Sensitivity Analysis for Calibrating VISSIM in Modeling the Zurich Network

Qiao Ge & Monica Menendez Traffic Engineering Group (SVT) ETH Zurich IVT

02.05.2012

12th Swiss Transport Research Conference (Ascona)

Background Superior Introduction Quasi-OTEE Method Application & Results Conclusions

- Project: Calibration Study for VISSIM (CSV)
- Study area: inner city of Zurich (around 2.6 km²)
- Simulation period: 1-hour in the evening peak (17:00 to 18:00)
- Scope of work: optimize the calibration process, so the City of Zurich could calibrate the VISSIM model in the most efficient way, tailored to its specific needs and requirements.

Study Area of CSV

Source: City of Zurich, 2011

Challenges of the Calibration Process

- Computational cost is very high (> 20 min per simulation run)
 - The brute-force approach is not feasible for the calibration

Pre-selection of Parameters (1/2)

	<u>orýn</u>	duc	ion:				Qua	si-O	DTEE	Me	ethod				Ар	plic	cation &	Results	5	C	onclusi	ions
						Pol	Relevant use the value															
#		#		Parameter			Very Important, need calibration		Relevant, use the value from Demand Model and VISSUM output		Relevant, use VI default value	SSIM e Not r	elevant									
97																						
98		- 77		#							Relevant, use the	value _										
99	Pas	70						-			Very Important	t, need R	elevant, use	the value Rel	evant, use '							
100		70		65		#								Bolovant uso		the walking						
101		80		65.1				#		P	arameter		Very Import	rtant, need from Demand Mor		ne value Aodel and	Relevant, use VISSIM	ot relevant				
		81		65.2	-	40													1. A			
102	_	82		65.3		50				#								Relevant. use the valu	e			
103		83		65.4	5.4 51			26	Desired po			#		Param	Parameter		Very Important, need calibration	from Demand Model a	nd Relevant, use VISSIN default value	Not relevant		
104		84		65.5		52				21.2	Hea								Delevent use the value			
105	Start tin	Y		66.1		53	_	37	-	21.3	Follov			#		Da	wamatar	Very Important, need		Relevant, use VISSIM	Not relevant	
106	C	85		66.2		54		39	Overta	21.4	Negative "F	11	_	_					Re	Relevant, use the value		
107	PT telegrar	86		66.3	-	22				21.6	Positive "Fo	11.1	Category	y (-	. #	Para	meter	Very Important, need	from Demand Model and	Relevant, use VISSI	Not releva
107		87		66.4		56			Minimum	21.7	Speed Deper	11.2		5.1		-			Calibration	VISSUM output	default value	
		88		66.5		57			d	21.8	Oscillat	11.3		5.2					Base Eunctions and Distr	ributions		
108		89				58			Decisio 21.9 Cor 22		Accelera	11.5		5.3		1	Maximum	Acceleration			✓	
109		90		69		59	_	41			No intera	11.6		6		1.1	Speed	Speed range			✓	
110		91		69		60		41.1				11.7	_	6.1	-	1.2	Max value o	facceleration			√	
111		92		70		01		41.2		23	Lane change rul	11.8	Vahiela	6.2		1.3	Min value of acceleration				✓	
112						62		42	Behavior a	24	Maximu	nu 12	Bike	ike 7	-	1.4	Mean value o	of acceleration			✓	
115		93		71		63			Reduced Reduced sa	25	Maximum de			7.1		1.5	Distribut	Distribution curve Desired Maximum Acceleration Speed range			✓	
		94		72						26	-1 m/s	13		7.2		2	Desired Maxim				✓ 	
		95		73		64				27	-1 m/s2 per	14 15	_	7.3		2.1	Maxvalue.o	facceleration			· ·	
		96		74	+	64.1		44		28	Accepte Accepted de			N 8	2D/	13 2.3	Min value o	Min value of acceleration			· ·	
				76		64.3		45	Reduced s	30	Waiting	17	17	8.1	Sha	2.4	Mean value o	of acceleration			✓	
						64.4				31	Min. h	18	Te	mr 8.2	front	2.5	Distribut	ion curve			✓	
						64.5		46		32	To slower lane	19	Ten	npc 8.3		3	Minimum	Deceleration			✓	
								47		33	Safety dis	20		9		3.1	Speed	l range			×	
								48		34	Maximum decele	20.1		9.1	Distri	ib 3.2	Max value o	deceleration			~	
										35	Overtak	20.2	N	AC 9.2		3.3	Min value of	deceleration			¥	
												21		10		3.4	Distribut	ion cunve			· · ·	
												21.1		10	Location	4	Desired Maxim	um Acceleration			√ 	
														10.1		4.1	Speed	I range			✓	
														10.2		4.2	Max value o	deceleration			✓	
																4.3	Min value of	deceleration			✓	
																4.4	Mean value o	of deceleration			✓	
																4.5	Distribut	ion curve			×	

Each parameter was analyzed individually, and categorized according to its relevance within the Zurich model

Pre-selection of Parameters (2/2)

Desired Speed

Distribution

ND

ND

ND

Distribution

Calibrated

separateh

ND

ND

ND

ND

1.1

- The method we developed is based on the *Elementary Effects* (EE) method:
- ➢ Qualitative and stochastic approach
- > Efficient approach to analyze complex models
- It has been applied with e.g. chemistry and environmental engineering models, but never with a microscopic traffic model

Definition of Elementary Effect Superior Quasi-OTEE Method Application & Results Conclusions

Suppose a model Y has k parameters $[X_{p}, X_{2}, ..., X_{k}]$, the output is:

$$Y(X_1,...,X_{i-1},X_i,...X_k)$$

If X_i changed with Δ , then the EE is defined as:

$$EE_{i} = \frac{Y(X_{1},...,X_{i-1},X_{i} + \Delta,...,X_{k}) - Y(X_{1},...,X_{i-1},X_{i},...,X_{k})}{\Delta}$$

with $i \in [1,2,3,...,k]$

By calculating a certain number of EEs for any parameter based on randomly generated inputs, 3 sensitivity indexes can be derived: mean, absolute mean, and standard deviation

Source: Morris, 1991; Campolongo et al., 2006

- To calculate the EE for any parameter, the model must be run *twice*, i.e., with the basic point $[X_{1}, X_{2}, ..., X_{i-1}, X_{i}, X_{i+1}, ..., X_{k}]$ and the transformed point $[X_{1}, X_{2}, ..., X_{i-1}, X_{i} + \Delta, X_{i+1}, ..., X_{k}]$.
- Suppose *m* EEs are required to calculate the sensitivity indexes for one parameter, we need to run the model <u>2m</u> times
- The model has *k* parameters, then in total we need <u>2mk</u> runs

Solution:

Reduce the total number of trajectories, but keep as many sample points as possible.

Find an optimized set of trajectories that covers as much as possible the total input space

- 1. Randomly generate *m* (e.g. *m* = 200) trajectories
- 2. Calculate the Euclidean distance between any 2 trajectories
- Enumerate all possible sets containing n trajectories from those m random trajectories (n<<m)
- 4. Compute the total distance *D* for each trajectory set
- 5. The set with the longest *D* is the OT set

Source: Campolongo et al., 2006

However:

When *m* is a large number, the total number of possible trajectory sets $N \left(=\frac{m!}{n!*(m-n)!}\right)$ could be enormous:

 $m = 200, n = 10, N \approx 2 \times 10^{16}$ Total computation time for enumerating is around 50 days

Quasi-Optimized Trajectories Superior Quasi-OTEE Method Application & Results Conclusions

Step 1: Pick the set (named S_1) of m - 1 trajectories that have the longest Euclidean

distance from the original set of m trajectories (named S_{o})

Step 2: Pick the set (named S_2) of m - 2 trajectories which have the maximum dispersion based on S_1

Step m-n: only n trajectories have been left

....

Total combinations = $m + (m - 1) + \dots + n = \frac{(m+n)(m-n+1)}{2} \ll \frac{m!}{n!*(m-n)!}$.

Although the result may not always be identical to the one obtained with the original OT approach, it is a good compromise between accuracy and efficiency.

n=10, *m*= 200, *N*=20055 Total computation time is about 15 minutes

Software Development for SA

Introduction Quasi-OTEE Method

🚜 🖛 🔿 🈥 💽 - 🕄 🛣 🖷 👘 🔟

- 🚜 💠 🚓 😥 - 🕄 🕄 🗐 🐃 🕼 🕮 Sta

ilt(k,delta,in_datafile,res_datafile, res_netfil

× 📷 🔊 🔍

ta=input_data_cell.data; ata=inportdata(res_datafile); sta=result_data(:,2:2:end); stdata_cell=inportdata(res_netfile); stdata=result_netdata_cell.data;

ta cell = importdata(in datafile);

ta=[result_data,result_netdata]; esult_data,1)/(k+1);

diff_res = result_data(2+(k+1)*(1-1)+(k+1)*1,))... -result_data(1+(k+1)*(1-1)+(k+1)*1-1,)) diff_inp = (nupu_data(2+(k+1)*(1-1)+(k+1)*1,))... -input_data(1+(k+1)*(1-1)+(k+1)*1-1,))=0) delt_martixerecos(k,N) delt_martixerecos(k,N): -input_data(1+(k+1)*(1-1)+(k+1)*1,))>0) = delta(1+(k+1)*1,1))

neasurement=size(result_data,2); traveltimemeasurement,k);

+ | ÷ 1.1 × | 🐼 💦 | 0 on EEMethod(p,r,M,datafile) = importdata(datafile,',',1); matrix=data.data;

matrix_diff=datamatrix(:,2)-datamatrix(:,1);
[zeros(1,k);tril(ones(k))];
a=p((2*(p-1));

ame= data.textdata(2:end,2);
ze(datamatrix,1);

Star = (randi([0,p-1],1,k))./(p-1);

l=ones(k+1,1); =ones(k+1,k); cell(1,M); ; ; eve(k);

> ones(1,k); and(1,k)<=0.5) = -1;

1e(1<=M)

utoRu

SSIM ut Path

SSIM put Path

nple File

Trajectory Generator (MATLAB)

- Input: range of each parameter (min, max)
- Process: generate trajectories according to quasi-OTEE approach

Application & Results

• Output: sampling trajectories

Automatic VISSIM Simulator (C#.NET)

- Process: change the relevant parameter values in VISSIM input file according to the trajectories; automatically run the simulations
- Output: simulation results for each trajectory

Results Analyzer (MATLAB)

- Process: analyze the sensitivity indexes (mean, absolute mean and standard deviation)
- Output: sensitivity ranking of parameters

Travel Time Measurement in VISSIM

Conclusions

Introduction

Quasi-OTEE Method

Application & Results

8 travel time measurement sections

SA Results (1/2)

Parameter 11

Parameter3

Patameter 1A

Patameter 10

ParameterA

Parameter1

Parameter 12

Parameters

Parameters

Parameters

Parameter 13

Parameter2

0.2

0.1

0

Parameter

Parameters

Parameters for Calibration

Conclusions Superior Quasi-OTEE Method Application & Results Conclusions

- The quasi-OTEE method is an improvement to the EE method
- It is efficient to deal with the SA for VISSIM: e.g., the time cost of SA in the CSV project was reduced from 77 days to 2 days
- It is able to identify the most important parameters of a complex model in an accurate way

Potential extensions:

- Optimize the sampling process
- Validate the method under many different scenarios