Faculty of Transportation and Traffic Sciences "Friedrich List" Institute for Traffic Telematics • Chair of Traffic Control and Process Automation ## The Impact of Request Stops on Railway Operations Christian Gassel, Dipl.-Ing.; Thomas Albrecht, Dr.-Ing. Faculty of Transportation and Traffic Sciences "Friedrich List", TU Dresden # **Agenda** - 1. Introduction - 2. Present Request Stop Usage - 3. Modeling Train Approaches at Request Stops - 4. Optimizing Energy Consumption and Delays - 5. Case Study - 6. Conclusions 1. Introduction 2. Present Request Stop Usage 3. Modeling Train Approaches at Request Stops . #### 1. Introduction - Wide variety of measures to reduce energy costs - Request stop train only stops on demand - → Influence on energy consumption unknown - → Significant difference for energy optimization - Time slack with compulsory stops only: $$t_r = \sum_{i=1}^n t_{F,i}$$ Scheduled time slack - Time slack with request stops: $$t_r = \sum_{i=1}^{n} t_{F,i} + \sum_{j=1}^{m} t_{g,j}$$ Additional time gain 3. Modeling Train Approaches 4. Optimizing energy consumption and delays ... ## 2. Present Request Stop Usage Strongly varying usage of request stops on German railway lines Appearance of request stops on local German railway lines (01/2008) 3. Modeling Train Approaches 4. Optimizing energy consumption and delays ... ## 2. Present Request Stop Usage Strongly varying usage of request stops on German railway lines Appearance of request stops on local German railway lines (01/2008) 3. Modeling Train Approaches 4. Optimizing energy consumption and delays ... ## 2. Present Request Stop Usage Strongly varying usage of request stops on German railway lines Appearance of request stops on local German railway lines (01/2008) 3. Modeling Train Approaches 4. Optimizing energy consumption and delays ... ## **Task for Modeling and Optimization:** Find the optimal driving strategy considering the features of request stops! - **Energy-efficient** and **timetable consistent** distribution of time slack - Appropriate model of train approaches at request stops 4. Optimizing Energy Consumption and Delays 5. Case Study ... # 3. Modeling Train Approaches at Request Stops 4. Optimizing Energy Consumption and Delays Stop request 5. Case Study 6. Conclusions ## 4. Optimizing Energy Consumption and Delays ## 4.1 Prediction of running time reserves 5. Case Study 6. Conclusions ## 4. Optimizing Energy Consumption and Delays ### 4.1 Prediction of running time reserves $$t_{\mathrm{r}} = t_{\mathrm{s}} - \sum_{i=1}^{I} t_{\mathrm{h},i} - \sum_{j=1}^{J} t_{\mathrm{min},j}$$ - Prediction of dwell times in categorical clusters - Analysis of alighting and boarding passenger data 5. Case Study 6. Conclusions ## 4. Optimizing Energy Consumption and Delays #### 4.1 Prediction of running time reserves #### Train rides from monday to friday Identification of long dwell times \leftrightarrow small running time reserves 5. Case Study 6. Conclusions ## 4. Optimizing Energy Consumption and Delays ### 4.2 Time Slack Distribution Algorithm - Distribution of time slack on each section by Dynamic Programming - Strategies of distributing time gain: #### (1) re-active distribution - Assumption: Each request stop will be served - No distribution of time gain t_g before this assumption is rejected (passing the request stop) - No delays because of request stops 5. Case Study 6. Conclusions ## **Re-active distribution strategy** - Main assumption: train has to serve the request stop 5. Case Study 6. Conclusions ### **Re-active distribution strategy** - Main assumption: train has to serve the request stop 5. Case Study 6. Conclusions ## **Re-active distribution strategy** - Main assumption: train has to serve the request stop 5. Case Study 6. Conclusions ## **Re-active distribution strategy** 5. Case Study 6. Conclusions ## 4. Optimizing Energy Consumption and Delays - 4.2 Time Slack Distribution Algorithm - Distribution of time slack on each section by Dynamic Programming - Strategies of distributing time gain: - (1) re-active distribution (assumption: train will definitely stop) - (2) pro-active distribution (assumption: train will pass with a certain probability) 5. Case Study 6. Conclusions ## **Pro-active distribution strategy** - Distribution of time gain on all sections - Delays are accepted for the benefit of less energy consumption 5. Case Study 6. Conclusions ### **Pro-active distribution strategy** - Approach: Probabilistic state transition at request stops - → involving stopping probability of each stop #### Train rides from monday to friday #### without wintersport conditions Stopping probability Holzhau Final stop Holzhau Skilift Rechenberg 8.0 Bienenmühle Clausnitz 0.6 Nassau **Crossing station** Mulda 0.4 Lichtenberg Berthelsdorf Ort 0.2 Berthelsdorf First stop Freiberg Arrival time at the final stop 06:21 07:21 08:21 09:21 10:21 11:21 12:21 13:21 14:21 15:21 16:21 17:21 18:21 19:21 21:01 0 5. Case Study 6. Conclusions ### **Pro-active distribution strategy** $$Q_i(k, x_k) = p \cdot Q_i(k+1, x_{k+1}, z_{k+1} = t_g) + (1-p) \cdot Q_i(k+1, x_{k+1}, z_{k+1} = 0)$$ Cost functions Q_1 – energy consumption; Q_2 – delay 5. Case Study 6. Conclusions ### **Pro-active distribution strategy** $$Q_i(k, x_k) = p \cdot Q_i(k+1, x_{k+1}, z_{k+1} = t_g) + (1-p) \cdot Q_i(k+1, x_{k+1}, z_{k+1} = 0)$$ Cost functions Q_1 – energy consumption; Q_2 – delay 5. Case Study 6. Conclusions ### **Pro-active distribution strategy** $$Q_i(k, x_k) = p \cdot Q_i(k+1, x_{k+1}, z_{k+1} = t_g) + (1-p) \cdot Q_i(k+1, x_{k+1}, z_{k+1} = 0)$$ Cost functions Q_1 – energy consumption; Q_2 – delay 5. Case Study 6. Conclusions # 4.3 Schedule-related Optimization Constraints | Classification | Parameter | | | | |-----------------|--|--|--|--| | Hard constraint | earliest arrival fulfilling connection service latest departure time fulfilling connection service earliest scheduled departure time | | | | | Soft constraint | - Latest scheduled arrival time | | | | 5. Case Study 6. Conclusions ## 4.3 Schedule-related Optimization Constraints | Classification | Parameter | |-----------------|--| | Hard constraint | earliest arrival fulfilling connection service latest departure time fulfilling connection service earliest scheduled departure time | | Soft constraint | - Latest scheduled arrival time | #### **Hard constraint** - Deviations for the benefit of less energy consumption prohibited - Restricted search space within Dynamic Programming 5. Case Study 6. Conclusions #### 4.3 Schedule-related Optimization Constraints | Classification | Parameter | | | | |-----------------|--|--|--|--| | Hard constraint | earliest arrival fulfilling connection service latest departure time fulfilling connection service earliest scheduled departure time | | | | | Soft constraint | - Latest scheduled arrival time | | | | #### Hard constraint - Deviations for the benefit of less energy consumption prohibited - Restricted search space within Dynamic Programming #### Soft constraint - Small delays at low frequented stops are tolerable - Delay cost function is weighted stationwise by boarding/alighting passengers - Trade-off cost function as a compromise between oppositional optimization goals 6. Conclusions ## 5. Case Study • Single track line with two request stops - Crossing station Mulda - Scheduled times treated as hard constraints → no interference with oncoming trains - Train Model: DMU RegioShuttle 1 (StadlerRail) 6. Conclusions • Simulation of 4 request stop scenarios with present time table (168 train rides) | [%] Present Minimum Moderate scenario Freiberg Berthelsdorf Drt Serthelsdorf Ort X X X X | Maximum
scenario | |--|----------------------------| | Freiberg Berthelsdorf 21 | scenario | | Berthelsdorf 21 | | | Berthelsdorf Ort Lichtenberg Mulda Nassau Clausnitz Bienenmühle Rechenberg Holzhau Skilift Holzhau X X X X X X X X X X X X X | x
x
x
x
x
x | ^{*} Annual volume of boarding and alighting passengers in relation to Freiberg | Total number of stopping events [%] | 100 | | | |-------------------------------------|-----|--|--| | Avg. energy consumption [%] | 100 | | | 6. Conclusions • Simulation of 4 request stop scenarios with present time table (168 train rides) | Course | Passenger Vol.* | Request stop scenario | | | | | | | |------------------|---|-----------------------|----------|----------|----------|--|--|--| | | [%] | Present | Minimum | Moderate | Maximum | | | | | | | state | scenario | scenario | scenario | | | | | • Freiberg | 100) | | | | | | | | | Berthelsdorf | 2 1 | | | | Х | | | | | Berthelsdorf Ort | 5 | Х | Х | Х | Х | | | | | Lichtenberg | 29 | | | | Х | | | | | Mulda | 41 | | | | | | | | | Nassau | 7 | | Х | Х | Х | | | | | Clausnitz | 9 | | | Х | Х | | | | | Bienenmühle | 24 | | | | Х | | | | | Rechenberg | 14 | | | Х | Х | | | | | Holzhau Skilift | 7 | Х | Х | Х | Х | | | | | Holzhau | 26 | | | | | | | | | | * A servel velves of bounding and alighting account in solution to Facilities | | | | | | | | ^{*} Annual volume of boarding and alighting passengers in relation to Freiberg | Total number of stopping events [%] | 100 | 93 | 81 | 70 | |-------------------------------------|-----|----|----|----| | Avg. energy consumption [%] | 100 | 95 | 88 | 81 | 6. Conclusions #### **Further results** - In spite of pro-active distribution acceptable delays - No delays at important stops (crossing station; major interchange stations) - $t_{d,90} < 30 \text{ sec}$ - Slight changes in timetable allows further increases in energy efficiency 6. Conclusions #### **Further results** - Comparison at the TU Dresden Driving Simulator: Experienced driver vs Algorithm - → Testing a line with 5 request stops (Medium scenario) 6. Conclusions #### **Further results** • Comparison at the TU Dresden Driver Simulator: Experienced driver vs Algorithm 6. Conclusions #### **Further results** • Comparison at the TU Dresden Driver Simulator: Experienced driver vs Algorithm 6. Conclusions #### **Further results** • Comparison at the TU Dresden Driver Simulator: Experienced driver vs Algorithm Assistance: Investing time gain in longer ranges of coasting → 20% less energy consumption #### 6. Conclusions #### 6. Conclusions - Request stops reveal a high potential of saving energy - Taping these potentials requires an assistance system - probabilistic assumptions based on passenger statistics - pro-active distribution of time slack - Delays can be confined effectively - by defining optimization constraints - by using a trade-off cost function (Multi-criterion Optimization) - Energy optimization for tramway systems