Improved Local Freight Train Classification

Jens Maue1

Joint Work with Peter Márton2 and Marc Nunkesser1

1Institute of Theoretical Computer Science, ETH Zürich, Switzerland

2Department of Transportation Networks, University of Žilina, Slovakia

RailZurich 2009 - 12 February 2009

1Partially supported by the Future and Emerging Technologies Unit of EC (IST priority - 6th FP) under contract no. FP6-021235-2 (project ARRIVAL).

2Partially supported by the Slovak grant foundation under grant no. 1-4057-07 (project “Agent Oriented Models of Service Systems”).
Local freight train
 - multi-destination freight train
 - cars ordered by destinations

Train classification
 - special sorting problem
 - classification yard
Outline

Train Classification in General

Classification Schedules

IP Formulation
 Basic Model
 Real-World Instance
 Real-World Restrictions

Concluding Remarks
Train Classification in General

Example Classification Process

Train Classification

- **goal**: ascendingly **ordered train** on θ_{out}
- use available tracks θ_1, θ_2, and θ_3
Example Classification Process

Train Classification

- **goal**: ascendingly ordered train on θ_{out}
- use available tracks θ_1, θ_2, and θ_3
Train Classification

- **goal**: ascendingly ordered train on θ_{out}
- use available tracks θ_1, θ_2, and θ_3
Example Classification Process

Train Classification

- **goal**: ascendingly *ordered train* on θ_{out}
- use available tracks θ_1, θ_2, and θ_3
Train Classification

- **goal:** ascendingly ordered train on θ_{out}
- use available tracks θ_1, θ_2, and θ_3
Train Classification in General

Example Classification Process

Train Classification
- **goal**: ascendingly ordered train on θ_{out}
- use available tracks θ_1, θ_2, and θ_3
Train Classification

- **goal**: ascendingly ordered train on θ_{out}
- use available tracks θ_1, θ_2, and θ_3
Train Classification

- **goal**: ascendingly ordered train on θ_{out}
- use available tracks θ_1, θ_2, and θ_3
Example Classification Process

Train Classification

- **goal**: ascendingly ordered train on θ_{out}
- use available tracks θ_1, θ_2, and θ_3
Train Classification in General

Example Classification Process

Train Classification

▶ goal: ascendingly ordered train on θ_{out}

▶ use available tracks θ_1, θ_2, and θ_3
Train Classification

- **goal**: ascendingly ordered train on θ_{out}
- use available tracks θ_1, θ_2, and θ_3
Example Classification Process

Train Classification

- **goal:** ascendingly ordered train on θ_{out}
- use available tracks θ_1, θ_2, and θ_3
Example Classification Process

Train Classification

- **goal:** ascendingly ordered train on θ_{out}
- use available tracks θ_1, θ_2, and θ_3
Train Classification

- **goal:** ascendingly ordered train on θ_{out}
- use available tracks θ_1, θ_2, and θ_3
Train Classification

- **goal**: ascendingly ordered train on θ_{out}
- use available tracks θ_1, θ_2, and θ_3
Train Classification

- **goal**: ascendingly ordered train on θ_{out}
- use available tracks θ_1, θ_2, and θ_3

Classification Process

1. initially roll-in input train
2. alternately pull out and roll in
3. finish with ordered train
Train Classification

- **goal**: ascendingly ordered train on θ_{out}
- use available tracks θ_1, θ_2, and θ_3

Classification Process

1. initially roll-in input train
2. alternately pull out and roll in
3. finish with ordered train

Objective: number h of pull-out steps
Schedule Encoding [JMMN07]
Schedule Encoding [JMMN07]

Schedule representation

- **assignment** of cars to bitstrings of length h
- rows: bitstring b^j encodes journey of jth car
- columns: bits encode sequence of pull-out steps
- bit $b^j_i = 1$ iff jth car visits track pulled in ith step
Schedule Encoding [JMMN07]

Schedule representation
- assignment of cars to bitstrings of length \(h \)
- rows: bitstring \(b^j \) encodes journey of \(j \)th car
- columns: bits encode sequence of pull-out steps
- bit \(b^j_i = 1 \) iff \(j \)th car visits track pulled in \(i \)th step

Schedule derivation: two consecutive cars \(\tau \) and \(\tau + 1 \)
- correct order: assign same bitstring
- reversed order: assign bigger bitstring to \(\tau + 1 \)
Schedule Encoding [JMMN07]

Schedule representation

- assignment of cars to bitstrings of length h
- rows: bitstring b^j encodes journey of jth car
- columns: bits encode sequence of pull-out steps
- bit $b^j_i = 1$ iff jth car visits track pulled in ith step

Schedule derivation: two consecutive cars τ and $\tau + 1$

- correct order: assign same bitstring
- reversed order: assign bigger bitstring to $\tau + 1$
- objective: length h of schedule
Basic IP Model [MN09]

\[
\begin{align*}
\text{min} & \quad \sum_{1 \leq i \leq n, \ 0 \leq j < h} b^j_i \\
\text{s.t.} & \quad \sum_{0 \leq j < h} 2^i b^j_i \geq \text{rev}(j-1, j) + \sum_{0 \leq j < h} 2^i b^{j-1}_i \quad \forall j \in \{1, \ldots, n\} \setminus F \quad (1) \\
& \quad \sum_{1 \leq i \leq n} b^j_i \leq C \quad \forall i \in \{0, \ldots, h-1\} \quad (2) \\
& \quad b^j_i \in \{0, 1\} \quad \forall j \in \{1, \ldots, n\}, \ \forall i \in \{0, \ldots, h-1\} \quad (3)
\end{align*}
\]

- \text{rev}(j-1, j) = 1 \text{ iff cars } j-1 \text{ and } j \text{ in reversed order in incoming train}
- \text{F subset of cars that are first in their respective outgoing train}
- \text{classification tracks have capacity } C
Traffic data
- single day in 2005
- volume 328 cars
- 23 outgoing trains

Infrastructure and operation
- two parallel humps
- local freight trains: collect on ten tracks
- time window for pull-out steps
- further tracks for outgoing train formation
Extended IP Model [MN09]

Additional constraints for Lausanne-Triage
- initial roll-in restricted to ten tracks
- assignment of outgoing trains to either hump
- respect departure times

Resulting schedule
- one step shorter
- one track less required

Verification by computer simulation in progress (not finished yet)
Additional constraints for Lausanne-Triage

- initial roll-in restricted to ten tracks
- assignment of outgoing trains to either hump
- respect departure times

Resulting schedule

- one step shorter
- one track less required
- verification by computer simulation in progress (not finished yet)
Concluding Remarks

Conclusion

- encoding yields flexible IP model
- adapts to various real-world restrictions
- Lausanne-Triage: save one step and track
Concluding Remarks

Conclusion

- encoding yields flexible IP model
- adapts to various real-world restrictions
- Lausanne-Triage: save one step and track

Ongoing work

- computer simulation for Lausanne-Triage (Villon)
- evaluation of 2-approximation
- time-dependent input
- robustness questions