Outline Problem description Rolling stock rescheduling Computational results Conclusions

A Rolling Horizon Based Framework for Rolling Stock Rescheduling

Lars Kjær Nielsen, Leo Kroon, Gábor Maróti

February 12, 2009

Presentation Outline

- 1. Outline
- 2. Problem description
- 3. Rolling stock rescheduling
- 4. Computational results
- 5. Conclusions

Introduction

Reasons for unexpected disruptions

- Infrastructure malfunctions
 - Rails, switches, catenary, bridges
- Computer problems in control centers
- Rolling stock breakdowns
- Accidents with other traffic
- Weather conditions
- Crew no shows
- **.**..

Introduction

Reasons for unexpected disruptions

- Infrastructure malfunctions
 - Rails, switches, catenary, bridges
- Computer problems in control centers
- Rolling stock breakdowns
- Accidents with other traffic
- Weather conditions
- Crew no shows
- **...**

n 2007 erlands
#
933
1011
834

Passenger railway disruption management includes three major tasks:

Passenger railway disruption management includes three major tasks:

1. Update timetable according to the disruption.

Passenger railway disruption management includes three major tasks:

- 1. Update timetable according to the disruption.
- 2. Reschedule rolling stock to cover the new timetable.

Passenger railway disruption management includes three major tasks:

- 1. Update timetable according to the disruption.
- 2. Reschedule rolling stock to cover the new timetable.
- 3. Reschedule crew to operate the rolling stock.

Passenger railway disruption management includes three major tasks:

- 1. Update timetable according to the disruption.
- 2. Reschedule rolling stock to cover the new timetable.
- 3. Reschedule crew to operate the rolling stock.

The tasks are interdependent but are solved separately.

Passenger railway disruption management includes three major tasks:

- 1. Update timetable according to the disruption.
- 2. Reschedule rolling stock to cover the new timetable.
- 3. Reschedule crew to operate the rolling stock.

The tasks are interdependent but are solved separately.

Our research focuses on the rolling stock.

Time-space diagram for a line.

Disruption

Updating the timetable

Train length is adjusted at certain stations

Original rolling stock assignment is not feasible during disruption

Uncertainty related to the disruption

The Online Rolling Stock Rescheduling Problem (Online RSRP)

Input:

- Original timetable T₀.
- ▶ Original rolling stock circulation C_0 .
- Finite list of changes to the timetable,

$$\langle t_1, \mathcal{T}_1 \rangle, \ldots, \langle t_n, \mathcal{T}_n \rangle.$$

The Online Rolling Stock Rescheduling Problem (Online RSRP)

Input:

- ▶ Original timetable T_0 .
- ▶ Original rolling stock circulation C_0 .
- Finite list of changes to the timetable,

$$\langle t_1, \mathcal{T}_1 \rangle, \ldots, \langle t_n, \mathcal{T}_n \rangle.$$

Output at each step:

▶ Circulation C_i which is feasible for T_i with rolling stock fixed until time t_i .

The Online Rolling Stock Rescheduling Problem (Online RSRP)

Input:

- ▶ Original timetable \mathcal{T}_0 .
- ▶ Original rolling stock circulation C_0 .
- Finite list of changes to the timetable,

$$\langle t_1, \mathcal{T}_1 \rangle, \ldots, \langle t_n, \mathcal{T}_n \rangle.$$

Output at each step:

▶ Circulation C_i which is feasible for T_i with rolling stock fixed until time t_i .

Objective:

▶ Minimize the deviation of C_n from C_0 .

Objectives

Perspectives of the overall managerial objective:

Based on the MIP model by Fioole et al. (2006):

► The core of the model is the assignment of *rolling stock* compositions to trips.

Based on the MIP model by Fioole et al. (2006):

- ► The core of the model is the assignment of rolling stock compositions to trips.
- ► For a trip *r*:

Composition changes between trips

Composition changes between trips

▶ Variables $D_{s,m} \in \mathbb{Z}_+$ count the deviation from the target number of units of type m at station s.

▶ Variables $D_{s,m} \in \mathbb{Z}_+$ count the deviation from the target number of units of type m at station s.

Objective:

$$\min \sum_{r} w_{r} X_{r,0} + \sum_{r,r'} \sum_{c,c'} \gamma_{r,r',c,c'} Z_{r,r',c,c'} + \sum_{s} \sum_{m} \beta_{m} D_{s,m}$$

Cancellations

Off balances

Changed shunting operations

Problem decomposition

Observations:

- Computation time is a bottleneck.
- The uncertainty of the online version may lead to suboptimal decisions.
- ▶ In practice, only the most immediate decisions are executed.

Problem decomposition

Observations:

- Computation time is a bottleneck.
- The uncertainty of the online version may lead to suboptimal decisions.
- ▶ In practice, only the most immediate decisions are executed.

Rolling horizon approach:

- Only look h timesteps ahead.
- Revise whenever new information becomes available.
- ▶ If no new information is revealed, revise after *p* timesteps.

Rolling horizon approach

- Off balances are counted at the end of the day.
- ▶ When only considering a horizon of *h* timesteps, off balances cannot explicitly be accounted for.

- Off balances are counted at the end of the day.
- ▶ When only considering a horizon of *h* timesteps, off balances cannot explicitly be accounted for.

Heuristic approach:

- Observation: The original circulation has no off balances.
- Use the intermediate balances of the original circulation as a guideline.

- ▶ Arguably the accuracy of this approach increases over time.
- ▶ When rescheduling at time t, multiply the cost of off balances by a factor $\rho(t)$:

$$\sum_{s}\sum_{m}\rho(t)\beta_{m}D_{s,m}$$

- ▶ Arguably the accuracy of this approach increases over time.
- ▶ When rescheduling at time t, multiply the cost of off balances by a factor $\rho(t)$:

$$\sum_{s}\sum_{m}\rho(t)\beta_{m}D_{s,m}$$

ho(t) depends on the time t at which the horizon ends.

- ▶ Arguably the accuracy of this approach increases over time.
- ▶ When rescheduling at time t, multiply the cost of off balances by a factor $\rho(t)$:

$$\sum_s \sum_m \rho(t) \beta_m D_{s,m}$$

- ho(t) depends on the time t at which the horizon ends.
- Parameter a: When intermediate balances are taken into account.
- ▶ Parameter *b*: Off balances are taken into account with full cost.

Computational tests

Test instances:

- Several disruptions in rolling stock circulations at NS are used.
- Each instance contains several timetable updates.

Computational tests

Test instances:

- Several disruptions in rolling stock circulations at NS are used.
- ► Each instance contains several timetable updates.

➤ The presented results come from a number of instances involving the Noord-Oost lines.

Parameters for the intermediate balances

Objective vs. when intermediate balances are taken into account.

Parameters for the intermediate balances

Off balances/shunting operations vs. when intermediate balances are taken into account.

Parameters for the horizon

Objective vs. horizon length.

Computation time

Computation time vs. horizon length.

Conclusions

- Disruptions in the rolling stock schedules are modeled by the Online RSRP.
- A rolling horizon approach is used to reduce problem size.
- ► A model for generic rolling stock scheduling is adapted to the real time case at NS.
- ▶ Off balances are dealt with heuristically by comparing with the original circulation.
- ▶ The approach yields good results on instances from practice.
- Computation time depends on horizon length.

