Preferred citation style

Axhausen, K.W. (2005) Measuring activity spaces and behavioural innovation: Recent results, Seminar at FUNDP, Namur, March 2005.

Measuring activity spaces and behavioural innovation: Recent results

KW Axhausen

IVT ETH Zürich

March 2005

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Collaborators

- S. Schönfelder (PhD student; activity spaces and spatial innovation)
- M. Botte (MSc student; catchment areas)
- T. Ohnmacht (Intern; Biographical interviews)

How to measure spatial reach?

Question:

What area, footprint etc. is used by an organisation, person or city?

- Person: Activity space
- Network: Geography of its anchors; activity space
- City: Catchment area
- Organisation: Market

How measure variability of travel?

Long-term issues in travel behaviour

Temporal phenomena: Behavioural issues over time

- Stability
- Regularity / Rhythms
- Variability
- Dynamics

Spatially:

How may locational choice and the intensity of individual usage of urban space be visualised and measured?

(Geocoding/GPS facilitate)

Position: Individual in the biographical context

Position: Personal world

Activity repertoire: What can be done where and how

Mental map: links between locations and their generalised costs of travel

Systematic expectations about locations not yet visited

Position: Personal world

Activity space: Locations in current use

Action space: Extension of the mental map by locations known second hand via word-of-mouth or the media

Issues with the concept of "activity space"

Current definition is restrictive:

Locations in use (and by implications paths used)

But measureable

Most of the literature equates activity space and mental map or action space, which is unmeasureable

Assumed relationship between activity space and costs

Data sources

Place		Duration	Mode
Travel diaries: Uppsala 1971 Mobi <i>drive</i> 1999 (Karlsruhe, Halle) Zürich 2001 (Leisure only) Thurgau (CH) 2003		5 weeks 6 weeks 12 weeks 6 weeks	AII AII AII
GPS – studies: Borlänge 2000-2002 Copenhagen AKTA 2001-2003 Commute Atlanta 2004	up to	80 weeks 24 weeks 52 weeks	car (240.000 trips) car car

Key variables/structures

- Size of activity spaces
- Number of places visited
- Structure of activity spaces
- Innovation in destination choice

Measuring the size of activity spaces: Problems

Transformation of information about the places of contact

- Social relationships
- Origin/Destination
- Sale or usage

in a low-dimensional measure of

- Comparison over time (for one traveller)
- Comparison between travellers

Example: Visited places over 6 weeks (local)

Approaches

"Parametric":

• 95% confidence ellipse

"Non-(semi)-parametric":

- Spatial smoothing (kernel density estimates)
- Network of shortest paths

Network of tracked routes

Approach 1: 95% confidence ellipse

Concept: Probability

Smallest possible area of a true value of the population (i.e. activity locations)

Measure: Area

Shows dispersion / concentration

Approach 2: Kernel densities

Density surface created by distribution of locations weighted by frequency of visit

Measure: Area with positive density value

Focus: Clustering

Example: Zürich's commuter shed 2000

Approach 3: Shortest path network

Smallest geometry
based on all O-Drelations observed
(e.g. shortest paths)

Measure: Length of geometry / area spanned / buffered area

Focus: Spread of locations

Obvious refinements

All:

- Segmentation by type of interaction; time period
- Appropriate weighting schemes (In ?)

Confidence ellipse, Kernel densities:

Removal of a-priori excluded spaces

Shortest path networks:

- Use mode-specific networks
- Use stochastic assignment

Refinement: Exclusion of excluded areas

Additional information

Confidence ellipse:

- Angle of the main axis relative to reference point
- Mean vector between point of interaction and base

Kernel densities:

Number of contiguous areas (clusters)

Shortest path networks:

- All descriptive statistics for network graphs
- Flow estimates

Additional information: Flow estimates

Number of trips in 6 weeks

Mobi*drive*; All trips of respondents Car trips of "car users" Borlänge GPS; Car trips of "car users"

Mobi*drive*: 95% confidence ellipses

* Local trips only

Mobidrive: kernel density estimates

^{* &}quot;Visited area", grid cells with positive Kernel densities value [500*500m]

Mobidrive: shortest path networks

^{*} Minimum network based on observed O-D-relations

Advantages and disadvantages

Appraoch	Plus	Minus
Confidence Ellipse	Simple Useful secondary measures	Too rigid Overestimate
Kernel density	Identification of clusters, Follows pattern	Complex calculation
Shortest path network	Travel impacts obvious	Large data needs

An aside: Swiss commuter sheds

Swiss commuter shed growth1970 – 2000 (95% CE)

Growth [% of 1970 commuter shed]

Swiss commuter shed growth1970 – 2000 (95% CE)

Type of municipality:

	Core	Secondary	First	Second
		centre	ring	ring
Mayor centre	160	207	371	243
Mid-sized centre	145		239	321
Small centre	141			
"Commuter"	300			
Industrial	298			
Semi-rural	391			
Rural	450			

Variance of activity spaces: A Mobidrive example

Male, Full time

Black: Working days

Blue: Weekend

Line width:

Weeks 1+2; 3+4 and 5+6

Schönfelder und Axhausen, 2004

Variance of activity spaces over time

Correlation coefficient		Last period			
		Trips	Places	95% CE	
This period					
Trips	Borlänge Copenhagen	0.71 0.66			
Places	Borlänge Copenhagen.		0.62 0.62		
95% CE	Borlänge Copenhagen			0.62 0.52	
N periods	Borlänge Copenhagen	849 252		849 252	

Number of unique locations

"Unique location" is defined as a combination of

- Address (street address, zip code, municipality code etc.)
- Activity purpose

Systematic problem of GPS – data:

 How to "summarise" varying parking positions to a single location?

Locations as function of number of trips (Thurgau 2003)

Number of places as function of number of trips

	Slope	R ²	
Mobi <i>drive</i>	All	0.18	0.47
	Car drivers	0.22	0,71
Thurgau	All	0.22	0.37
	Car drivers	0.25	0.73
Uppsala	All	0.22	0.40
	Car drivers	0.25	0.75
Copenhagen	Car drivers	0.28	0.51
Borlänge	Car drivers	0.13	0.39

Issue: Clustering GPS points into locations

Structure of activity spaces

Criteria:

- Share of trips to most visited locations
- Cluster

Share of most important destinations (Mobi*drive*)

Distribution of activity clusters – number (All trips)

Cluster: 1 km radius; minimum 3 unique locations and 10% of all trips

Distribution of activity clusters – number (car drivers)

Cluster: 1 km radius; 3 unique locations and 10% of all car trips

Centre of clusters: Activity purposes

Purpose	Mobi All	Fulltime	Thurgau All	Fulltime	Uppsala All	Fulltime
Home	55	57	43	42	44	44
Leisure	12	11	14	10	12	12
Work	11	24	15	22	18	25
School	8	1	8	11	0	1
Grocery	6	4	9	5	19	12
Private business	5	0	3	1	2	1
Long-term shopping	1	1	0	1	1	0
Pick/Drop	1	1	4	4	2	3
Work related	1	0	4	4	0	0
Other	0	1	0	0	2	2

Schönfelder und Axhausen, 2004

Innovation in destination choice

Two types of observation:

- "New" locations over the reporting / monitoring period
- Locations visited for the first time

Places visited for the first time (Thurgau 2003)

First time or never before less than 4 visits Often: 4 to 10 visits

Summary

- Activity spaces are measurable
- The relationship between number of trips and number of unique locations seems constant
- Activity space has a structure with few clusters
- The "rate of innovation" is constant
- The size of activity spaces is temporarily not or only partly stable

Measurement issues

- Are these the best measures?
- What refinements are needed?

Empirical issues

- Are the finding really robust?
- Are there "scaling laws"?
- Are there links between the distributions and the characteristics of the area?
- Weak link between activity space size and sociodemographics
- Weak link between activity generation and sociodemographics

Modelling challenges

Static (agent-based) models:

- Definition of choice set for location choice (see route choice)
- Cope with innovation and clustering
- Less emphasis on work as a behavioural "peg"

Dynamic (agent-based) models:

- Maintain link between number of locations and trips
- Reproduce the dynamics of the activity space
- Reproduce innovation rates

Literature

- Botte, M. (2003) Strukturen des Pendelns in der Schweiz, Diplomarbeit, Fakultät für Bauingenieurwesen, TU Dresden, August 2003.
- Ohnmacht, T. (2004) Soziale Netze und persönliche Mobilität: Grundlagen für eine empirische Erhebung, *Arbeitsbericht Verkehrs- und Raumplanung*, **250**, IVT, ETH Zürich, Zürich.
- Schönfelder, S. and K.W. Axhausen (2004) Structure and innovation of human activity spaces, *Arbeitsberichte Verkehrs- und Raumplanung*, **258**, IVT, ETH Zürich, Zürich.
- Schönfelder, S. and K.W. Axhausen (2003) On the variability of human activity spaces, in M. Koll-Schretzenmayr, M. Keiner und G. Nussbaumer (eds.) *The Real and Virtual Worlds of Spatial Planning*, 237-262, Springer, Heidelberg.
- Schönfelder, S. and U. Samaga (2003) Where do you want to go today? More observations on daily mobility, Presentation at STRC 2003, Ascona, March 2003.

Literature

Srivastava G. und S. Schönfelder (2003) On the temporal variation of human activity spaces, *Arbeitsberichte Verkehr- und Raumplanung*, **196**, Institut für Verkehrsplanung und Transportsysteme (IVT), ETH Zürich, Zürich.

Position: Personal daily dynamics

Position: Personal long-term dynamics

