Scheduling in Transportation Markets Endogeneity of Desired Arrival Times

Erik T. Verhoef Department of Spatial Economics, VU Amsterdam

Empirical part joint work with Stefanie Peer, Paul Koster, Yin-Yen Tseng, Jasper Knockaert (IER, 2015)

Motivation

- VoT & VoSD: central concepts in transport research
- Good understanding of structure of consumer decision making is crucial to obtain the 'right' values
- This presentation:
 - Decompose scheduling decisions into long-run choices of routines, and short-run choices of departure times
 - Empirics
 - Theory & policy implications

Deterministic starting point

Vickrey 1968; Small 1982

Scheduling in Transportation Markets

SR vs LR: two dimensions

- **1.** Different measures for preferred arrival time (PAT)
 - Long-run PAT (LRPAT): preferred arrival time if there were no congestion, ever
 - Interpretation in standard bottleneck model
 - Short-run PAT (SRPAT): preferred arrival time on a day given the expected pattern of travel times
 - Choice of 'routines' may make SRPAT deviate from LRPAT
 - With a LRPAT at 9:00, an SRPAT at 7:00, and a scheduled meeting at 7:30, an arrival time at 8:30 would bring cost of schedule delay late, not early
 - Evident: important to address in empirical modelling

SR vs LR: two dimensions

- 2. Different values of time, schedule delay, depending on 'degree of permanentness'
 - A structural one-minute travel time gain ('one-minute shift of travel time distribution') brings more benefits *per day* than an incidental minute brings on a random day
 - € 14.5 VS € 3 in earlier paper: Tseng Knockaert Verhoef, Trans Res C 2013
 - Intuition: the former allows better exploitation through adaption of routines
 - An unanticipated schedule delay brings a greater disutility than schedule delays that are anticipated when forming routines
 - Intuition: with longer notice, there is more time to adjust the plan for that day

Empirical hypotheses

1. There is a difference in LRPAT and SRPAT

- SRPAT can be explained from LRPAT, using measures for expected travel times and schedule delays relative to LRPAT
- 2. Departure time decisions are better explained using SRPAT than LRPAT
 - Specifically: a move away from SRPAT towards LRPAT increases schedule delay cost
- 3. Values of time and schedule delays vary with "degree of permanentness" of gains/losses
 - VoT: expect higher in LR than in SR choice model
 - VSD: expect lower in LR than in SR choice model

Data

- Modelling draws from SpitsMijden 2 project
 - Peak Avoidence through monetary reward stimulus
 - Some 2000 participants
 - Experiment: September December 2009 (4 months)
 - Camera registration on A12
 - Expanded to door-to-door travel times using Geographically Weighted Regression technique (separate paper Peer et al 2012)
 - Questionnaire / SP study: only for LRPAT measure
 - "At what time would you like to arrive at work if there were for sure no time losses through congestion"

Relation between LRPAT and SRPAT

- Suggests a flattening of SRPAT relative to LRPAT
 - Drivers plan their routines to avoid congestion

Estimation results main models

	Lo	ng-Run	Sh	Short-Run		
Coefficient	Value	t-Statistic	Value	t-Statistic		
β_R	0.22	4.87	0.13	5.78		
$eta_{ au}$	-6.56	-7.31	-0.69	-1.45		
β_{E}	-2.03	-13.28	-2.89	-18.38		
β_L	-1.57	-13.90	-2.70	-20.34		
heta	_	-	0.43	6.25		
VOT (Euro/h)	30.16			5.20		
VSDE (Euro/h)	9.34			21.62		
VSDL (Euro/h)	7.22			20.22		
Nr. Obs.	1158			5965		
LogLik.	-2681		- 1	-10550		
Pseudo R ²	0.17			0.36		

Scheduling in Transportation Markets

Departures anchored around SRPAT?

Figure I: Diagrammatic exposition: SRPAT \leq LRPAT

Scheduling in Transportation Markets

Results confirm SRPAT

	Long-Run		She	Short-Run		Short-run: 3 domains	
Coefficient	Value	t-Statistic	Value	t-Statistic	Value	t-Statistic	
β_R	0.22	4.87	0.13	5.78	0.17	6.75	
β_T	-6.56	-7.31	-0.69	-1.45	-1.75	-3.09	
β_E	-2.03	-13.28	-2.89	-18.38	-3.83	-14.52	
β_L	-1.57	-13.90	-2.70	-20.34	-2.53	-20.80	
β_{ME}	_	—	_	_	-1.45	-8.74	
β_{ML}	_	—	_	_	-3.23	-9.88	
heta	_	—	0.43	6.25	0.36	5.49	
VOT (Euro/h)	30.16	4.14	5.20	1.31	10.56	2.55	
VSDE (Euro/h)	9.34	4.70	21.62	5.47	23.16	5.90	
VSDL (Euro/h)	7.22	4.72	20.22	5.52	15.27	6.22	
VSDME (Euro/h)	_	_	_	_	8.76	5.22	
VSDML (Euro/h)	_	—	_	_	19.54	5.57	
Nr. Obs.	1158			5965		5965	
LogLik.	-2681		-]	-10550		-10410	
Pseudo \mathbb{R}^2	0.17			0.36		0.37	

Wrap-up

- H1: difference between LRPAT and SRPAT
 - SRPAT less clustered in time
- H2: SRPAT drives departure time decisions more strongly than LRPAT does
 - Scheduling disutility of moving away from SRPAT to LRPAT
- H3: Values of time and schedule delays vary with degree of permanentness of gains/losses
 - Travel time gains are worth more when permanent
 - Scheduling constraints more binding in the short run

Why bother?

- Implications for CBA
 - VoT for measures that bring structural time gains higher than for those that reduce incidental time losses
 - Reverse for measures that affect schedule delay costs
- Implications for pricing
 - Is a separate regulation of choice of SRPAT desirable, above that of trip timing?

Henderson-Chu model

- Alternative to Vickrey ADL bottleneck
 - Demand-side and scheduling behaviour identical
 - " $\alpha \beta \gamma$ " preferences
 - Congestion technology different
 - Vickrey: kinked performance function
 - Chu: smooth performance function
 - Delay is a function of outflow
 - E.g.: power function ("BPR")
 - Both have closed-form solutions
 - Also for equilibrium (time-independent) cost *c* and price *p*

Main ingredients

- *N* identical travellers with " $\alpha \beta \gamma$ " preferences
 - LR VoSD fraction g<1 of SR VoSD
 - LR VoT: relative premium of *a*>0 added to SR VoT
- SRPAT (*t*[#]) endogenous, LRPAT (*t*^{*}) identical and o
- To avoid degenerate problem, we need variation between the days
 - Otherwise: either all $t^{\#}=t^*$, or each individual's $t^{\#}=t'$
 - Stochastic capacity *K*: *K*_o>*K*₁
 - Probabilities: $(1-\pi)$ on state o; π on state 1
 - On the day itself, all travellers know the realization

Main ingredients con'd

- BPR travel time function
 - Ignore free-flow travel time
 - Delay: $(r(t')/K)^{\chi}$
- Equilibria
 - 1. Short-run: equilibrium distribution of arrival times r(t')
 - ... given the distribution of desired arrival times z(t[#]) and given the realization of K
 - 2. Long-run: equilibrium distribution of SRPATs $z(t^{\#})$
 - ... given that short-run equilibria as above will apply

LR equilibrium

- Then there are three candidate types of LR equilibria
 - "Always Dispersed" (AD): density of *z*(*t*[#]) is chosen so low that all drivers arrive at *t*[#] in both states
 - "Sometimes Dispersed" (SD): density of z(t[#]) is chosen such that all drivers arrive at t[#] only in state o
 - "Never Dispersed" (ND): density of z(t[#]) is chosen so high that in drivers never arrive at t[#]
 - (except for the one at *t**)

 ND is no equilibrium: it always pays off to widen z(t[#]) to save SR SDC and accept increased LR SDC (g<1)

Scheduling in Transportation Markets

Expected SR cost and LR cost

Are long-run tolls needed? AD

$$c^{LR}(t^{\#}) = \alpha \cdot (1+\alpha) \cdot \left((1-\pi) \cdot \left(\frac{z(t^{\#})}{K_0} \right)^{\chi} + \pi \cdot \left(\frac{z(t^{\#})}{K_1} \right)^{\chi} \right) + \begin{cases} -\beta \cdot g \cdot t^{\#} \\ \gamma \cdot g \cdot t^{\#} \end{cases}$$

$$p^{LR}(t^{\#}) = c^{LR}(t^{\#}) + (1 - \pi) \cdot \tau_0^{SR}(t^{\#}) + \pi \cdot \tau_1^{SR}(t^{\#}) + \tau^{LR}(t^{\#})$$

$$mc^{LR}(t^{\#}) = c^{LR}(t^{\#}) + z(t^{\#}) \cdot \left(1 + a\right) \cdot \alpha \cdot \left(\left(1 - \pi\right) \cdot \frac{\partial T_0(z(t^{\#}))}{\partial z(t^{\#})} + \pi \cdot \frac{\partial T_1(z(t^{\#}))}{\partial z(t^{\#})}\right)$$

$$\tau_0^{SR}(t^{\#}) = z(t^{\#}) \cdot \alpha \cdot \frac{\partial T_0(z(t^{\#}))}{\partial z(t^{\#})} \qquad \qquad \tau_1^{SR}(t^{\#}) = z(t^{\#}) \cdot \alpha \cdot \frac{\partial T_1(z(t^{\#}))}{\partial z(t^{\#})}$$

$$\tau^{LR}(t^{\#}) = z(t^{\#}) \cdot a \cdot \alpha \cdot \left(\left(1 - \pi\right) \cdot \frac{\partial T_0(z(t^{\#}))}{\partial z(t^{\#})} + \pi \cdot \frac{\partial T_1(z(t^{\#}))}{\partial z(t^{\#})} \right)$$

Scheduling in Transportation Markets

Intuition

- To establish short-run optimum in both states, shortrun tolls must be based on short-run " $\alpha \beta \gamma$ "
 - Through Pigouvian form, α in particular
- But long-run expected travel times are proportional (probability-weighted) with short-run travel times
 - Same internalization argument applies
 - Must be a long-run toll in order not to distort short-run optima
- Value of long-run toll is simply *a* times the expected value of short-run tolls

Numerical illustration (a = 2)

- Still, modest cost reduction compared to QFB
 - QFB realizes 82% of FB cost reduction
 - Absence of LR toll makes SR tolls higher; E peaks near 4

Long-run tolls are less strongly needed in SD

$$c^{LR}(t^{\#}) = (1-\pi) \cdot \alpha \cdot (1+\alpha) \cdot \left(\frac{z(t^{\#})}{K_0}\right)^{\chi} + \pi \cdot \left(c_1^{SR} + \alpha \cdot \alpha \cdot \left(\frac{r_1(t'(t^{\#}))}{K_0}\right)^{\chi}\right) + \begin{cases} \beta \cdot (g-\pi) \cdot -t^{\#} \\ \gamma \cdot (g-\pi) \cdot t^{\#} \end{cases}$$

$$p^{LR}(t^{\#}) = \tau^{LR} + (1-\pi) \cdot \left(\tau_0^{SR} + \alpha \cdot (1+\alpha) \cdot \left(\frac{z(t^{\#})}{K_0}\right)^{\chi}\right) + \pi \cdot \left(p_1^{SR} + \alpha \cdot \alpha \cdot \left(\frac{r_1(t'(t^{\#}))}{K_0}\right)^{\chi}\right) + \begin{cases} \beta \cdot (g-\pi) \cdot -t^{\#} \\ \gamma \cdot (g-\pi) \cdot t^{\#} \end{cases}$$

$$p^{LR}(t^{\#}) - mc^{LR}(t^{\#}) = \tau^{LR} + (1-\pi) \cdot \left(\tau_0^{SR} - (1+\alpha) \cdot \alpha \cdot \frac{\partial T_0(z(t^{\#}))}{\partial z(t^{\#})}\right) + \pi \cdot \left(p_1^{SR} - mc_1^{SR} + \alpha \cdot \alpha \cdot T_1(t'(t^{\#}))\right)$$

$$\tau_0^{SR}(t^{\#}) = z(t^{\#}) \cdot \alpha \cdot \frac{\partial T_0(z(t^{\#}))}{\partial z(t^{\#})} - \pi \cdot \alpha \cdot \alpha \cdot T_1(t'(t^{\#}))$$

Scheduling in Transportation Markets

Intuition

- For state o, things work as in previous (AD) case
 - LR toll contains a factor $(1-\pi) \times a$ times SR toll in state o
- But for state 1, the congestion externality is dropped
 - Marginal changes in z(t[#]) will not change traffic conditions in state 1: it is a condensed equilibrium
 - So no externality of that type enters the LR toll rule
- Instead, what is subtracted from the LR toll rule is the factor $\pi \times a \times (\text{travel delay in state 1})$
 - It is part of the generalized price, but not of the marginal cost for z(t[#])
 - A marginal change in *z*(*t*[#]) does not change these costs

Wrap-up

- Long-run toll is needed when short-run and long-run valuations of time diverge
 - Surprisingly, the need is larger for instances of light congestion
 - Reason: in a condensed equilibrium, arrival pattern becomes insensitive to marginal changes in desired arrival times
 - LR toll is not capable of affecting the time losses
 - LR-toll may be close to zero, and even negative

Conclusion

- LR vs SR scheduling seems a plausible assumption on behaviour
- Empirical study suggested that this indeed occurs
 - VoT relatively high in the long run, VoSD's relatively low
 - SRPATS more dispersed than LRPATS
- Modelling study suggested that this may have policy implications
 - For pricing
 - But presumably for other instruments as well
 - E.g. self-financing will break down with SR tolls only...