sensing & communication
- These systems are able to:
 - Provide users with real-time price and availability information
 - Guide users to best available parking spots
 - Update prices on each block remotely
 - Display parking reservation

Xerox's MergeTM in LA Express Park

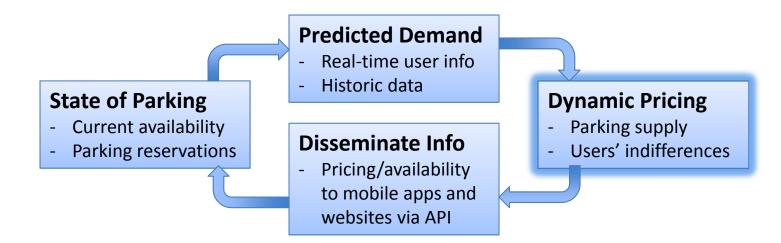
Existing Systems

- Operation Los Angeles's parking management system
 - \$18.5 million to fund pilot in downtown (4.5 mi²)
 - Mainly for parking information & guidance
- **SF***park* San Francisco's parking agency
 - Goal: One open spot per block (~85% occupancy)
 - Method: Demand responsive performance based pricing
 - Price varies by location (block by block), time-of-day, and day-of-week
 - SFpark updates price tables every 6 weeks, not in real-time
 - Does not support parking reservation

Remaining Challenges


- No model exists that can:
 - Account for drivers' independent/competing decision making process
 - Consider congestion reduction as an important objective
 - Be solved for large networks with varying demand data in near real-time
- No systems have implemented on-street parking reservations
 - Xerox recently patented the idea and is developing prototypes
- No balance between reducing congestion and improving economic surplus (including revenue)

Proposed Parking Pricing and Management System


Components:

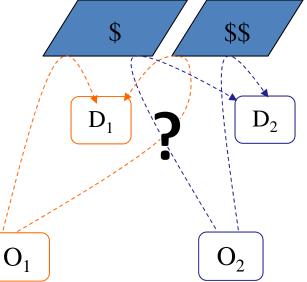
- an operating strategy to improve parking space utilization
- a dynamic pricing model based on realtime demand

 stand-alone software, information technology applications, and supporting hardware

Pricing Model Integration

Objective: occupancy target (e.g. 85%) *and* social surplus *or* revenue

Considering: drivers' independent/competing decision making policy constraints (min/max price, price variation, ...)


Assumptions: demand data known or predicted accurately based on current travel and parking behavior drivers are informed and analytic

illinois.edu

Dynamic Pricing Model

- Bi-level Stackelberg-Nash game model formulated as a mathematical program with equilibrium constraints (MPEC)
- Upper level decision: price for each area
 - Set by the parking agency or operator
 - Constrained by established parking policies
 (e.g. maximum prices, price fluctuation limits)
- Lower level decision: each user's parking location choice
 - Based on travel utilities and availability
 - Follows Nash equilibrium, market clearing principles, and physical constraints (e.g. lot capacity, network flow balance)

Pricing Model Notation

r	 O, D, J: sets of origins (current location), destinations, and parking areas T: set of discrete time intervals N: set of durations 					
Sets 🗕	T: set of discrete time intervals					
N: set of durations						
ſ	τ : number of time intervals in horizon c_j : capacity of parking area j					
Parameters -	c_j : capacity of parking area j					
	κ_j : target occupancy level of parking area <i>j</i> (e.g. 85%)					
	eta : penalty for not meeting target occupancy level					
	ζ : dummy parking lot to accept overflow demand					
	$H(\cdot)$: demand function of parking users (assume linear = a-bu)					
	v_{oj}, w_{jd} : driving distance (origin o to area j), walking distance (area j to destination d)					
	θ, θ' : slopes of indifference curves between price/walking distance, and price/driving distance					
	$\mathcal{E}_l, \mathcal{E}_r, \gamma_j, \eta_j$: price policy parameters (change in price upper/lower bounds, min/max price)					
Decision Variables						
	• p_j^t : parking price at parking area <i>j</i> at time <i>t</i> ρ_j^t : shadow price at parking area <i>j</i> at time <i>t</i>					
	f_j^t : number of users parked at parking area j at time t					
	f_j^t : number of users parked at parking area <i>j</i> at time <i>t</i> g_j^t : number of users leaving parking area <i>j</i> at time <i>t</i> $q_j^{t,n}$: number of new users entering parking area <i>j</i> at time <i>t</i> for duration <i>n</i>					
	$q_j^{t,n}$: number of new users entering parking area j at time t for duration n					
	$u_{ad}^{t,n}$: disutility of users with trip od at time t for duration n					
L	- $h_{j,od}^{t,n}$: demand for parking area <i>j</i> by users with trip <i>od</i> at time <i>t</i> for duration <i>n</i>					

Pricing Model Formulation

Solved for the current time period (e.g. every 15 minutes) while considering future time periods and predicted demand

For each
$$t_{s}$$
 from $0 \rightarrow T$, solve: Occupancy Economic Surplus Revenue
Agency (Leader)
$$\min_{\mathbf{r}_{pq},\mathbf{d},\mathbf{m}} \left(\beta \sum_{i=x}^{j,s} |\kappa_{i}c_{j} - f_{i}'| \right) = \alpha_{s} \sum_{i=x}^{j,s} \sum_{j \neq l} (\sum_{m \in [1,2,...N]} n \cdot p_{j}' \cdot q_{l}'^{n}} + \sum_{m \in [1,2,...N]} \sum_{m \in D} \frac{1}{2} h_{j,m}^{i,n} (u_{max} + u) \right) = \alpha_{s} \sum_{i=x}^{j,s} \sum_{j \neq l} (\sum_{m \in [1,2,...N]} n \cdot p_{j}' \cdot q_{l}'^{n})$$

$$= objective$$
s.t. $f_{j}^{i} = f_{j}^{i-1} - g_{j}^{i} + \sum_{m \in N} q_{j}^{i,n}, \forall j \in J, t \in \{t_{s},...t_{s} + \tau\}$

$$= d \text{ o users}$$

$$q_{l}^{i,n} = \sum_{m \in D} \sum_{k=0}^{l,m} h_{j,m}^{m,m}, \forall j \in J, t \in \{t_{s},...t_{s} + \tau\}$$

$$= network balance$$

$$g_{j}^{i} = \sum_{m \in D} \sum_{k=0}^{i-1} d_{j}^{m,t-m}, \forall j \in J, t \in \{t_{s},...t_{s} + \tau\}$$

$$= network balance$$

$$g_{j}^{i} = \sum_{m \in D} h_{j,m}^{i,n}, \forall j \in J, t \in \{t_{s},...t_{s} + \tau\}$$

$$= network balance$$

$$g_{j}^{i} = \sum_{m \in D} h_{j,m}^{i,n}, \forall j \in J, t \in \{t_{s},...t_{s} + \tau\}$$

$$= network balance$$

$$g_{j}^{i} = \sum_{j \in D} h_{j,m}^{i,n}, \forall j \in J, t \in \{t_{s},...t_{s} + \tau\}$$

$$= network balance$$

$$g_{j}^{i} = \sum_{j \in D} h_{j,m}^{i,n}, \forall j \in J, t \in \{t_{s},...t_{s} + \tau\}$$

$$= network balance$$

$$g_{j}^{i} = \sum_{j \in D} h_{j,m}^{i,n}, \forall j \in J, t \in \{t_{s},...t_{s} + \tau\}$$

$$= network balance$$

$$g_{j}^{i} = \sum_{j \in D} h_{j,m}^{i,n} = 0, \forall j \in J, t \in \{t_{s},...t_{s} + \tau\}$$

$$= network balance$$

$$g_{j}^{i} = \sum_{j \in D} h_{j,m}^{i,n} = 0, \forall j \in J, t \in \{t_{s},...t_{s} + \tau\}$$

$$= network balance$$

$$g_{j}^{i} = \sum_{j \in D} h_{j,m}^{i,n} = 0, \forall j \in J, t \in \{t_{s},...t_{s} + \tau\}$$

$$= network balance$$

$$\forall j \in J, 0 \in O, d \in D, n \in \{1, 2,...N\}, t \in \{t_{s},...t_{s} + \tau\}$$

$$= network balance$$

$$d_{j,m}^{i,m} = \min_{j \in D} (h_{j,m}^{i,m} = 0, \forall 0 \in O, d \in D, n \in \{1, 2,...N\}, t \in \{t_{s},...t_{s} + \tau\}$$

$$= overflow$$

$$\lambda_{j,m}^{i,m} = \min_{j \in D} (h_{j,m}^{i,m} = 0, \forall 0 \in O, d \in D, n \in \{1, 2,...N\}, t \in \{t_{s},...t_{s} + \tau\}$$

$$= narket clearing$$

$$0 \leq c_{j}^{i} - f_{j}^{i} \perp \rho_{j}^{i} \geq 0, \forall j \in J, t \in \{t_{s},...t_{s} + \tau\}$$

$$= narket clearing$$

$$0 \leq c_{j}^{i} - f_{j}^{i} \perp \rho_{j}^{i} \geq 0, \forall j \in J, t \in \{t_{s},...t_{s} + \tau\}$$

$$= narket clearing$$

Solution Method

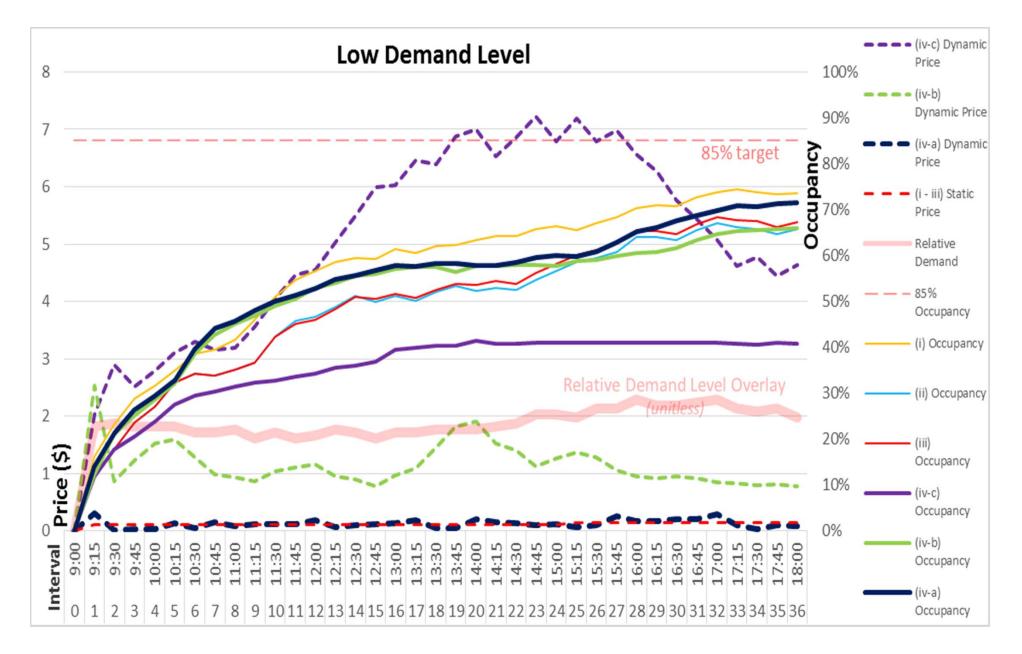
To derive the Karush-Kuhn-Tucker (KKT) condition in equilibrium:

- Formulate the decision problem of each individual user
 - Parking decision based on disutility minimization
- Concave driver problem Lagrangian dual
- Combine KKT conditions for all users and add market clearing conditions

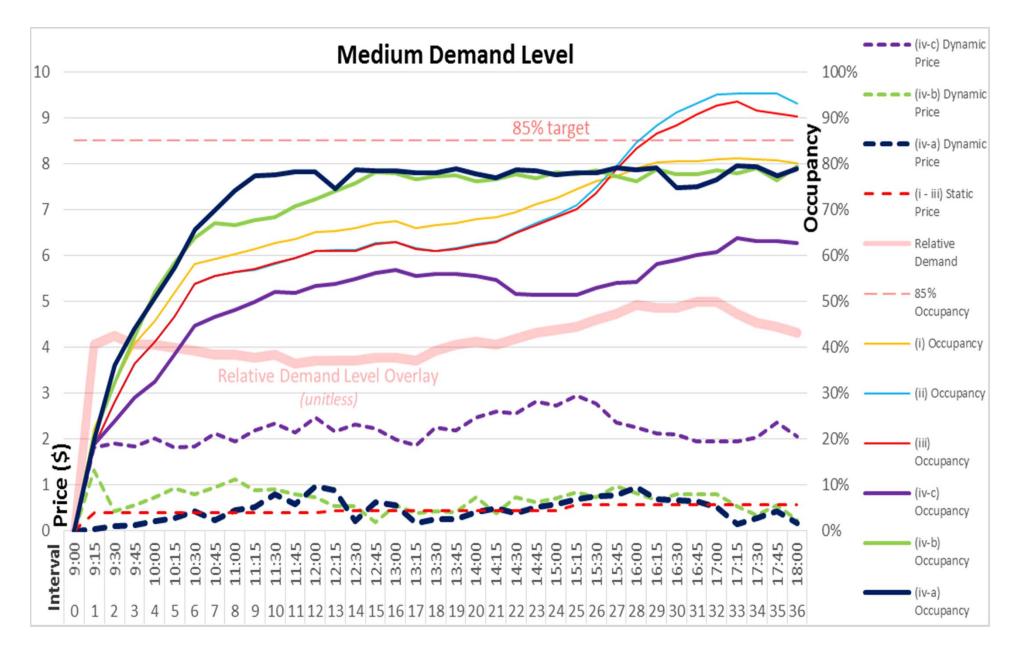
For additional non-convex bilinear revenue terms:

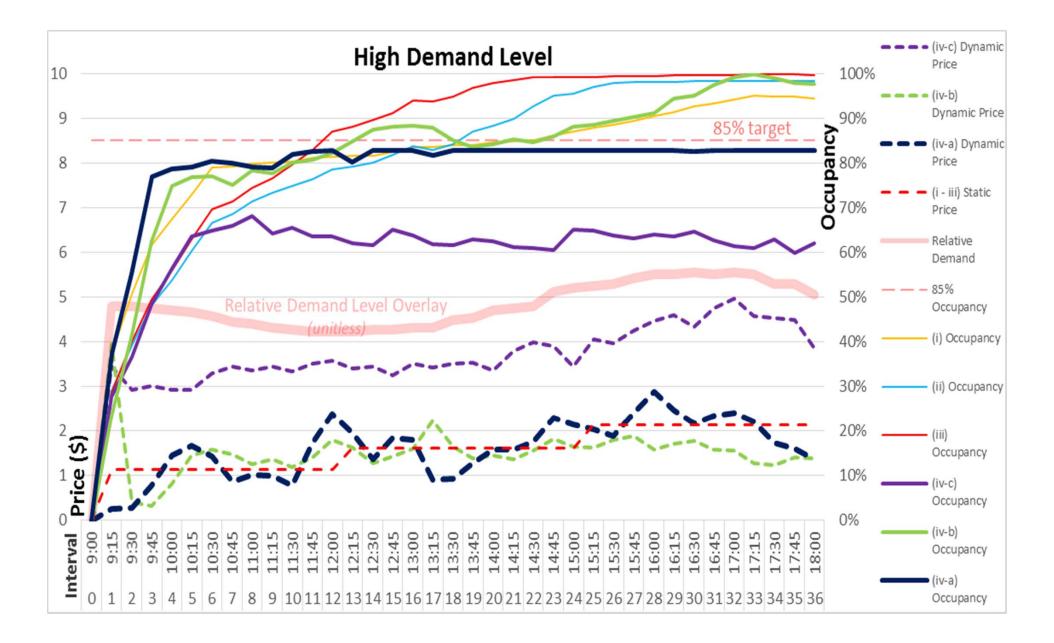
- Consider $\tau=1$ (myopic)
- Reformulate into an equivalent series of linear and quadratic terms and solve MIQP
- Similar to the derivation in Hobbs et al. (2000)

Illustration


Simulated the model for a neighborhood in the SF*park* program

- 20 parking areas (including one 205 space garage)
- 36 time intervals (every 15 minutes from 9am-6pm)
- 2 origins (cars), 3 destinations (stars), and 5 unique parking durations Scenarios:
- Three sets of demand: low, medium, and high
- Three objectives: occupancy target, economic surplus, revenue
- Four scenarios
 - i. Traditional
 - ii. Static Information
 - iii. Dynamic Information
 - iv. Dynamic Pricing




Price and Occupancy (avg over space)

Price and Occupancy (avg over space)

Price and Occupancy (avg over space)

Numerical Results

		Scenarios					
		Static Pricing			Dynamic Pricing (iv)		
		(i)	(ii) Static	(iii) Dynamic	(a)	(b) Economic	
Demand Level	Performanœ Metric	Traditional	Information	Information	Occupancy	Surplus	(c) Revenue
	Total exœss distanœ						
Low	(miles)	122.64	48.52	37.33	0.00	0.65	0.00
	Occupancy distribution						
	% lot-hrs empty/above target	39.9/48.1	26.1/32.9	26.7/31.9	26.9/0.0	8.1/0.6	15.7/0.0
	Lost austomers	197	197	197	197	224	418
	Economic surplus (utils)	3,045	3,242	3,251	3,337	3,413	3,029
	Parking revenue	\$251.97	\$190.71	\$189.49	\$129.23	\$190.80	\$601.24
Medium	Total exœss distanœ	522.27	257.99	166.13	0.00	5.54	0.92
	Occupancy distribution	20.6/64.0	7.2/51.7	8.2/50.0	6.3/0.0	7.1/1.7	21.4/0.3
	Lost austomers	460	414	402	402	410	767
	Economic surplus	8,946	9,401	9,414	9,724	10,056	8,824
	Parking revenue	\$1,050.38	\$970.33	\$970.33	\$611.07	\$661.49	\$1,840.78
High	Total exœss distanœ	1,622.23	1,213.13	721.22	4.91	346.48	3.69
	Occupancy distribution	5.4/79.0	0.7/80.7	0.7/81.5	1.8/0.6	2.1/39.2	12.8/0.4
	Lost austomers	1,514	1,150	1,121	954	927	1,571
	Economic surplus	25,774	26,508	26,404	27,946	28,971	24,896
	Parking revenue	\$4,033.71	\$4,765.75	\$4,847.42	\$3,637.19	\$3,249.96	\$5,948.67

- Improved parking allocation, reduced excess vehicle travel, comparable/fewer lost users, (optionally) increased revenue
- Potential in effectively balancing multiple objectives (e.g. occupancy and revenue)

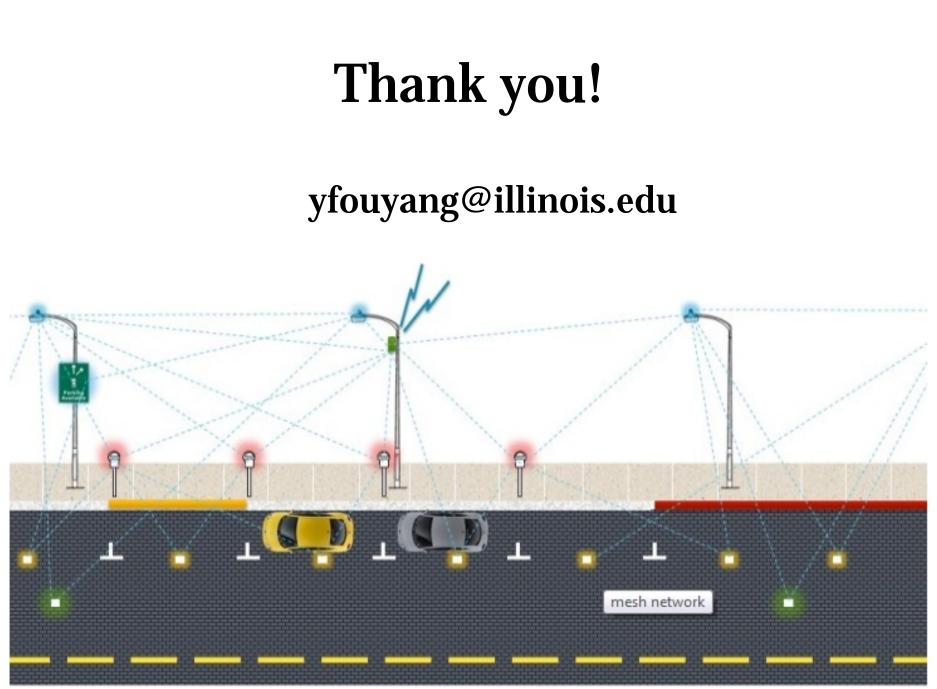
Conclusion

Current consensus:

• Demand responsive pricing can better allocate parking, as seen in SFpark

Our work:

• Dynamic pricing models can improve efficiency and users' experiences, especially when paired with on-street reservations


Future work:

- Stochastic parking durations, heterogeneous user types (motorcycle, electric vehicle, tourist, ...), non-linear demand curves
- Location of congestion and impact on non-parking traffic
- Real-world study, including implementation of on-street reservations

Future extensions:

 Consider impacts of changing travel behavior – commuter shuttles, ride sharing, ...

urenio.org/2011/10/09/5021