ETH zürich

PathPackingProblem ArcPackingProblem PathConfigurationProblem LinearPrograming Monitoring RollingStock IntegerProgramming MixedLinearIntegerProgramming Rerouting Crew Reordering SimultaneousReschedulingAndRerouting Operations TreeConflictGraph Retiming FlexiblePath ArcConfigurationProblem ResourceTreeConflictGraph

Meeting functional requirements for real-time railway traffic management with mathematical models

Ambra Toletti – Marco Laumanns – Peter Grossenbacher – Ulrich Weidmann

Conference on Advanced Systems in Public Transport CASPT 2015

Literature reviews

- Cordeau JF, Toth P, Vigo D (1998) A survey of optimization models for train routing and scheduling. Transportation Science 32(4):380–404
- Törnquist J (2006) Computer-based decision support for railway traffic scheduling and dispatching: A review of models and algorithms. In: Kroon LG, Möhring RH (eds) 5th Workshop on Algorithmic Methods and Models for Optimization of Railways (ATMOS'05), Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, OpenAccess Series in Informatics (OASIcs), vol 2, DOI 10.4230/OASIcs.ATMOS.2005.659
- Lusby RM, Larsen J, Ehrgott M, Ryan D (2011) Railway track allocation: models and methods. OR Spectrum 33(4):843–883, DOI 10.1007/s00291-009-0189-0
- Corman F, Meng L (2013) A review of online dynamic models and algorithms for railway traffic control. In: Intelligent Rail Transportation (ICIRT), 2013 IEEE International Conference on, pp 128–133, DOI 10.1109/ICIRT.2013.6696281
- Cacchiani V, Huisman D, Kidd M, Kroon L, Toth P, Veelenturf L, Wagenaar J (2014) An overview of recovery models and algorithms for real-time railway rescheduling. Transportation Research Part B: Methodological 63(0):15 – 37, DOI 10.1016/j.trb.2014.01.009

ETHzürich

Modelling needs assumptions...

A farmer has some chickens who don't lay any eggs. The farmer calls a physicist to help. The physicist does some calculation and says "I have a solution but it only works for spherical chickens in a vacuum!".

Contents

- Introduction and motivation
- Functional requirements
- Mathematical models
- Meeting functional requirements with mathematical models
- Conclusion and outlook

Infrastructure

Rolling Stock

Source: archive of the institute for transport planning and systems (IVT)

Source: archive of the institute for transport planning and systems (IVT)

Institut für Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems

ETHzürich

Source: archive of the institute for transport planning and systems (IVT)

Source: archive of the institute for transport planning and systems (IVT)

Infrastructure

Rolling Stock

- Macroscopic
- Microscopic

Infrastructure

Rolling Stock

- Macroscopic
- Mesoscopic
- Microscopic

Infrastructure

- Macroscopic
- Mesoscopic
- Microscopic

Rolling Stock Operations

Functional requirement (Radtke 2014)

"the microscopic infrastructure is not only suitable but even mandatory for exact running time calculation, timetable construction, possession planning and railway operational simulation, conflict detection and resolution."

Radtke A (2014) Infrastructure modelling. In: Hansen IA, Pachl J (eds) Railway Timetabling and Operations, 2nd edn, Eurail press, Hamburg, Germany, chap 3, pp 47–63.

Infrastructure

- Macroscopic
- Mesoscopic
- Microscopic

Rolling Stock Operations

Functional requirement (Radtke 2014) "the microscopic infrastructure is not only suitable but even mandatory for exact running time calculation, timetable construction, possession planning and railway operational simulation, conflict detection and resolution."

Radtke A (2014) Infrastructure modelling. In: Hansen IA, Pachl J (eds) Railway Timetabling and Operations, 2nd edn, Eurail press, Hamburg, Germany, chap 3, pp 47–63.

Infrastructure

Rolling Stock Operations

Infrastructure

Rolling Stock

- Maximal speed
- Realizable speed

Infrastructure

Rolling Stock

Operations

- Maximal speed
- Realizable speed
- Length

Infrastructure

Rolling Stock

- Maximal speed
- Realizable speed
- Length

Infrastructure

Rolling Stock

Infrastructure

Rolling Stock

Operations

Monitoring

Infrastructure

Rolling Stock

Travel with	Dep.	Prognosis	То	Platform/Station	Occupancy
IC 982	17:32	ca. +7 min	Basel SBB Olten 17:32 - Liestal 17:47 - Basel SBB 17:59	7	1. 👬 2. 👬
ICN 1532	17:40	ca. +3 min	Lausanne Otten 17:40 - Solothurn 17:56 - Biel/Bienne 18:13 - Neuchâtel 18:32 - Yverdon-les-Bains 18:51 - Lausanne 19:15	8	1. 👬 2. 🎬
S 29 6673	17:42		Turgi Olten 17:42 - Dulliken 17:45 - Däniken 17:48 - Schönenwerd SO 17:50 - Aarau 17:56 - Rupperswil 18:01 - Wildegg 18:06 - Holderbank AG 18:09 - Brugg AG 18:17 - Turgi 18:26	9	1. 🙀 2. 辩
S 3 17366	17:48		Porrentruy Olten 17:48 - Tecknau 17:54 - Gelterkinden 17:59 - Sissach 18:02 • Liestal 18:10 - Basel SBB 18:26 - Aesch 18:48 - Laufen 19:02 - Delémont 19:17 - Porrentruy 19:52	11	1. 👬 2. 👬
IR 2475	17:49		Luzern Olten 17:49 - Zofingen 17:56 - Sursee 18:10 - Luzern 18:30	12	1. 🙀 2. 🙀

Operations

Monitoring

Punctuality

Infrastructure

Rolling Stock

Travel with	Dep.	Prognosis	То	Platform/Station	Occupancy
IC 982	17:32	ca. +7 min	Basel SBB Olten 17:32 - Liestal 17:47 - Basel SBB 17:59	7	1. 🙀 2. 🙀
ICN 1532	17:40	ca. +3 min	Lausanne Olten 17:40 - Solothum 17:56 - Biel/Rienne 18:13 Neuchâtel 1 Lausanne 1	8	1. 2.
S 29 6673	17:42		Turgi Olten 17:42 Schönenwe Rupperswil AG 18:09 - E		
S 3 17366	17:48		Porrentruy Olten 17:48 Sissach 18: Aesch 18:44 Porrentruy 1		/
IR 2475	17:49		Luzern Olten 17:49 Luzern 18:3	- Cart	
			k: Brittnau-Wi h the Olten - Li		

- Monitoring
 - Punctuality
 - Infrastructure

Infrastructure

Institute for Transport Planning and Systems

Rolling Stock

- Monitoring
 - Punctuality
 - Infrastructure
 - Rolling Stock

Infrastructure

Rolling Stock

Institut für Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems

- Monitoring
 - Punctuality
 - Infrastructure
 - Rolling Stock
 - Staff

Infrastructure

Rolling Stock

Institut für Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems

- Monitoring
 - Punctuality
 - Infrastructure
 - Rolling Stock
 - Staff

Infrastructure

Rolling Stock

Operations

- Monitoring
 - Punctuality
 - Infrastructure
 - Rolling Stock
 - Staff
- Intervention

Functional requirement (Corman and Meng 2013)

Actions considered by rescheduling:

- re-timing an event (e.g. the arrival at or the departure from a station);
- re-ordering trains on a shared infrastructure;
- local re-routing (e.g. platform change);
- global re-routing;
- re-servicing. ← Breaking connections, cancelling trains, skipping or adding stops

Corman F, Meng L (2013) A review of online dynamic models and algorithms for railway traffic control. In: Intelligent Rail Transportation (ICIRT), 2013 IEEE International Conference on, pp 128–133, DOI 10.1109/ICIRT.2013.6696281

Continuous time

- Event Scheduling Problem (ESP);
- Alternative Graph (AG);
- Flexible Path (FP).

- Arc Packing Problem (APP) and its weak version (APP');
- Path Packing Problem (PPP);
- Arc Configuration Problem (ACP);
- Path Configuration Problem (PCP);
- Resource Tree Conflict Graph (RTCG) and Tree Conflict Graph (TCG);
- Resource Conflict Graph (RCG);
- REFormulated Simultaneous train Rerouting and Rescheduling (REF-SRR).

Continuous time

- Event Scheduling Problem (ESP);
- Alternative Graph (AG);
- Flexible Path (FP).

- Arc Packing Problem (APP) and its weak version (APP');
- Path Packing Problem (PPP);
- Arc Configuration Problem (ACP);
- Path Configuration Problem (PCP);
- Resource Tree Conflict Graph (RTCG) and Tree Conflict Graph (TCG);
- Resource Conflict Graph (RCG);
- REFormulated Simultaneous train Rerouting and Rescheduling (REF-SRR).

Continuous time

- Discrete events: v_S^z
- Times: $t_S^z \ge 0$
- Fixed routes
 - Train run:

$$cType: t_{S_2}^z - t_{S_1}^z \ge f_{(S_1, S_2)}^z$$

Continuous time

- Discrete events: v_S^z
- Times: $t_S^z \ge 0$
- Fixed routes
 - Train run:

$$cType: t_{S_2}^z - t_{S_1}^z \ge f_{(S_1, S_2)}^z$$

Discrete time

- <u>cRun</u>: minimum running time
- *cRun*: maximum running time
- <u>*cDwell*</u>: minimum dwell time
- *cDwell*: maximum dwell time
- <u>cPass</u>: earliest time*
- *cPass*: latest time

<u>cOverall</u>/<u>cOverall</u> : minimum/maximum running time from the departure from the first station v to the arrival at destination

* Sometimes referred to as passing constraints

Continuous time

- Discrete events: v_s^z
- Times: $t_S^z \ge 0$
- **Fixed** routes
 - Train run:

$$cType: t_{S_2}^z - t_{S_1}^z \ge f_{(S_1, S_2)}^z$$

Interactions -

- *cConn*: minimum connection time
- $cType: t_{S_2}^w t_{S_1}^z \ge f_{(S_1,S_2)}^{z,w}$ cConn: maximum connection time
 - $cDep/\overline{cDep}$: minimum/maximum

$$cHead: (t_{S_3}^w - t_{S_2}^z \ge f_{(S_1, S_2, S_3, S_4)}^{z, w}) \lor (t_{S_1}^z - t_{S_4}^w \ge f_{(S_1, S_2, S_3, S_4)}^{w, z})$$

** usually defined for ESP only Institut f
ür Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems

Ambra Toletti et al. | 23.07.2015

Continuous time

- Discrete events: v_S^z
- Times: $t_S^z \ge 0$
- With routing: $x_S^z \in \{0,1\}$

$$\begin{cases} x_{O_z}^z = 1 \\ x_{D_z}^z = 1 \end{cases} \quad \forall z \\ \sum_{i \in \delta_{-}(J)} x_i^z = \sum_{v \in \delta_{+}(J)} x_i^z \quad \forall J, \forall z \end{cases}$$

Institut für Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems

Continuous time

- Discrete events: v_S^z
- Times: $t_S^z \ge 0$
- With routing: $x_S^z \in \{0,1\}$

$$\begin{cases} x_{O_z}^z = 1 \\ x_{D_z}^z = 1 \end{cases} \quad \forall z \\ \sum_{i \in \delta_{-}(J)} x_i^z = \sum_{v \in \delta_{+}(J)} x_i^z \quad \forall J, \forall z \end{cases}$$

Discrete time

-Train run: $cType: t_{S_2}^z - t_{S_1}^z + M(1 - x_i^z) \ge f_{(S_1, S_2)}^z$

-Interactions

$$cType: t_{S_2}^w - t_{S_1}^z + M(1 - x_i^z) + M(1 - x_j^w) \ge f_{(S_1, S_2)}^{z, w}$$

$$cHead: t_{S_3}^w - t_{S_2}^z + Mh_i^{z,w} + M(1 - x_j^z) + M(1 - x_k^w) \ge f_{(S_1, S_2, S_3, S_4)}^{z,w}$$

$$t_{S_1}^z - t_{S_4}^w + M(1 - h_i^{z,w}) + M(1 - x_j^z) + M(1 - x_k^w) \ge f_{(S_1, S_2, S_3, S_4)}^{w,z}$$

Continuous time

- Event Scheduling Problem (ESP);
- Alternative Graph (AG);
- Flexible Path (FP).

- Arc Packing Problem (APP) and its weak version (APP');
- Path Packing Problem (PPP);
- Arc Configuration Problem (ACP);
- Path Configuration Problem (PCP);
- Resource Tree Conflict Graph (RTCG) and Tree Conflict Graph (TCG);
- Resource Conflict Graph (RCG);
- REFormulated Simultaneous train Rerouting and Rescheduling (REF-SRR).

Continuous time

- Event Scheduling Problem (ESP);
- Alternative Graph (AG);
- Flexible Path (FP).

- Arc Packing Problem (APP) and its weak version (APP');
- Path Packing Problem (PPP);
- Arc Configuration Problem (ACP);
- Path Configuration Problem (PCP);
- Resource Tree Conflict Graph (RTCG) and Tree Conflict Graph (TCG);
- Resource Conflict Graph (RCG);
- REFormulated Simultaneous train Rerouting and Rescheduling (REF-SRR).

Continuous time

Discrete time

- Action: *a*
- Decision: $x_a^z \in \{0,1\}$
 - Train run: Uniqueness and continuity

$$\sum_{a \in \delta_{+}(s_{z})} x_{a}^{z} \leq 1 \quad \forall z$$
$$\sum_{a \in \delta_{+}(v)} x_{a}^{z} - \sum_{a \in \delta_{-}(v)} x_{a}^{z} = 0 \quad \forall v \notin \{s_{z}, t_{z}\}, \forall z$$

- Decision for a sequence of actions: $x_p^z \in \{0,1\}$
 - Train run: uniqueness:

$$\sum_{p} x_p^z \le 1 \quad \forall z$$

Institut für Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems

Continuous time

- Action: *a*
- Decision: $x_a^z \in \{0,1\}$
 - Train run: Uniqueness and continuity

$$\sum_{a \in \delta_+(s_z)} x_a^z \le 1 \quad \forall z$$

 $\sum_{a \in \delta_{+}(v)} x_{a}^{z} - \sum_{a \in \delta_{-}(v)} x_{a}^{z} = 0 \quad \forall v \notin \{s_{z}, t_{z}\}, \forall z$

- Decision for a sequence of actions: $x_p^z \in \{0,1\}$
 - Train run: uniqueness:

$$\sum_{p} x_{p}^{z} \le 1 \quad \forall z$$

- aStart: departures from the first node;
- *aEnd*: arrivals at the last station;
- *aRun*: runs;
- aDwell: dwells in stations;
- *alnfeasibility*: infeasibility

Continuous time

Discrete time

- Action: *a*
- Decision: $x_a^z \in \{0,1\}$
 - Conflicts

$$\sum_{\substack{(z,a)\in C}} x_a^z \le 1 \quad \forall C \in \mathscr{C}_r, r$$
$$x_a^z + x_b^w \le 1$$

- Decision for a sequence of actions: $x_p^z \in \{0,1\}$
 - Conflicts:

$$\sum_{(z,p)\cap C\neq\emptyset} x_p^z \leq 1 \quad \forall C \in \mathscr{C}_r, r$$

Institut für Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems

Meeting functional requirements with mathematical models

ETH zürich

Table 1 Models and functional requirements: \times means that the model satisfies the functional requirement; (\times) means that the requirement is satisfied off-line (i.e. for timetabling); \circ means that there is a model extension which satisfies the requirement

	continuous time			discrete time							
		ESP	AG	FP	APP'	TCG	APP/ ACP	RTCG	REF- SRR	PPP/ PCP	RCG
infrastructure	macroscopic microscopic	×	×	×	×	×	×	×	×	×	×
rolling stock	max. speed real. speed	×	× 0	×	×	×	× 0	×	×	× ×	× ×
operations	timetable closed tracks re-timing re-ordering re-routing connections cancel train	(×) (×)	× × × × 0	× × × ×	(×) (×) (×) (×)	(×) (×) (×) (×)	(×) (×) (×) (×)	(×) (×) (×) (×)	× × × × ×	(×) (×) (×) (×)	× × × × × × ×
		pairwise conflicts				on tracks conflict cliqu			on paths les		

Conclusion and outlook

- Models that satisfy all the functional requirements identified exist.
- Some models are very similar to each others.
- Future work:
 - Develop a model for rescheduling starting from the current existing models, which already satisfy the functional requirements.
 - Take advantage of the similarity with scheduling models that have fast solving techniques.

Thank you for your kind attention!

Questions?

PInstitut für Verkehrsplanung und Transportsysteme Institute for Transport Planning and Systems