

A Public Transport Performance Measurement System for Switzerland and its Calibration

U. Weidmann, H. Orth, N. Carrasco, M. Schwertner

16.01.2013, TRB 92nd Annual Meeting, Washington, D.C.,

Background

- ongoing effort to develop a consistent multimodal level of service (LOS) system in Switzerland,
- goal to develop LOS system for public transport
- preceding work and foundation published in TRR in 2012¹
 - selection of indicators
 - evaluation framework

Indicators

on time performance:

- reliability
- identify hot-spots of destabilizing effects
- measure: % of runs on time at stop
- on time margin at -30/+180 seconds

headway adherence

- reliability
- identify hot-spots of destabilizing effects
- evaluate operational stability
- measure: coefficient of variation of headways

speeds

- transit competitiveness, operation cost
- measure: transit speed relative to automobile speed

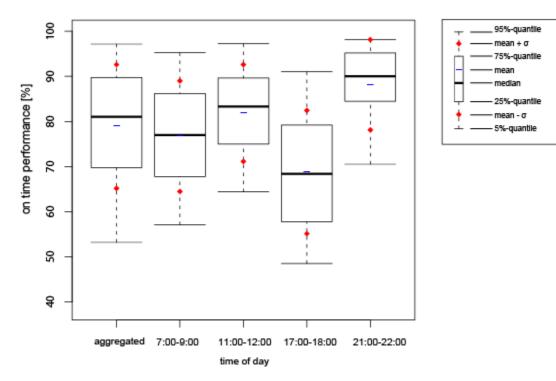
passenger loads

- comfort
- obstructions at boarding/alighting
- measure: passenger density or load factor
- taken at vehicle arrival at stop

On time performance

- important for large headway services
- measure of reliability
- connections
- What levels are needed for a high quality service?
- What levels are achievable?

Institut für Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems


On time performance

City of Zurich data from 2010

- On time threshold of 180 seconds
- analysis of 10 lines, with data from every single run

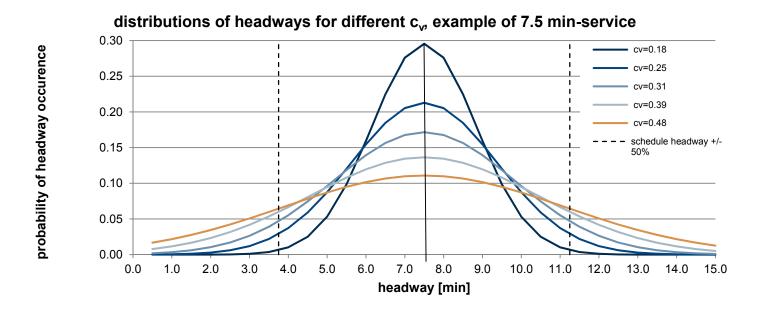
Generally:

- high levels are quite possible
- peak dips are significant

on time performance in different times of day

on time performance

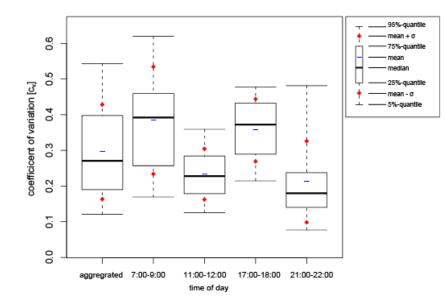
- Scale chosen based on needed/achievable levels of on time performance
- very high performance is possible and can be demanded for

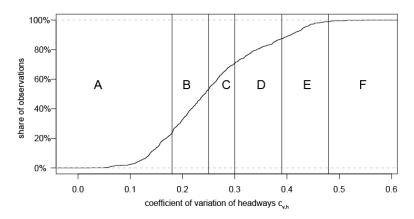

LOS	% on time	Description of Service Level
А	≥ 95%	Almost all departures on time, commuters encounter delay less than once every two weeks
В	< 95%, ≥ 90%	Some delayed departures, commuters encounter delay no more than once a week
С	< 90%, ≥85%	Commuters encounter dely 1-2 times a week
D	< 85%, ≥ 80%	Frequent delays
E	< 80%, ≥ 75%	Very frequent delays, with commuters encoutering delays regularily
F	< 75%	Very frequent delays, at least every second day a commuter is delayed

The assumption for the descriptions is that a commuter makes 10 trips per week

headway adherence

- important at short headways
- evaluation concept: what is the probability of a passenger having to wait more than the expected wait time and some buffer?
 - measurement using coefficient of variation c_v (analog to TCQSM/HCM^{2,3})




headway adherence

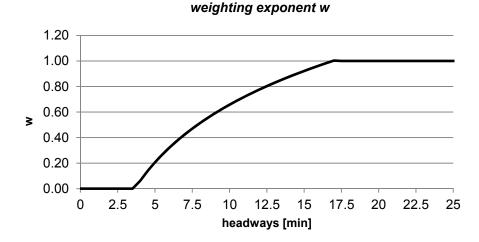
headways adherence for all lines at different times of day

- relatively low levels of variation, however increase during morning and evening peak times
- overall average of 0.27

cumulative distribution of coefficients of variation and LOS thresholds

headway adherence

LOS		Description of Service Level A: deviation from schedule head by more than 50% B: a passenger has to wait more than half the schedule headway + 50%				
	Coefficient of variationt $c_{v_{j}}$					
		p(A)	р(В)			
А	$c_{v} \leq 0.18$	p(A) ≤ 0.005	p(A) ≤ 0.004			
В	$0.18 < c \le 0.25$	0.005 < p(A) ≤ 0.05	$0.004 < p(A) \le 0.034$			
С	$0.25 < c_v \le 0.30$	0.05 < p(A) ≤ 0.10	0.034 < p(A) ≤ 0.08			
D	$0.30 < c_{v} \le 0.39$	0.10 < p(A) ≤ 0.20	0.08 < p(A) ≤ 0.15			
E	$0.39 < c_{v} \le 0.48$	0.20 < p(A) ≤ 0.30	0.15 < p(A) ≤ 0.22			
F	<i>c</i> _v < 0.48	p(A)≤ 0.30	p(A)≤ 0.22			

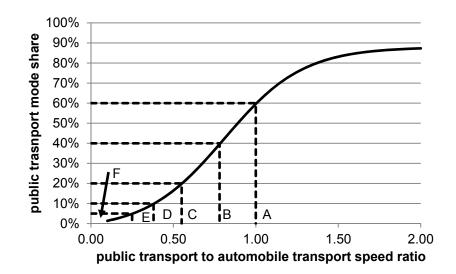

weighting between on time performance and headway adherence

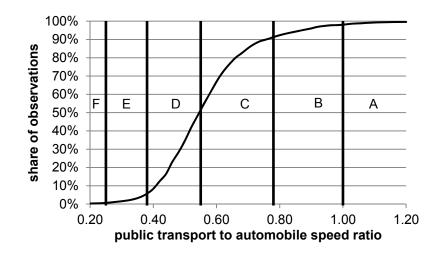
- both are measures for reliability
- passenger arrival⁴⁻⁷:
 - at large headways for specific departures
 - at small headways rather randomly
- weighting by headways
 - analysis of passenger arrival
 - well approximated by logarithmic function (Weidmann, Lüthi, Nash 2006)

 $LOS_{reliability} = VQS_{headw.adh.}^{1-w} \cdot VQS_{on time.}^{w}$

$$w(t_K) = \begin{cases} 0 & t_K < t_{K,min} \\ 0.65151 \cdot \ln(t_K) - 0.84259 & t_K \in [t_{K,min}, t_{K,max}] \\ 1 & t_K > t_{K,max} \end{cases}$$

$$t_{K,min} = 4 \min t_{K,max} = 17 \min$$




Speeds

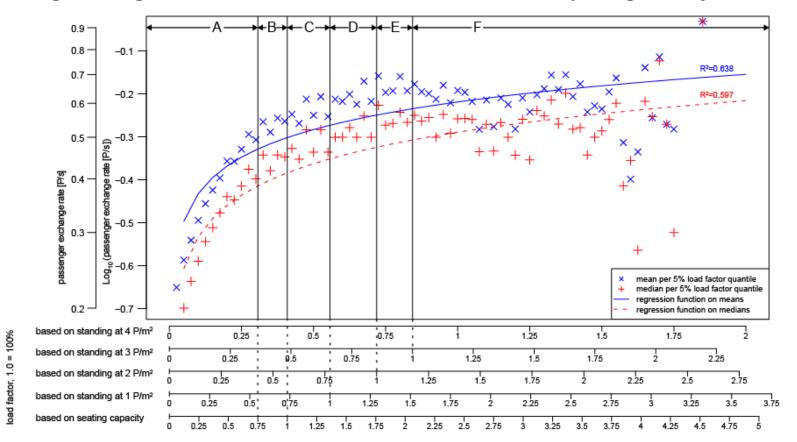
- measure of competitiveness with automobile transport
- LOS based on expectable public transport mode share¹¹
 - LOS A: 1.0 or better
 - LOS F: less than 5% PT mode share

Speed ratio and mode share

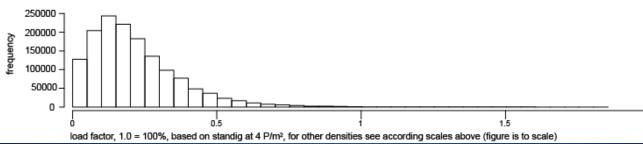
speed ratio distribution measured

Speeds

LOS	Public Transport to Automobile Speed Ratio <i>r</i>	Description
А	v ≥ 1.00	Public transport as fast or faster than automobile travel
В	0.78 ≤ v < 1.00	Speed ratio at which a 40% public transport mode share can be expected
С	0.55 ≤ v < 0.78	Speed ratio at which a 20% public transport mode share can be expected
D	0.38 ≤ v < 0.55	Speed ratio at which a 10% public transport mode share can be expected
E	0.25 ≤ v < 0.38	Speed ratio at which a 5% public transport mode share can be expected
F	v < 0.25	Speed ratio at mode share is less than 5%



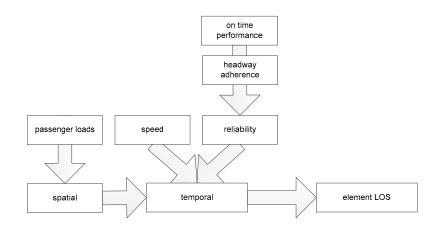
passengers loads


- comfort but also passenger flow and boarding/alighting times
 - LOS F: overloading and collapse of passenger exchange rates
 - LOS A: comfortably seated

passenger exchange rate over load factor and level of service thresholds for passenger density

histogram of observed load factors

passenger loads


Passenger Density d	Load* [P/m²]	LOS	Score	Description of Service Level
d < 0.75 P/seat	0.311	А	1.000	Comfortable seating, no neighbor for least 1/3 of passengers
0.75 ≤ d < 1 P/seat	0.409	В	0.833	Available seat for every passenger wishing to sit
1 P/seat ≤ d < 1 P/m ²	0.557	С	0.667	Comfortable standing with plenty of space
1 P/m² ≤ d < 2 P/m²	0.719	D	0.500	Noticeable crowding, passengers begin to stand in corridors
$2 P/m^2 \le d < 3 P/m^2$	0.844	Е	0.333	Dense crowding, door areas filled, no open space in corridors
d ≥ 3P/m²	0.844	F	0.167	Excessive crowding, door areas overcrowded, passenger flow seriously inhibited, dwell times greatly extended
* Equivalent load factor based	on full load	at 4P/m²,	vehicles v	vith relative capacity of 5.9 Passengers/m

LOS framework: multiple element evaluation

- LOS converted into scores for calculation, scores reconverted into letter LOS
- overall quality at single element $LOS_{temp} = LOS_{reliability} \cdot LOS_{speed}$ $LOS_{spatial} = LOS_{passenger \ load}$ $LOS_{element} = \frac{LOS_{temp} + LOS_{spatial}}{2}$

Conversion from LOS to LOS score and back							
LOS	LOS 🗲 LOS score	LOS scor	re 🗲 LOS				
203		≤	>				
A	1.000	-	0.833				
В	0.833	0.833	0.667				
С	0.667	0.667	0.500				
D	0.500	0.500	0.333				
E	0.333	0.333	0.167				
F	0.167	0.167	-				

- For sets of multiple elements average
- thus highly flexible and scalable

application example

(a) Example calculation of eleme	ent LOS: Line 3	1, Bahnhof Altstett						
Indicator			% on-time		C _{v.h}		d ratio	Load
Observed value			88.13		0.21	0.64		0.20
LOS grade			С		В		С	А
LOS score				667	0.833	0.	667	1.0
Service headway h			7.5	5 min				
Neighting factor w (Eq.2)				0.47				
Indicator LOS			Score LOS _{reliability}				LOS _{speed}	Score LOS _{spatial}
			0.750			0.	667	
Dimension LOS					Score LOS _{temporal} (Eq. 4)			1.0
					0.500			
Score LOS _{element} (Eq. 6)						750		
Total element LOS grade						В		
(b) Example calculation of trip L	OS for two exa	mple trips.						
Trip 1: From Bahnhof Altstetten on line 31, between 17.00 and 18			-		platz to Kunsthaus on veen 11.00 and 12.00			
Stop	Line	LOS score	LOS grade		Stop	Line	LOS score	LOS grade
Bahnhof Altstetten	31	0.667	В	Kunsthaus		31	0.725	В
Luggwegstrasse	31	0.667	В	Neumarkt		31	0.663	С
Letzipark	31	0.542	С	Central		31	0.635	С
SBB-Werkstätte	31	0.554	С	Bahnhofplatz/HB (Tra	ansfer to line 13)			
Herdernstrasse	31	0.434	D	Bahnhofquai/HB		13	0.680	В
Arrival (Hardplatz)			Ī	Sihlquai/HB		13	0.680	В
• •				Museum für Gestaltu	ing	13	0.694	С
				Arrival (Limmatplatz)				
Entire Trip 4		Avg. Score	LOS				Avg. Score	LOS
Entire Trip 1		0.573	С	Entire Trip 2			0.671	В
(c) Example calculation of sub-n	etwork I OS fo			d evening peak bour			0.071	
				u evening peak nour.		Sub potwork LOS	for time periode	
Time Period Avg. Score of all elements				Sub-network LOS for time periods				
11.00 - 12.00			0.691	B C				
17.00 – 18.00			0.549			Ľ		

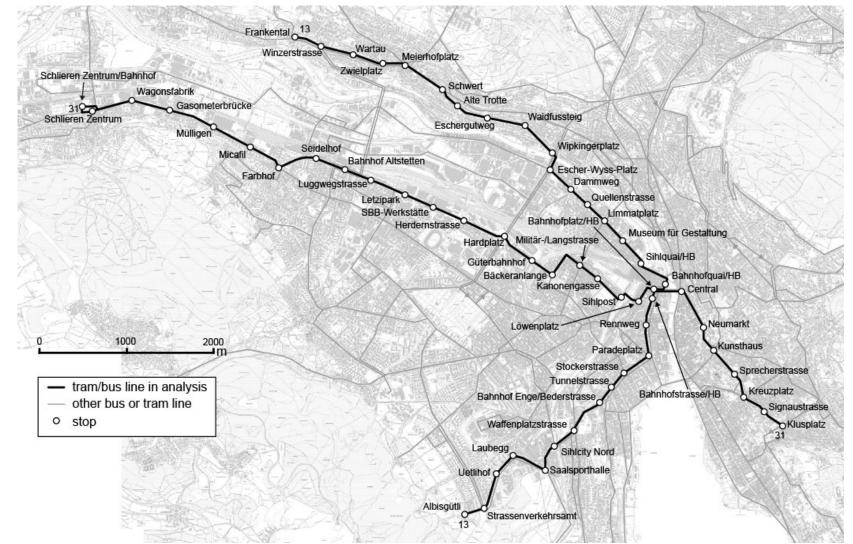
Outlook

- Standards system now under evaluation
- work to be completed this year
- step towards multimodally consistent transport performance evaluation system

References

- 1. Orth, H., U. Weidmann, R. Dorbritz (2012) *Development of a Public Transport Performance Measurement System* Transportation Research Record: Journal of the Transportation Research Board, No. 2274, Transportation Research Board of the National Academies, Washington, D.C., 2012, pp. 135–143
- 2. Transportation Research Board (2000) Highway Capacity Manual 2000, Washington, D.C.
- 3. Transportation Research Board (2003) Transit Capacity and Quality of Service Manual, Washington, D.C.
- 4. O'Flaherty, C. A. and D. O. Mangan. Bus Passenger Waiting Times in Greater Manchester. *Traffic Engineering and Control*, Vol. 11, No. 9, 1970, pp. 419-421
- 5. Weidmann, U., M. Lüthi and A. Nash. Passenger Arrival Rates at Public Transit Stations, presented at the 86th Annual Meeting of the Transportation Research Board, Washington, D.C., 2007.
- 6. Csikos, D. and C. Graham. Investigating Consistency of Transit Passenger Arrivals. In *Transportation Research Record: Journal of the Transportation Research Board*, No. 2042, Transportation Research Board of the National Academies, Washington, D.C., 2008, pp.12-19
- 7. Fan, W and R. Machemehl. Do Transit Users Just Wait for Buses of Wait with Strategies? In *Transportation Research Record: Journal of the Transportation Research Board*, No. 2111, Transportation Research Board of the National Academies, Washington, D.C., 2009, pp.169-176
- 8. ITP Intraplan Consult GmbH, VWI Verkehrswissenschaftliches Institut Stuttgart GmbH

Extrafolien



Swiss Federal Institute of Technology Zurich

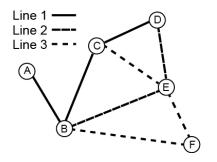
Overview lines 13 and 31

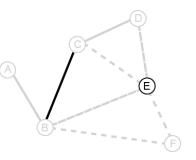
Selection of indicators

- redundancies: some influences impact others
- not all with large impact on operational quality

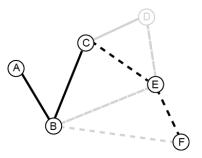
Selection of four main indicators

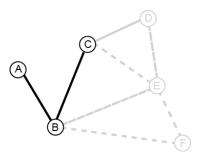
 measurement at single element allows for scaling across network levels

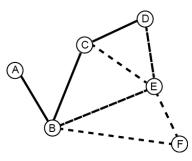

			Network level			
Influence	Indicator	Measurement	Single element	Route or route segment	network	
Time	Į					
	Travel speed	[km/h] .	х	Х	X	
Speed	Acceleration and braking	[m/s ²]	Х	Х		
Frequency (service)	Temporal spacing between vehicles	[min]	Х	Х	>	
Vehicle spacing (operationally)	Minimal buffer time between vehicles	[s]	Х	Х		
Space						
	Space within vehicle	Seats [1] or standing room [m ²]	Х	Х)	
Available or designated space	Share of dedicated right of ways	[%]		Х	>	
5	Type of road	Qualitative	Х	Х		
	Type of transit stop	Qualitative	Х			
Obstructions						
Passenger density	Density within vehicle	standing passengers [P/m ²]	x	х)	
Reliability						
Deliebility	On time performance	[%] runs on time	x	х)	
Reliability	Headway adherence	[-] coefficient of variation of headways	x	х)	
Availability						
Availability	Service duration	[h/d]	Х	Х)	

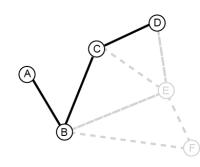


Conceptual evaluation example

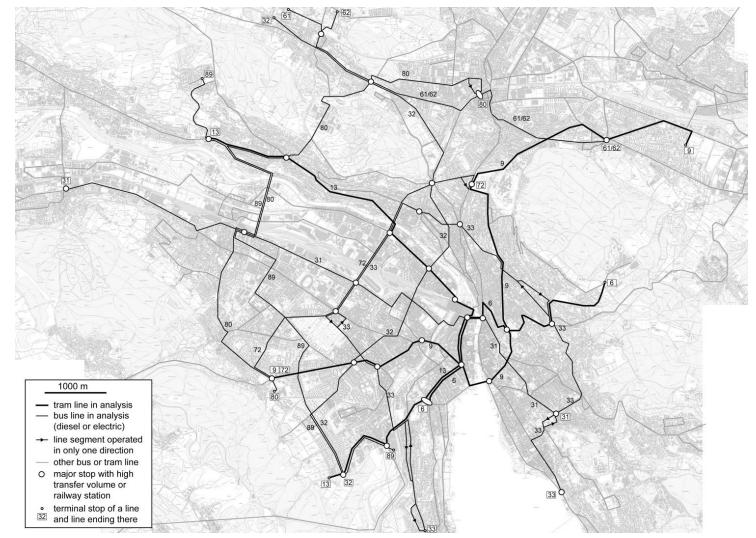

public transport network with 3 lines and 6 stops


evaluation of segment B-C on line 1 or stop E

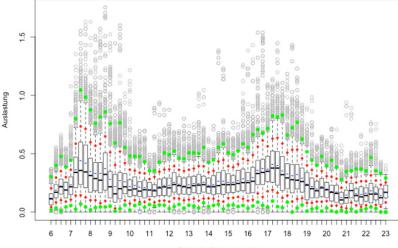

evaluation of a trip from A to F with a transfer at C


evaluation of segment A-B-C on line 1

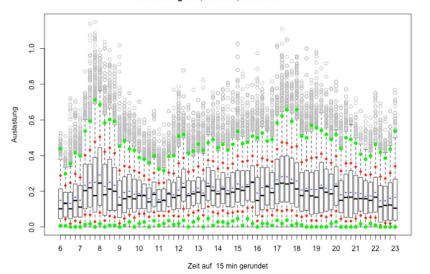
evaluation of the whole network

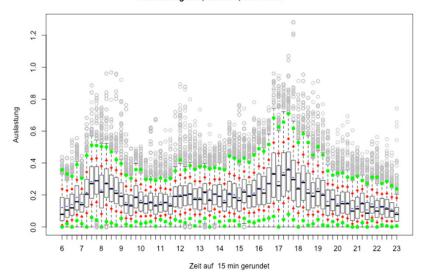


evaluation of line 1



All lines considered

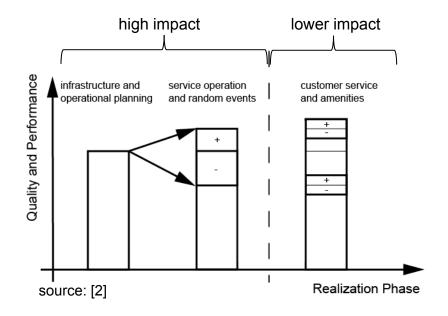

Some passenger load data



Auslastung/Zeit, 2010/T3, 0600-2300

Zeit auf 15 min gerundet

Auslastung/Zeit, 2010/T3, 0600-2300


Auslastung/Zeit, 2010/T3, 0600-2300

Public transport quality/performance realization

- three phases of quality and performance realization
 - Decreasing extent of controllability
 - Increasing influence of individuals
- but also
 - Decreasing extent of impact

consideration of first two levels only

