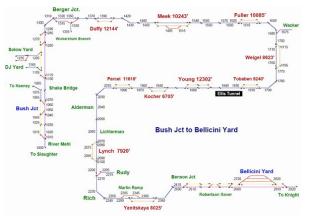


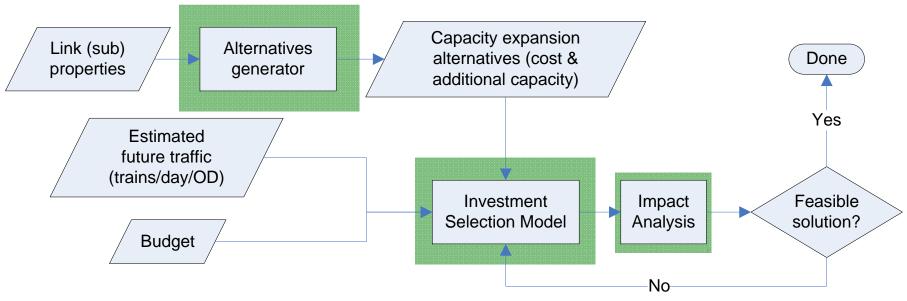

## The North American railroad industry is facing capacity problems

- Capacity and network efficiency have become more important as traffic volumes increase
- In North America, the demand for freight rail services is projected to increase by 88% in 2035 compared to 2007
- Capacity constraints are affecting network efficiency
- Problems range across many aspects of the railroad operation including:
  - Infrastructure
  - Equipment
  - Train dispatching, traffic mix
  - Human resources




### The demand for freight rail services is projected to increase by 88% in 2035 compared to 2007



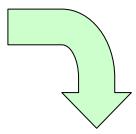

## A "Decision Support Framework" to determine how to allocate capital in the best possible way

- Railroads rely on experienced personnel and simulation software to identify bottlenecks and propose methods to reduce the congestion
- Experienced railroaders often identify good solutions but this does not guarantee that all possible alternatives have been evaluated
- Simulation usually deals with a section of the network, which may result in moving bottleneck around instead of solving it
- We propose a decision support framework to generate & evaluate possible alternatives and tackle the capacity planning problems in network level





## This decision support framework contains three individual strategic planning tools




- Alternatives Generator (AG):
  - Enumerate possible expansion options with their cost and additional capacity
- Investment Selection Model (ISM):
  - Determine which subdivisions need to be upgraded with what kind of improvements (alternatives)
- Impact Analysis Module (IAM):
  - Evaluate the tradeoff between capital investment and delay cost

### **CN Parametric Capacity Model was** selected to be the basis of AG

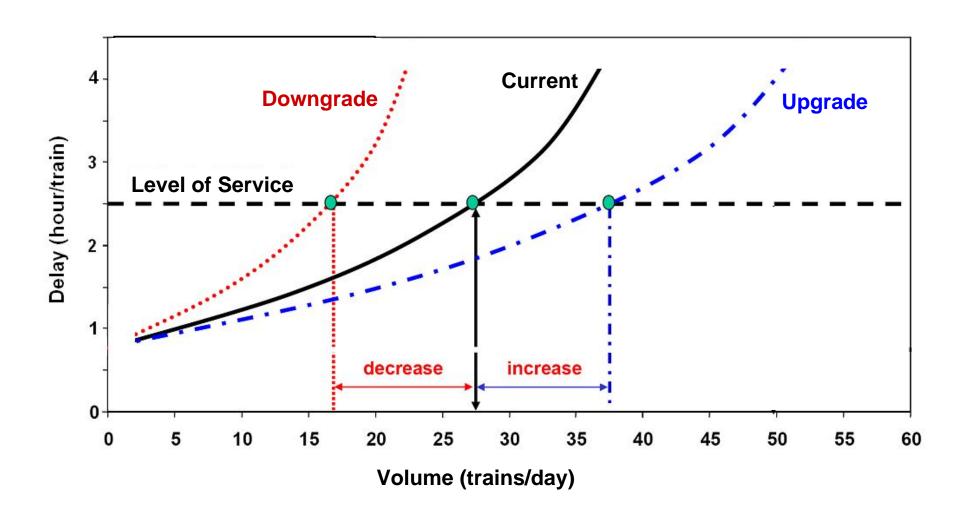


- Capacity is computed based on a set of key parameters
- Link Properties:
  - Plant parameters:
    - Length of Subdivision
    - Meet & Pass Locations
    - Signal Spacing
  - Traffic parameters:
    - Traffic Peaking
    - Priority Probability
    - Speed Ratio
    - Average Speed
  - Operating parameters
    - Track Maintenance
    - Stop on Line Time



Train Delay =  $A_0 e^{BV}$  (Krueger, 2000)

 $\underline{\mathbf{A}}_{\mathbf{O}} = \mathbf{Parametric\ Plant}$ , Traffic, Operating Coefficient

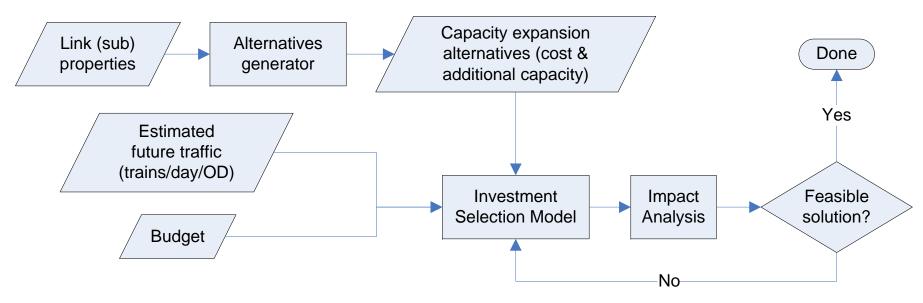

B = Constant

V = Traffic Volume



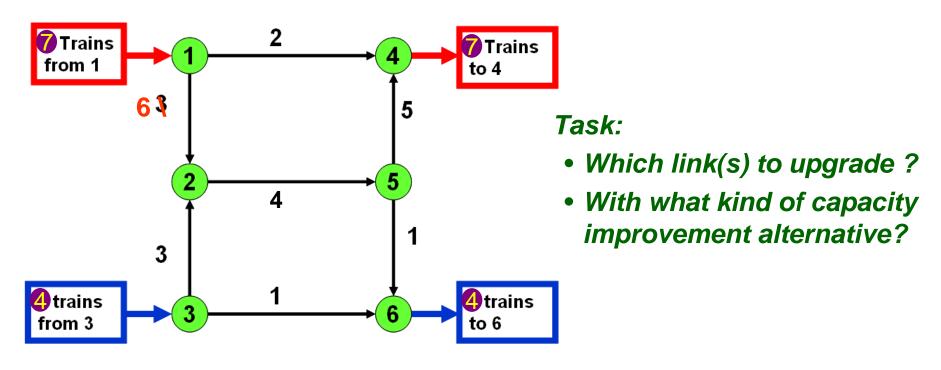
Delay – Volume Plot

# The output of the CN parametric model is a delay-volume relationship




## Adding enumeration and cost evaluation modules into CN model to create the alternatives generator

- Enumeration Module: automatically enumerating alternatives based on possible engineering options – adding (1) passing sidings, (2) intermediate signals, (3) 2<sup>nd</sup> main track
- Cost Evaluation Module: incorporating cost data into the parametric model to compute the construction cost of each alternative
- For example, a 100-mile sub with 9 sidings and no intermediate signal


| Alternatives | Sidings  | Signals/Spacing | Capacity (trains/day) | Cost          |
|--------------|----------|-----------------|-----------------------|---------------|
| 1            | + 0      | + 0             | + 0                   | \$0           |
| 2            | + 0      | + 1             | + 3                   | \$1,000,000   |
| 3            | + 0      | + 2             | + 4                   | \$2,000,000   |
| 4            | + 1      | + 0             | + 3                   | \$5,470,000   |
| 5            | + 1      | + 1             | + 6                   | \$6,570,000   |
| 6            | + 1      | + 2             | + 7                   | \$7,670,000   |
| 7            | + 2      | + 0             | + 6                   | \$10,940,000  |
| 8            | + 2      | + 1             | + 9                   | \$12,140,000  |
| 9            | + 2      | + 2             | + 10                  | \$13,340,000  |
| 10           | Adding 2 | 2nd Main Track  | + 50                  | \$204,750,000 |

## This decision support framework contains three individual strategic planning tools



- Alternatives Generator:
  - Enumerate possible expansion options with their cost and additional capacity
- Investment Selection Model (ISM):
  - Determine which subdivisions need to be upgraded with what kind of improvements (alternatives)
- Impact Analysis Module:
  - Evaluate the tradeoff between capital investment and delay cost

## Trains with different ODs are similar to multiple commodities, and they share the line capacity



|   | i | j | <b>Alternatives</b> | Capacity (trains/day) | Cost        |
|---|---|---|---------------------|-----------------------|-------------|
|   | 1 | 2 | 1                   | + 3                   | \$1,000,000 |
|   | 1 | 2 | 2                   | + 4                   | \$2,000,000 |
|   | 1 | 2 | 3                   | + 6                   | \$6,570,000 |
|   |   | - |                     |                       |             |
| _ |   |   | •                   |                       |             |

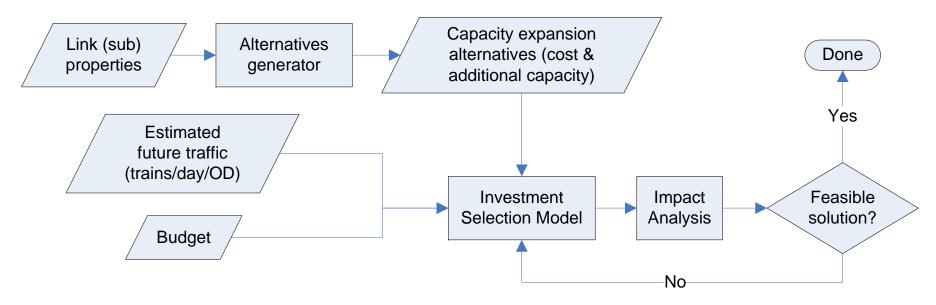
#### **General Investment Selection Model (ISM)**

$$min \bigotimes_{i} \sum_{j} \sum_{q} h_{ij}^{q} y_{ij}^{q} + \bigotimes_{i} \sum_{j} \sum_{k} c_{ij} x_{ij}^{k} \leftarrow capital invest + flow cost$$

s.t.

$$\sum_{i} \sum_{j} \sum_{q} h_{ij}^{q} y_{ij}^{q} \leq B \qquad \qquad \qquad \text{budget constraint}$$

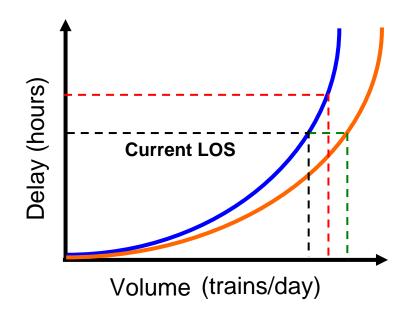
$$\sum_{k} x_{ij}^{k} \leq U_{ij} + \sum_{q} u_{ij}^{q} y_{ij}^{q} \qquad \forall i, j \ (i \neq j) \qquad \text{capacity constraint}$$


$$\sum_{q} y_{ij}^{q} \leq 1 \qquad \qquad \forall i, j \ (i \neq j) \qquad \text{alternative constraint}$$

$$\sum_{j} x_{ij}^{k} - \sum_{j} x_{ji}^{k} = \begin{cases} d_{k} & \text{if } i \in S_{k} \\ -d_{k} & \text{if } i \in t_{k} \\ 0 & \text{otherwise} \end{cases} \forall k \leftarrow \text{flow conservation}$$

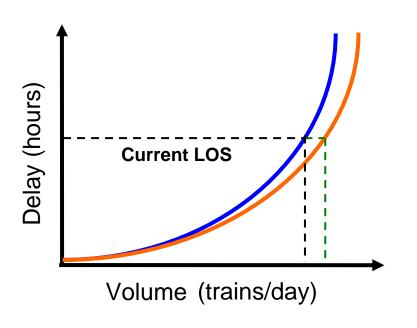
and

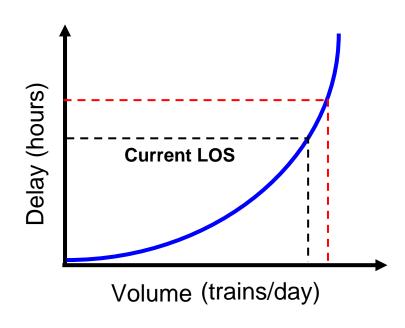
$$x_{ij}^{k} \in positive integer, y_{ij}^{q} \in \{0,1\}$$


## This decision support framework contains three individual strategic planning tools



- Alternatives Generator:
  - Enumerate possible expansion options with their cost and additional capacity
- Investment Selection Model (ISM):
  - Determine which subdivisions need to be upgraded with what kind of improvements (alternatives)
- Impact Analysis Module:
  - Evaluate the tradeoff between capital investment and delay cost


# There is a trade-off between "Capital Investment" and "Train Delay Cost"


- ISM determines the best set of capacity improvement alternatives with the premise that "Level of Service remains the same"
- However, it is possible to gain modest capacity by increasing delay (lowering Level of Service)

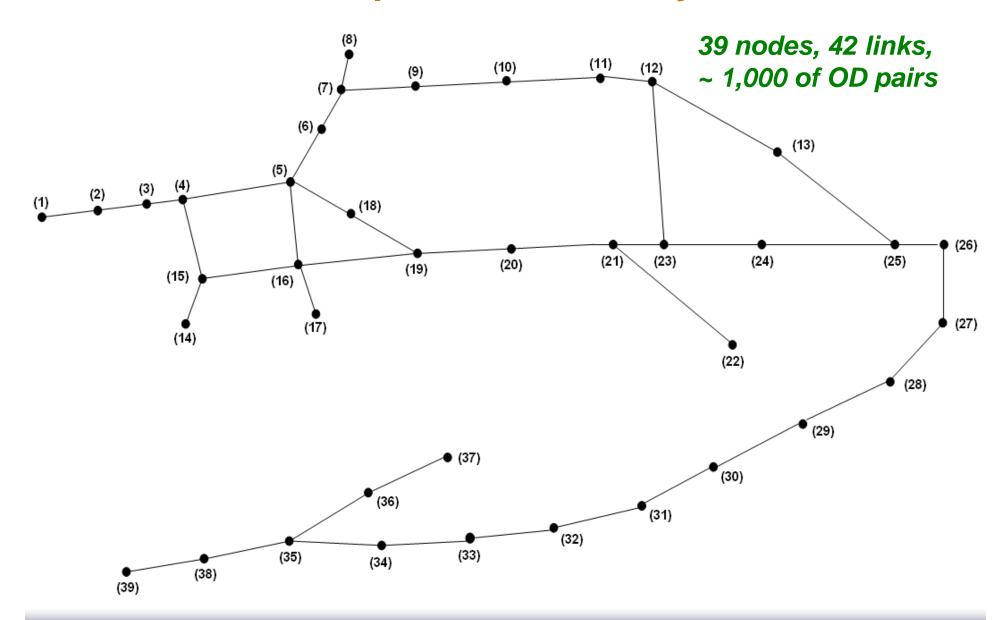


- Impact analysis module determines if the capital investment is cost-effective by comparing the capital investment & delay cost
- The output will be a set of options that eventually the capacity planner will make the final decision

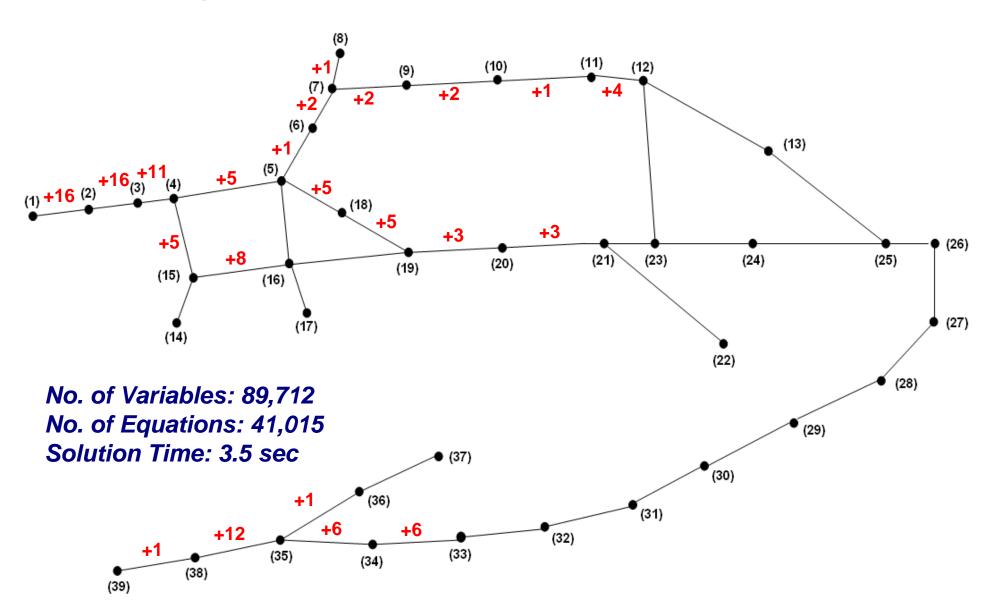
## There is a trade-off between "Capital Investment" and "Train Delay Cost"



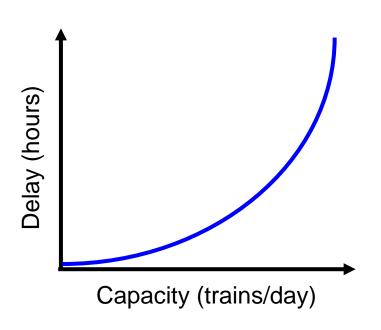



Net Cost from Upgrading Infrastructure

VS


Delay Cost = Unit Delay Cost x Hours x Trains

Benefit = Delay Cost / Net Cost (return on investment)


#### **Empirical Case Study**



#### Capacity improvement for 50% demand increase



## Impact analysis module compares capital investment with train delay cost



- ISM determines required upgrade with the premise "LOS is unchanged"
- It is possible to gain a little bit capacity by increasing delay (reduce LOS)
- Train Delay Cost = \$ 261 per train-hour

| i  | j  | Sun | Mon | Tue | Wed | Thu | Fri | Sat |
|----|----|-----|-----|-----|-----|-----|-----|-----|
| 1  | 2  | 16  | 15  | 16  | 16  | 16  | 16  | 16  |
| 2  | 3  | 14  | 15  | 15  | 16  | 15  | 16  | 13  |
| 3  | 4  | 9   | 10  | 10  | 11  | 10  | 11  | 8   |
| 4  | 5  | 4   | 4   | 5   | 4   | 5   | 4   | 5   |
| 5  | 6  | 1   | 0   | 0   | 0   | 0   | 0   | 1   |
| 6  | 7  | 1   | 2   | 2   | 1   | 2   | 0   | 2   |
| 7  | 8  | 1   | 0   | 1   | 1   | 1   | 0   | 0   |
| 7  | 9  | 1   | 2   | 0   | 1   | 0   | 1   | 1   |
| 9  | 10 | 1   | 2   | 0   | 1   | 0   | 1   | 1   |
| 10 | 11 | 0   | 1   | 0   | 1   | 0   | 1   | 1   |
| 11 | 12 | 2   | 0   | 4   | 0   | 4   | 0   | 3   |
| 4  | 15 | 3   | 5   | 5   | 5   | 5   | 5   | 4   |
| 15 | 16 | 7   | 7   | 6   | 7   | 6   | 7   | 8   |
| 5  | 18 | 4   | 5   | 5   | 5   | 5   | 5   | 5   |
| 18 | 19 | 4   | 5   | 5   | 5   | 5   | 5   | 5   |
| 19 | 20 | 1   | 3   | 3   | 3   | 3   | 3   | 3   |
| 20 | 21 | 1   | 3   | 3   | 3   | 3   | 3   | 3   |
| 33 | 34 | 6   | 4   | 5   | 5   | 6   | 5   | 6   |
| 34 | 35 | 5   | 4   | 2   | 6   | 5   | 6   | 6   |
| 35 | 36 | 0   | 0   | 1   | 0   | 1   | 0   | 0   |
| 35 | 38 | 2   | 7   | 9   | 11  | 12  | 12  | 10  |
| 38 | 39 | 0   | 0   | 0   | 1   | 0   | 1   | 0   |
|    |    |     |     |     |     |     |     |     |

Net Cost vs. Train Delay Cost

| Link Capacity |    |         | city         | Cost (           | \$,k)    | Difference (\$,k)         | Benefit |
|---------------|----|---------|--------------|------------------|----------|---------------------------|---------|
| i             | j  | Current | -            | Train Delay `    | Net Cost | Delay - Net Cost          |         |
| 35            | 38 | 24      | 36           | 31,107           | 2,289    | 28,818                    | 13.59   |
| 5             | 18 | 34      | 39           | 18,200           | 1,643    | 16,558                    | 11.08   |
| 3             | 4  | 40      | 51           | 135,720          | 13,169   | 122,551                   | 10.31   |
| 18            | 19 | 34      | 39           | 12,663           | 2,735    | 9,928                     | 4.63    |
| 20            | 21 | 36      | 39           | 5,015            | 1,393    | 3,622                     | 3.60    |
| 15            | 16 | 14      | 22           | 7,953            | 2,435    | 5,518                     | 3.27    |
| 2             | 3  |         |              |                  |          |                           | 3.14    |
| 19            | 20 | mir     | $\mathbf{D}$ | olav (na         | unara    | $(de) - \sum x_i d$       | 2.96    |
| 4             | 5  |         |              | elay (no         | upgru    | $ue_l = \sum_{i} x_i u_i$ |         |
| 1             | 2  |         |              |                  |          | $\boldsymbol{l}$          | 1.55    |
| 33            | 34 |         |              | _                |          |                           | 1.31    |
| 34            | 35 | s.t.    |              | $x_l c_l \leq I$ | Budget   |                           | 1.20    |
| 4             | 15 |         |              |                  | 0        |                           | 0.82    |
| 6             | 7  |         | <u> </u>     |                  |          |                           | 0.70    |
| 38            | 39 | 23      | 24           | 326              | 1,218    | (892)                     | 0.27    |
| 11            | 12 | 6       | 10           | 584              | 2,435    | (1,851)                   | 0.24    |
| 35            | 36 | 32      | 33           | 224              | 1,218    | (994)                     | 0.18    |
| 5             | 6  | 15      | 16           | 217              | 1,218    | (1,000)                   | 0.18    |
| 7             | 8  | 15      | 16           | 217              | 1,218    | (1,000)                   | 0.18    |
| 9             | 10 | 5       | 7            | 258              | 2,435    | (2,177)                   | 0.11    |
| 10            | 11 | 6       | 7            | 95               | 1,218    | (1,122)                   | 0.08    |
| 7             | 9  | 5       | 7            | 153              | 2,435    | (2,282)                   | 0.06    |
| Sun           | n  |         |              | 506,697          | 185,852  | 320,845                   |         |

### A decision support framework is developed to assist railway capacity planning projects

- AG can enumerate possible expansion options with their cost and additional capacity
- ISM successfully and efficiently solved the problem regarding where to upgrade and what kind of engineering options should be conducted
- IAM can further explore the trade-off between capital investment and train delay cost
- This process will help RRs maximize their benefit from expansion projects and thus be better able to provide reliable service to their customers, and return on shareholder investment
- Future work:
  - Enable demand rejection scenario for insufficient budget
  - Develop a multi-period decision making model with stochastic future demand

