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• Project: Calibration Study for VISSIM (CSV) 

 

• Study area: inner city of Zurich (around 2.6 km2) 

 

• Simulation period: 1-hour in the evening peak (17:00 to 18:00) 

 

• Scope of work: optimize the calibration process, so the City of 
Zurich could calibrate the VISSIM model in the most efficient 
way, tailored to its specific needs and requirements. 
 

Background 
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Study Area of CSV 

Source: City of Zurich, 2011 3 
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Challenges of the Calibration Process 

Many 
param-
eters 

Public 
transport 

Hills 

• Computational cost is very high (> 20 min per simulation run) 
• The brute-force approach is not feasible for the calibration 
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Pre-selection of Parameters (1/2) 

Each parameter was analyzed individually, and categorized  
according to its relevance within the Zurich model 
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Pre-selection of Parameters (2/2) 

192 total VISSIM parameters 

148 relevant 

14 SA 

Parameters 



Introduction of EE Method 

The method we developed is based on the Elementary 

Effects (EE) method: 

Qualitative and stochastic approach 

 Efficient approach to analyze complex models 

 It has been applied with e.g. chemistry and 

environmental engineering models, but never with a 

microscopic traffic model 
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Definition of Elementary Effect 

Suppose a model Y has k parameters [X1, X2, …, Xk], the output is:  
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If Xi  changed with Δ, then the EE is defined as: 

1 1( ,..., , ,... )i i kY X X X X

Source: Morris, 1991; Campolongo et al., 2006 

By calculating a certain number of EEs for any parameter 
based on randomly generated inputs,  3 sensitivity indexes can 

be derived: mean, absolute mean, and standard deviation 



Sampling Strategy (1/2) 

• To calculate the EE for any parameter, the model must be run 
twice, i.e., with the basic point [X1, X2, …, Xi-1, Xi, Xi+1,…, Xk] and the 
transformed point [X1, X2, …, Xi-1, Xi +Δ, Xi+1,…, Xk]. 

 

• Suppose m EEs are required to calculate the sensitivity indexes 
for one parameter , we need to run the model 2m times 

 

• The  model has k parameters, then in total we need 2mk runs  
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m=200, k= 14,20 min/run 
Total computation time is almost 77 days 
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Sampling Strategy (2/2) 
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EE(X1) = [Y(P1) - Y(P0)] / Δ k+1 
points 

k+1 points = one trajectory  

EE(X2) = [Y(P2) - Y(P1)] / Δ 
P0 P1 

P2 

A model with 2 parameters [X1 , X2]  

m=200, k= 14, 20 min/run 
Total computation time is almost 41 days 

If randomly sampling m trajectories, we will get the same 
amount of EE, but only need m(k+1) runs.  



Optimized Trajectories (1/2) 

Solution:  

Reduce the total number of trajectories, but keep as many sample 

points as possible. 

11 Source: Campolongo et al., 2006 

Find an optimized set of trajectories that covers as 
much as possible the total input space 



Optimized Trajectories (2/2) 

1. Randomly generate m (e.g. m = 200) trajectories 

2. Calculate the Euclidean distance between any 2 trajectories 

3. Enumerate all possible sets containing n trajectories from those m random 

trajectories (n<<m) 

4. Compute the total distance D for each trajectory set 

5. The set with the longest D is the OT set 
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n =10, k = 14, 20 min/run 
Total computation time for EE is about 2 days 



Problem of the Original OT Approach 

However: 

When m is a large number, the total number of possible trajectory 

sets N (= 
𝑚!

𝑛!∗ 𝑚−𝑛 !
)  could be enormous: 
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m = 200, n = 10, N ≈ 2 x 1016 
Total computation time for enumerating is around 50 days 



Quasi-Optimized Trajectories 

Step 1: Pick the set (named S1) of m – 1 trajectories that have the longest Euclidean 

distance from the original set of m trajectories (named S0) 

Step 2: Pick the set (named S2) of m – 2 trajectories which have the maximum dispersion 

based on S1  

…… 

Step m-n: only n trajectories have been left 

Total combinations = 𝑚 + 𝑚− 1 +⋯+ 𝑛 =
𝑚+𝑛 𝑚−𝑛+1

2
≪

𝑚!

𝑛!∗ 𝑚−𝑛 !
 .  

Although the result may not always be identical to the one obtained with the original OT approach, 
it is a good compromise between accuracy and efficiency.  
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n=10, m= 200, N=20055 
Total computation time is about 15 minutes 



Review of Process 
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77 days 

41 days 

2 + 50 days 

2 days 

Basic EE method 

EE + use of trajectories 
as a sampling strategy 

EE + original OT 
Approach 

Quasi-OTEE Method 



Software Development for SA 
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Trajectory Generator (MATLAB) 

• Input: range of each parameter (min, max) 

• Process: generate trajectories according to quasi-OTEE approach 

• Output: sampling trajectories 

Automatic VISSIM Simulator (C#.NET) 

• Process: change the relevant parameter values in VISSIM input file 
according to the trajectories; automatically run the simulations 

• Output: simulation results for each trajectory 

Results Analyzer (MATLAB) 

• Process: analyze the sensitivity indexes (mean, absolute mean and 
standard deviation) 

• Output: sensitivity ranking of parameters 



Travel Time Measurement in VISSIM 

8 travel time measurement sections 
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1 

2 

3 7 

6 

8 

4 

5 

High Through Flow (≈ 300 veh/h): 
4, 5 and 8 
 
Mid Through Flow (≈100  veh/h):  
1 and 2 
 
Low Through Flow (<20 veh/h):  
3, 6 and 7 



SA Results (1/2) 
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SA Results (2/2) 
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Sensitivity Ranking of Parameters, without data from Section 3, 6 and 7 



Parameters for Calibration  
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192 total VISSIM parameters 

148 relevant 

14 SA 

Parameters 

5 

for 

calibration 

# Parameters 

1 Average Standstill Distance 

2 Additive Part of Desired Safety Distance 

13 Lane Change Distance 

3 Multiplicative Part of Desired Safety Distance 

11 Safety Distance Reduction Factor 



Conclusions 

• The quasi-OTEE method is an improvement to the EE method 

• It is efficient to deal with the SA for VISSIM: e.g., the time cost of 

SA in the CSV project was reduced from 77 days to 2 days 

• It is able to identify the most important parameters of a 

complex model in an accurate way  

Potential extensions: 

• Optimize the sampling process 

• Validate the method under many different scenarios 
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