Fröhlich, Ph. and K.W. Axhausen (2005) Large Scale Accessibility Study: Which level of accuracy is necessary ?, Committee Transportation and Land Development presentation, TRB Annual Meeting, Washington, D.C., January 2005.

Large Scale Accessibility Study: Which level of accuracy is necessary ?

Ph Fröhlich and KW Axhausen

IVT ETH Zürich

January 2005

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich The literature since Aschauer (1989) assumes:

$$\Delta y(t) = f(\Delta p(t), \Delta x(it))$$

with

Δy(t)	:	GNP, productivity change
Δp(t)	:	Road or other transport capital change
∆x(it)	:	Change in other relevant variables

Implicit assumption:

 $\Delta p(t)$ ~ $\Delta Network services(t)$

but this implies constant proportionalities for each of the following:

Δp(t)	~	ΔLane miles(t)
ΔLane miles(t)	~	ΔCapacity(t)
ΔCapacity(t)	~	ΔSpeed(t)
$\Delta Speed(t)$	~	ΔAccessibility(t)
ΔAccessibility(t)~	ΔNetwork services(t)

Tracking the road and public transport-based accessibility changes in Switzerland from 1950 to 2000 in 10 year steps.

$$Acc_i = \sum_{\forall ij} X_j e^{-\beta c_{ij}}$$

Using:

- Weighting parameter (β) of 0.2
- Travel time as the only generalised cost element (c_{ii})
- Population as number of opportunities (X_i)

Study area:	Switzerland and surrounding jurisdictions in a 350 km band
Spatial resolution:	Municipality equals one zone Larger municipalities are subdivided Zones outside Switzerland on regional or county level
Network resolution:	All major road developments inside Switzerland and motorway development outside

Link description: Assumed mean speeds by 51 link types based on a detailed historical review

Intrazonal travel times: Dependent on equivalent radius of the size of the built up area

Centroid connectors: Fixed speeds

Travel time calculation: Time-shortest paths

Year	mod.	Total CH	mod.	Total
	Links CH	Links CH	Links EU	Links EU
1950	3'527	17'698	136	29'248
1960	3'589	17'760	195	29'307
1970	4'147	18'318	422	29'534
1980	4'810	18'981	747	29'859
1990	5'215	19'386	896	30'008
2000	-	19'700	-	30'053

Road-based accessibility 1950 and 2000

10

Ratio of road-based accessibility 2000 to 1950

Parameters: Min = 0.22; - 0.5 Std. Deviation = 1.47; Mean = 1.97; + 0.5 Std. Deviation = 2.47; Max = 24.29)

Ratio road to public transport-based accessibility 2000

Parameters: Min = 0.069; - 0.5 Std. Deviation = 2.14; Mean=4.99; + 0.5 Std. Deviation = 7.857; Max = 70.55

Ration of road-based accessibility UE to M2 for 2000

Parameters: Min = 0.64; - 0.5 Std. Deviation = 1.64; Mean=1.97; + 0.5 Std. Deviation = 2.31; Max = 7.375 Tracking the road-based accessibility changes is possible over a long period of time.

It seems advisable to concentrate only on the developments of the motorways and similar high capacity roads.

A population of 70'000 seems to be a reasonable maximum for a zone.

Public transport results require a full time table.

Literature

- Aschauer, D. (1989) Is public expenditure productive?, Journal of Monetary Economics, 23 (2) 177 –200.
- Axhausen, K.W. und P. Fröhlich (2004) Public investment and accessibility change, in P. Marti und A. Müller (Hrsg.) Festschrift Schalcher, vdf, Zürich.
- Fröhlich, Ph. and K.W. Axhausen (2004) Sensitivity of accessibility measurements to the underlying transport network model, *Arbeitsberichte Verkehrs- und Raumplanung*, 245, IVT, ETH Zürich, Zürich.
- Fröhlich, P. and K. W. Axhausen (2002) Development of car-based accessibility in Switzerland from 1950 through 2000: First results, Arbeitsberichte Verkehrs- und Raumplanung, 111, Institut für Verkehrsplanung, Transporttechnik, Stassenund Eisenbahnbau (IVT), ETH, Zürich.
- Gätzi, M. (2004) Raumstruktur und Erreichbarkeit, Diplomarbeit, IVT, ETH Zürich, Zürich.
- Tschopp, M., P. Fröhlich and K. W. Axhausen (2004) Accessibility and spatial development in Switzerland during the last 50 years: A multilevel regression approach, conference paper Access to Destinations Conference, University of Minnesota, Minneapolis, 8-9.11.2004, Arbeitsberichte Verkehr- und Raumplanung, 260, Institut für Verkehrsplanung und Transportsysteme (IVT), ETH Zürich, Zürich.

Appendix

Network length and cumulative inflation-corrected costs of the Swiss federal road network

Investment [%]

- Cumulative length and expenditure of federally funded roads