Schmid, B. (2016) Explaining the Choice between In-Store and Online Shopping - A Behavioral Experiment, presentation at the *Verkehrsingenieurtag 2016*, Zurich, March 2016.

Explaining the Choice between In-Store and Online Shopping - A Behavioral Experiment

Basil Schmid

IVT ETH Zurich

Alumni Verkehrsingenieurtag 17th of March 2016

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Kay W. Axhausen: Supervision and support

Simon Schmutz: Data processing and personal advice

Milos Balac: Routing in MATSim

Maxim Janzen: LATEX beamer template

SNSF: Project funding

"Wie der Onlinehandel die Strassen verstopft"

Source: Tagesanzeiger, 23rd of February 2016

Switzerland's digital shopping revolution?

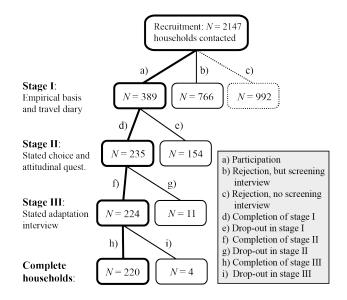
- Market share of online and mail order sector reached 10 % mark, with growth rates in the double-digit range (Rudolph et al., 2015)
- 115 million packages distributed by "Die Post"
- Over 4 billion kilometers traveled by light goods vehicles, tendency increasing (BfS, 2014)
- Online shopping of books and electronic gadgets account for over 25 % of total market shares, while food products account for roughly 5 %
- ICT usage in Switzerland: Over 30 % of the Swiss population is online at least once per hour; even higher for mobile phone users

Online vs. in-store shopping in Switzerland

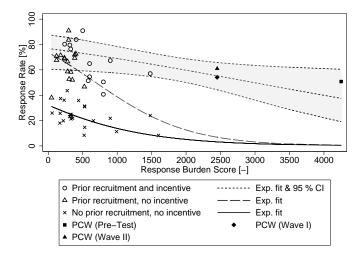
- Barriers to online shopping: Swiss study reveals substantial differences in age, gender and income between online and in-store shoppers (Rudolph et al., 2004)
 - Usage: Changes in current shopping routines required
 - Value of online shopping: Missing sales personnel; delivery time lag
 - Risk: Product uncertainty, information asymmetry or security
 - Psychological barriers: Tradition, beliefs and experience (early 1990's: Rapid increase of Swiss households with computer and internet access)
- Perceptions and attitudes of online vs. in-store shoppers differ significantly

- Omitting private motorized vehicle justified by car-less policy developments; availability of innovative modes
- Hypotheses:
 - Substitution effect from in-store towards online shopping, especially for larger and heavy shopping baskets
 - Taste heterogeneity mainly determined by attitudes towards online shopping
- How sensitive are individuals towards different attributes related to their choice btw. online vs. in-store shopping?
- How do income and attitudes affect attribute sensitivities?
- What is the distribution of attitudes, and which socio-demographic characteristics are affecting them?

Shopping in a Post-Car World ...



Source: www.focus.de, 3rd of December 2015


Related literature on shopping behavior

- Rotem-Mindali and Salomon (2007): Product price is indicated as main reason for online shopping (ISR)
- Dijst, Farag and Schwanen (2008): Choice model on in-store vs. online shopping, but no alternative-specific attributes. Attitudes play major role in explaining preferences (NL)
- Mokhtarian and Tang (2012): Joint choice (strong dependency) of different purchase/pre-purchase channels when ordering/buying clothes, including attitudes (US)
- Zhai et al. (2016): Shopping behavior for search/experience goods differs between shopping channels and for different stages, i.e. information and product trial (US)
- ⇒ Post-Car World: First alternative-specific hybrid choice model in this research field

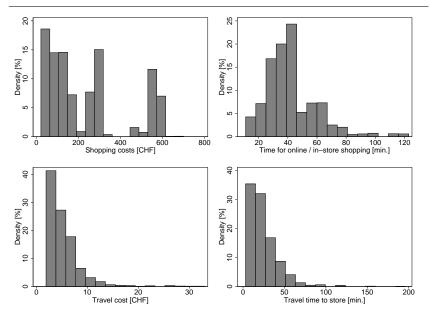
Post-Car World: A multi-stage travel survey

Response behavior @ IVT, ETH Zurich

Source: Axhausen, Schmid and Weis, 2015

Data (220 households; 339 participants)

Variable	Value	MZ2010 [%]	PCW15 [%]
Household income	Not reported	24.1	5.7
	< 12'000 CHF	61.0	27.6
	≥ 12'000 CHF	18.4	61.8
Residential location	City centre	38.9	50.0
	Agglomeration	54.8	43.1
	Rural	6.3	6.9
Household type	Single-person household	31.6	18.7
	Couple without kids	33.0	25.2
	Couple with kids	26.6	48.0
	Single-parent household	5.8	4.5
	Living community	3.1	3.7
Education	Low	21.0	14.7
	Medium	54.9	22.3
	High	24.1	63.0
Season tickets	None	37.3	11.0
	Half-fare card	51.8	72.9
	GA	10.9	16.1


Experimental conditions

- Coherent choice situations:
 - home based round trip for in-store alternative
 - no social motives; buying goods is the one and only purpose
 - groceries and durable goods experiment: "Daily or weekly grocery shopping" and "multimedia, HiFi and electronic (household) appliances"
 - quality of the goods is assumed to be identical between the two shopping channels
 - in-store alternative either with public transport, carsharing or carpooling (no private cars)
- Pivot approach: If a shopping trip has been reported, reference values depend on expenditures, time use for shopping and traveled distance

Attributes	Online	In-store	Levels
Shopping costs ONL		-	-10%, -5%, +/-0%
Shopping costs IS	_	\checkmark	-5%, +/-0%, +5%
Time for shop. ONL	\checkmark	_	-20%, -10%, +5%
Time for shop. IS	_	\checkmark	-10%, +/-0%, +10%
Delivery cost and duty	\checkmark	-	0, 5, 10, 15 CHF
Travel cost	_	\checkmark	-20%, +10%, +40%
Delivery time groceries	\checkmark	-	< 1 day $/$ 1-2 days $/>$ 2 days
Delivery time durables	\checkmark	-	2-4 days $/$ 4-7 day $/>1$ week
Travel time	_	\checkmark	$-30\%, +/-0\%, +30\%, \ge 3$ min.
Size / weight of the	\checkmark	\checkmark	Low / medium / high
goods basket			(same for both alternatives)

- Efficient design; 3 blocks with 8 choice sets
- Participants are assigned to the "groceries" (38 %) or "durable goods" (62 %) experiment based on reported shopping trips

Attribute distributions

Example of choice situations

Entscheidung 1 Zweck: Kurzfristiger Bedarf	Bestellen	Persönlich besorgen	Entscheidung 1 Zweck: Langfristiger Bedarf	Persönlich besorgen	Bestellen
Versand (inkl. Zoll) / Kosten für den Weg	0.00 CHF	3.60 CHF	Kosten für den Weg / Versand (inkl. Zoll)	2.60 CHF	5.00 CHF
Reisezeit zum Laden		20 min.	Reisezeit zum Laden	45 min.	
Lieferzeit (inkl. mögl. Verzögerung)	mind. 2 Tage		Lieferzeit (inkl. mögl. Verzögerung)		mind. 1 Woche
Grösse des Einkaufs Warengewicht			Grösse des Einkaufs Warengewicht		
Zeit für Bestellung / Zeit für Einkauf	24 min.	27 min.	Kosten Einkauf	300.00 CHF	285.00 CHF
Kosten Einkauf	36.00 CHF	40.00 CHF	Zeit für Bestellung / Zeit für Einkauf	40 min.	32 min.

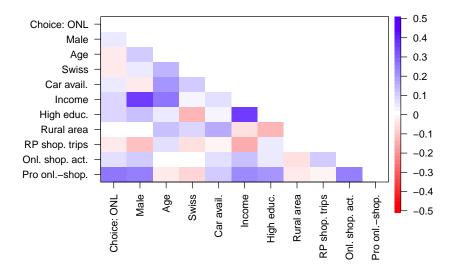
Attitudes towards online shopping

Ihre Einstellung zum Einkaufen und Online-Shopping

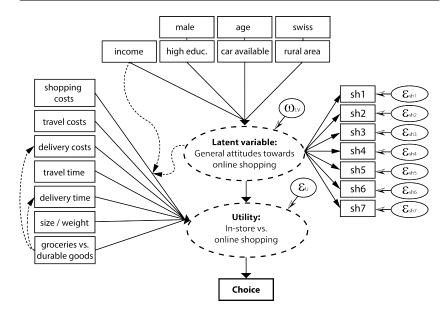
Trifft...

		ganz genau zu	eher zu	eher nicht zu	überhaupt nicht zu
1.	Ich bestelle oft Produkte im Internet.				
2.	Online-Shopping ist mit Risiken verbunden.				
3.	Einer der Gründe, weshalb ich kein Online-Shopping betreibe, ist, dass ich nicht gerne meine Kreditkarten- nummer über das Internet weitergebe.				
4.	Das Internet ist mehr ein Fluch als ein Segen.				
5.	Der Nachteil beim Online-Shopping ist, dass ich die Produkte nicht physisch begutachten kann.				
6.	Online-Shopping erleichtert mir das Vergleichen von Preisen und verschiedenen Produkten.				
7.	Das Risiko, ein falsches Produkt zugeliefert zu be- kommen, ist einer der Hauptgründe, weshalb ich kein Online-Shopping betreibe.				

Attitudes towards online shopping


- Measures of different statements regarding
 - attitudes towards online shopping and internet usage in general
 - risks and credit card fraud
 - pros and cons of online shopping
- Exploratory factor analysis to ...
 - reduce the dimensionality of data to the most essential elements (general attitudes)
 - remove sources of covariance and measurement noise
 - estimate uncorrelated factor scores with $\mu\approx$ 0 and $\sigma\approx$ 1 as a first step for developing the hybrid choice model

Attitudes towards online shopping


Questionnaire item	Factor loading
${\bf sh1:}\ {\bf l}$ often order products in the internet	+0.68
sh2: Online shopping is associated with risks	-0.49
sh3: Credit card fraud is one the reasons why I don't like online shopping	-0.66
sh4: The internet has more cons than pros	-0.54
sh5: A disadvantage of online shopping is that I cannot physically examine the products	-0.30
sh6: Online shopping facilitates the comparison of prices	+0.53
sh7: The risk of receiving a wrong product is one the main reasons why I don't like online shopping	-0.60

Attitudes and socio-economic characteristics

Modeling Framework: Hybrid choice

Modeling Framework: Structural model

Utility equation for shopping channel *i* with choice attributes X_{i_n} and the latent online shopping variable LV_n :

$$U_{O_n} = \beta_{C_O} + \beta_{O_n} \cdot X_{O_n} + \beta_{sc,O} * sc_O * \left(\frac{inc}{inc}\right)^{\lambda_{inc}} + \mu_{LV} \cdot (LV_n - \overline{LV_n}) + \qquad (1)$$

$$\mu_{sc,LV} \cdot sc_{O_n} \cdot (LV_n - \overline{LV_n}) + \epsilon_{O_n}$$

$$U_{IS_n} = \beta_{IS} \cdot X_{IS_n} + \beta_{sc,IS} * sc_{IS} * \left(\frac{inc}{inc}\right)^{\lambda_{inc}} + \mu_{sc,LV} \cdot sc_{IS_n} \cdot (LV_n - \overline{LV_n}) + \epsilon_{IS_n} \qquad (2)$$

Latent variable equation with socio-economic characteristics X_n :

$$LV_n = \overline{LV_n} + \kappa_X \cdot X_n + \omega_{LV_n} \tag{3}$$

Relative importance of choice attribute X_{i_n} compared to shopping costs as a function of income and the latent variable LV_n :

$$f(inc_n, LV_n) = \frac{\beta_{X_{i_n}}}{\beta_{sc} \cdot \left(\frac{inc_n}{inc_n}\right)^{\lambda_{inc}} + \mu_{sc, LV} \cdot (LV_n - \overline{LV_n})}$$
(4)

- If $\lambda_{inc} < 0$ and $\mu_{cost,LV} < 0$: Shopping cost sensitivity increases with lower income and a more positive attitude towards online shopping
- For the "average" respondent, the equation collapses to

$$f(\overline{inc}, \overline{LV_n}) = \frac{\beta_{X_{i_n}}}{\beta_{sc}}$$
(5)

Latent variable measurement equations with responses to the 7 online shopping items I_{sh} :

$$I_{sh_n} = \overline{I_{sh}} + \tau_{LV_{I_{sh}}} \cdot LV_n + \epsilon_{I_{sh_n}}$$
(6)

Choice equation: Choice of individual n for shopping channel i by maximizing utility U_i :

if
$$U_{O,n} > U_{IS,n}$$
 : *choice*_{*i*,n} =

$$\begin{cases}
Online shopping \\
else In-store shopping
\end{cases}$$
(7)

 β_j , μ_j , λ_{inc} , $\overline{LV_n}$, κ_j , $\sigma_{\omega_{LV}}$, $\overline{I_{sh}}$, τ_{sh} and $\sigma_{I_{sh}}$ are the parameters to be estimated (42 in total)

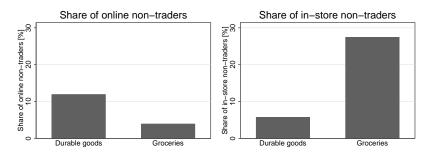
Estimation

Likelihood of individual *n* choosing alternative *i* is the joint probability of observing the choice and the 7 online shopping items I_{sh_n} , given choice attributes and socio-economic characteristics $X_{i,n}$:

$$P(ch_{i,n}, I_{sh_n}|X_{i,n}) = \int_{\omega_{LV_n}} P(ch_{i,n}|X_{i,n}, \omega_{LV_n}) \prod_{sh=1}^7 f_{sh_n}(I_{sh_n}, \omega_{LV_n}) \phi(\omega_{LV}) d\omega_{LV_n}$$
(8)

$$\omega_{LV} \sim N(0, \sigma_{\omega_{LV}}) \tag{9}$$

$$P(ch_{i,n}|X_{i,n},\omega_{LV_n}) = \frac{exp(U(X_{i,n}))}{\sum_{j=1}^{2} exp(U(X_{j,n}))}$$
(10)


$$f_{sh_n}(I_{sh_n},\omega_{LV_n}) = \frac{1}{\sigma_{I_{sh}}} \phi\left(\frac{I_{sh_n} - \overline{I_{sh}} - \tau_{I_{sh}} \cdot LV_n}{\sigma_{I_{sh}}}\right)$$
(11)

Maximum likelihood estimation with PythonBiogeme version 2.4 on Euler (HPCC, 2 cores, runtime 36 min., 101 iterations)

Choice and (non-)trading behavior

- Market shares (2698 choice observations; 339 respondents): Groceries = 65 % in-store shopping and 35 % ordering; durable goods = 39 % in-store shopping and 61 % ordering
- Non-Trading behavior: Respondents choosing the same alternative (e.g. in-store shopping) in all 8 choice situations
- Almost 80 % of respondents are traders, with about 83 % for durable goods and 68 % for groceries (*p_{difference}* < 0.01)
- "Labeled" choice experiment: Non-Trading behavior is still consistent with random utility theory (too small trade-off variations with respect to non-traders underlying preferences)

(Non-)Trading behavior, by purpose

- Trading vs. non-trading between shopping channels differs by shopping purpose (*p_{difference}* < 0.01)
- Almost 30 % of respondents that are assigned to the grocery experiment are always choosing the in-store option
- Respondents with pro-online shopping attitudes have a higher probability to be online non-traders for durable goods (p < 0.01); opposite is not true for in-store non-traders

Estimation results: Choice models

Variable	Base model	Factor model	Hybrid model
Shopping costs	-0.021 ***	-0.024 ***	-0.022 ***
Income elasticity of shopping cost	0.041	-0.033	-0.059
Factor score × shopping costs	-	-0.007 ***	-
LV × shopping costs	-	-	-0.019 ***
Travel time (IS)	-0.022 ***	-0.024 ***	-0.025 ***
Travel cost (IS)	-0.036 **	-0.035 **	-0.036 **
Delivery time (ONL)	-0.560 ***	-0.600 ***	-0.614 ***
Delivery cost (ONL)	0.091 ***	0.098 ***	0.099 ***
Delivery time x durable (ONL)	0.466 ***	0.494 ***	0.504 ***
Delivery cost x durable (ONL)	0.055 ***	0.054 ***	0.053 **
ASC (ONL) Purpose durable (ONL) Size Factor score LV	-2.080 *** 0.152 1.120 *** -	-2.120 *** 0.047 1.200 *** 0.466 ***	-2.370 *** 0.065 1.220 *** - 1.210 ***
Number of estimated parameters McFadden ρ^2	11	13	42
	0.20	0.25	0.70

 $^{***}p < 0.01, \, ^{**}p < 0.05, \, ^{*}p < 0.1$

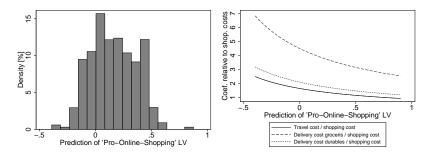
Estimation results: LV model

Variable	Dep. variable: LV_n
$\overline{LV_n}$	3.05 ***
Age	0.01 **
Age ²	-0.02 ***
Car always avail.	0.06 ***
High education	0.11 ***
Income	0.08 ***
Rural resid. area	-0.11 **
Male	0.25 ***
Swiss	-0.11 ***

 $p^{***}p < 0.01, p^{**}p < 0.05, p^{*}p < 0.1$

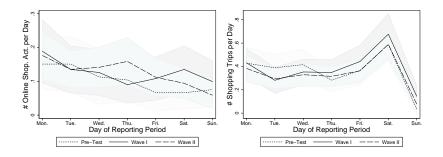
- Female and Swiss non-car users with low education and income living in rural residential locations have the most negative attitudes towards online shopping
- Maximal pro-online shopping attitudes with 31 years of age
- Measurement model of latent variable (LV_n) confirms results of the factor analysis

Value of time for shopping trips/delivery


Coefficient ratios	Base model	Factor model	Hybrid model
VTTS shopping trips [CHF/h] VODT groceries [CHF/day] VODT durable goods [CHF/day]	37.3 (62.9) 6.1 (26.7) 2.6 (4.5)	42.0 (60.0) 6.2 (25.0) 2.4 (4.4)	41.0 (68.2) 6.2 (27.9) 2.4 (5.0)
VTTS [CHF/h]: Erath, 2006 VTTS [US\$/h]: Hsiao, 2009 VODT [US\$/day]: Hsiao, 2009 VTTS [CHF/h]: VSS norm, 2009 VTTS [CHF/h]: Fröhlich et al., 2014		52.90-128.85 5.30 0.44-0.76 12.32-20.72 5.90-9.10	N = 110 N = 300 N = 300 N = 649 N = 282

- Current study: Value of travel time savings (VTTS) of 40 CHF/h; about 50 % higher if considering shopping instead of travel costs as reference (values in brackets)
- Hsiao, 2009: Similar study in Thaiwan for online/in-store shopping of books
- Comparison to other Swiss studies: VTTS for shopping trips differ enormously

Point (cross) elasticities of hybrid model Ord		Trip-making
Shopping costs	-2.48 (2.60)	-2.74 (2.62)
Travel time	_	-0.31 (0.30)
Travel cost		-0.10 (0.09)
Delivery time, groceries	-1.20 (1.25)	_
Delivery time, durables	-0.21 (1.14)	-
Delivery cost, groceries	–0.37 (0.38)	-
Delivery cost, durables	-0.17 (0.18)	-
Size (Ordering)	1.15 (–1.20)	_


- \implies relatively high elasticity of shopping costs (mean = 240 CHF), independent of shopping purpose (no sign. interaction)
- ⇒ ceteris paribus, on average, a 1% increase in shopping costs decreases the predicted market share of online shopping by 2.5 percentage points, for pro-online shoppers (e.g. $LV_n = 0.5$) by 3.6 percentage points

Prediction of latent variable

- Positive attitudes towards online shopping LV_n is approx. normally distributed with $\mu = 0.16$ and $\sigma = 0.20$
- Attribute sensitivities relative to shopping costs are decreasing for higher pro-online shopping attitudes trade-off behavior by considering both alternatives as possible shopping channels

Validation with RP data

- Revealed preference data from travel and online diaries for shopping activities (N = 339 participants, 2709 persondays)
- Weekly pattern: In-store shopping trips are mostly conducted on Saturdays, while online shopping activities show a decreasing pattern over weekdays

Validation with RP data

Variable	\mid # shop. trips per day	# onl. shop. per day
Const. Weekday Saturday	-1.143 *** 0.000 0.532 ***	-2.360 *** -0.086 *** -0.004
Sunday \widetilde{LV}_n	-1.469 *** -0.388	-0.282 1.242 ***
$\frac{SE(LV_n)}{\sigma_{\epsilon}}$ $Prob. > \chi^2$	(0.25) 0.623 *** 0.00	(0.44) 1.049 *** 0.00

***p < 0.01, **p < 0.05, p < 0.1

- Random-effects Poisson regressions: Strong within-subject error term correlation
- Expected effect of predicted pro-online shopping attitude $\widehat{LV_n}$ on the number of online shopping activities per day
- *LV_n* shows a weak negative effect on the number of reported shopping trips ⇒ substitution effect?

Conclusions

Conclusions

- Behavioral richness and estimation efficiency increase substantially when including latent variables
- Structural model reveals distribution of LV in the population based on fundamental socio-demographic characteristics
- VTTS vs. VODT: Large potential of online shopping given the relatively high value of travel time savings for shopping trips
- Pro-online shopping attitudes lead to a sign. increase in shopping cost sensitivity ⇒ larger choice set when considering both online and in-store shopping as possible shopping channels
- 1 CHF ≠ 1 CHF: Delivery costs are perceived as more negative than travel and shopping costs (avoidability hypothesis) ⇒ online retailers better incorporate delivery costs in shopping prices

Project website:

http://postcarworld.epfl.ch/