Schlich, R. (2001) Analysing intrapersonal variability of travel behaviour using the sequence alignment method, European Transport Conference, Cambridge, September 2001.

Analysing intrapersonal variability of travel behaviour using the sequence alignment method

Robert Schlich

IVT ETH Zürich

September 2001

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich Inter-personal Variability

One single day

Intra-personal Variability

Person 1

Measuring similarity

Trips and activities: different characteristics

Trips and activities: different characteristics

Theory of sequence alignment I

Measuring differences between two strings $s [s_1, s_2,...,s_n]$ and $g [g_1, g_2,...,g_n]$

$$d(s,g) = \sum_{i=1}^{n} f(x) \text{ and } f(x) = 1 \text{ if } s_i \neq g_i$$

$$f(x) = 0 \text{ if } s_i = g_i$$

Example: s=ABCDE g=AFBCDE d(s,g)=4

Problem of recognising sequential order or duration

Theory of sequence alignment II: Levenshtein

Similarity as total amount of effort to equalise $s[s_1, s_2,...,s_n]$ and $g[g_1, g_2,...,g_n]$

Four basic operation:

- •Identity: $w_e(s_i, g_i) = 0$
- •Insertion: $w_i(\emptyset, g_i) = 1$
- •Deletion: $w_d(s_i, \emptyset) = 1$
- •Substitution: $w_s(s_i, g_i) = w_d(s_i, g_i) + w_i(s_i, g_i) = 2$

Definition Levenshtein Distance:

Smallest sum of operation weighting values required to change $s[s_1, s_2,...,s_n]$ into $g[g_1, g_2,...,g_n]$:

Theory of sequence alignment III: Trajectories

- Different possibilities to equal two strings
- Combination of operations are called trajectories

Example

s=CAMBRIDGE *g*=CAMPING

- substitute s₄(B:P), s₅(R:I), s₆(I:N), s₇(D:G) delete s₈(G), s₉(E) d=10
- 2) substitute s₄(B:P), delete s₅(R), substitute s₆(D:N), delete s₈(E) d=6

Theory of sequence alignment IV: Problems

- Qualitative and quantitative data
- Cost of operation weights
- Including duration of activities as attribute or using equal time slices?
- Different attributes
 - Sum of "unidimensional" sequence alignments across all attribute
 - Optimum trajectory based sequence alignment (Joh et al. 1999)

Dana (C.H. Joh, Universiteit Eindhoven)

- multidimensional
- restricted number of allowed elements per string
- restricted possibilities to change operation weights

ClustalG (C. Wilson, A. Harvey, and J. Thompson)

- Unidimensional
- large strings allowed
- Better possibilities to change operation weights

Dataset Mobidrive

- Reporting period: six weeks
- Travel diary, weekly send out, mailed back and checked via phone
- Cities of Karlsruhe und Halle/Germany
- 162 households, 361 persons
- ca. 52.000 trips and 15.000 days reported September -November 1999 (Pretest: May-July 1999)
- used in analysis: City of Halle (159 persons, 21.000 trips)

	Not Licenced		Licenced		All	
	Mean	Std	Mean	Std	Mean	Std
18-24	4.5	2.6	5.6	1.7	5.4	1.8
25-34	4.8	1.2	5.3	1.8	5.2	1.7
35-44	5.9	1.9	5.0	1.9	5.1	1.9
45-54	4.0	2.0	4.5	2.0	4.4	2.0
55-64	2.9	1.3	4.6	1.5	4.0	1.7
65 and more	2.5	1.2	4.7	0.8	3.7	1.5
All	4.0	1.7	4.9	1.8	4.5	1.8

Results: Mean distance from different type of day

Intrapersonal variability

	[Levensthein distance]	Mean trip distance [km]	Mean number of trip per day	Cluster size [n]
Cluster 1	6.1	6.0	4.6	42
Cluster 2	4.0	24.6	3.3	9
Cluster 3	4.7	5.9	3.4	43
Cluster 4	8.1	7.6	6.0	9
Cluster 5	2.4	4.5	2.5	30
Cluster 6	3.1	12.3	2.6	25
Overall	4.5	7.8	3.6	158

	Cluster						
	1	2	3	4	5	6	Sum
Mean Age [years]	38.5	41.9	32.7	38.4	43.0	44.4	38.9
Proportion of females [%]	52.4	22.2	51.2	44.4	53.3	56.0	50.6
Proportion of parents [%]	47.6	55.6	9.3	55.6	23.3	48.0	33.5
Proportion of people without licences [%]	26.2	11.1	60.5	11.1	60.0	28.0	40.5
Proportion of fulltime employed people [%]	52.4	88.9	23.3	33.3	26.7	60.0	41.8

Day-to-day variability measured with multidimensional sequence alignment:

- Sociodemograpic characteristics as expected: highest variability for persons between 25 and 45 years with driving licence
- High variability between weekend days and week days
- Clusters based on trip distance, number of trips per day and day to day variability
- 6 cluster solution
- Good differentiation in terms of travel characterisits
- Reasonable differences for the sociodemographic characterisitcs

Further research: Sequence alignment

- Check for other operation costs (deletion, substitution, insertion)
- Check for other weights (Consideration of meaning of different attributes, e.g. mode choice)
- Consideration of duration of activities ("long form")

Further research: Travel behaviour

- Classification based on systematic and comprehensive description of travel behaviour
- Relevance for transport policy

Dataset: fatigue

@ IVT 02,00