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Project: Calibration Study for VISSIM (CSV)
Study area:inner city of Zurich (around 2.6 km?)
Simulation period:1-hour in the evening peak (17:00 to 18:00)

Scope of work: optimize the calibration process, so the City of
Zurich could calibrate the VISSIM model in the most efficient
way, tailored to its specific needs and requirements.
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Source: City of Zurich, 2011



Challenges of the Calibration Process ‘ ‘[

Conclusions

« Computational cost is very high (> 20 min per simulation run)
* The brute-force approach is not feasible for the calibration
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Each parameter was analyzed individually,and categorized
according to its relevance within the Zurich model
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Pre-selection of Parameters (2/2) ‘ ‘
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meters

192 total VISSIM parameters

Park and . "
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n-Look Ahead 20t030m 30m ND ND ND. ND. ND. ND N
Distance
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Introduction of EE Method
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The method we developed is based on the Elementary
Effects (EE) method:

» Qualitative and stochastic approach
» Efficient approach to analyze complex models

» It has been applied with e.g. chemistry and

environmental engineering models, but never with a

microscopic traffic model



Definition of Elementary Effect
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Suppose a model Y has k parameters [X, X

2) .OO)

X.], the output is:
Y (X, Xy X X))

If X; changed with A, then the EE is defined as:

Y (Koo Xy X A ey X ) =Y (Kpro X1y Xy X )
A

EE, =

with i e[1,2,3,...,K]

By calculating a certain number of EEs for any parameter
based on randomly generated inputs, 3 sensitivity indexes can
be derived: mean, absolute mean, and standard deviation

Source: Morris, 1991; Campolongo et al., 2006



Sampling Strategy (1/2)
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* To calculate the EE for any parameter,the model must be run
twice, i.e., with the basic point [X, X,, .., X.,, X, X;,,,... X,] and the

PN e N
transformed point [X, X,, ..., X, X+, X, .., X, ].

/ [+1°°%

* Suppose m EEs are required to calculate the sensitivity indexes
for one parameter, we need to run the model 2m times

* The model has k parameters,then in total we need 2mk runs

m=200, k= 14,20 min/run
Total computation time is almost 77 days



Sampling Strategy (2/2)
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A model with 2 parameters [X; , X,]

k+1

{ points PO P1

EE(X,) = [Y(P) - Y(Po)] / A

A\

k+1 points = one trajectory

If randomly sampling m trajectories, we will get the same
amount of EE, but only need m(k+1) runs.

m=200, k=14, 20 min/run
Total computation time is almost 41 days



Optimized Trajectories (1/2)
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Solution:

Reduce the total number of trajectories, but keep as many sample

points as possible.

Find an optimized set of trajectories that covers as
much as possible the total input space

Source: Campolongo et al., 2006



Optimized Trajectories (2/2)
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1. Randomly generate m (e.g. m = 200) trajectories
2. Calculate the Euclidean distance between any 2 trajectories

3. Enumerate all possible sets containing n trajectories from those m random

trajectories (n<<m)
4. Compute the total distance D for each trajectory set

5. The set with the longest D is the OT set

n =10,k = 14,20 min/run
Total computation time for EE is about 2 days

Source: Campolongo et al., 2006



Problem of the Original OT Approach
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However:
When m is a large number, the total number of possible trajectory
m!
sets N (= ) could be enormous:
nlx(m—n)!

m =200,n =10, N =~ 2 x 10"
Total computation time for enumerating is around 50 days



Quasi-Optimized Trajectories
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Step 1: Pick the set (named S,) of m —1 trajectories that have the longest Euclidean

distance from the original set of m trajectories (named S,)

Step 2: Pick the set (named S,) of m — 2 trajectories which have the maximum dispersion

based on S,

Step m-n:only n trajectories have been left

Total combinations=m+ (m—-1) + -4+ n = (min)(m-n+1) __ m
2 n!x(m—n)!

Although the result may not always be identical to the one obtained with the original OT approach,
it is a good compromise between accuracy and efficiency.

n=10, m= 200, N=20055
Total computation time is about 15 minutes



Review of Process
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Quasi-OTEE Method

EE + original OT
Approach

EE + use of trajectories
as a sampling strategy

Basic EE method



Software Development for SA M[i
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Trajectory Generator (MATLAB)

e Input: range of each parameter (min, max)
e Process: generate trajectories according to quasi-OTEE approach
e Qutput: sampling trajectories

e Process: change the relevant parameter values in VISSIM input file
according to the trajectories; automatically run the simulations

e Output: simulation results for each trajectory

® Process: analyze the sensitivity indexes (mean, absolute mean and
standard deviation)

e Output: sensitivity ranking of parameters




Travel Time Measurement in VISSIM
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8 travel time measurement sections

High Through Flow (= 300 veh/h):
4,5and 8

i
arTe—
s
T

Mid Through Flow (=100 veh/h):
land?2

Low Through Flow (<20 veh/h):
3,6and 7

&Y
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Application & Results

SA Results (1/2)
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Sensitivity Ranking of Parameters
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Parameters for Calibration
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Parameters

192 total VISSIM parameters

148 relevant

Parameters
Average Standstill Distance
5 2 Additive Part of Desired Safety Distance
for 13 Lane Change Distance
. 3 Multiplicative Part of Desired Safety Distance
calibratjon

___ 11 Safety Distance Reduction Factor

20
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* The quasi-OTEE method is an improvement to the EE method

 Itisefficient to deal with the SA for VISSIM: e.g., the time cost of
SA in the CSV project was reduced from 77 days to 2 days

* Itis able toidentify the most important parameters of a
complex model in an accurate way

Potential extensions:

* Optimize the sampling process

» Validate the method under many different scenarios



