Preferred citation style

Public transport speeds in the Kanton Zürich

JK Hackney and KW Axhausen

IVT
ETH
Zürich

March 2005
Problem Statement

• What is the expected (average) speed of a transit trip in the Kanton Zurich?

• How does this speed vary with mode, travel period, and type of origin/destination?

• How does this speed compare with the automobile mode?
Sample Definition

- Using disaggregate trips is more precise than zone-zone representative “trip” (e.g. assignment model)

- Microcensus contains representative trips at different times and on different days

- Self-estimated trip length/time are poorly reported in Microcensus

- *Base representative sample of transit trips on Microcensus but seek measure of travel time and speed from another source*
Method Overview

• Vehicle travel time obtained from timetable of ZVV using the program Hafas (HaCon)

• Vehicle travel distance is derived from table of transit stop locations and distance between stops (Kanton Zurich, VBZ)

• Representative sample of OD relations from Microcensus 2000

• 1.5 * Walk distance/time to and from transit stops derived from geocodes of Microcensus trips

• Analysis uses 3 nearest transit stops per O and D (up to 9 connections)
Elements of the Study

Trip Sample
- Microcensus 2000 transit trips: OD and arrival time
- Origin/destination coordinates (Jermann)
- Microcensus tour mode (Chalasani)

Transit Connections
- Hafas with ZVV timetable (VBZ)
- Transit stop coordinates and distances between stops (VBZ)
- ARE municipality type for OD (Beige)

Software
- Program to read Hafas output (Buergle)
- SAS and Excel analysis programs
Analyzing Connections

1. Search for connections in ZVV timetable with batch version of Hafas
2. Construct large dataset of demand matrix plus supply (e.g. result of search)
3. Merge coordinates for all transit stops and the distance between them
4. Summarize stop-to-stop Hafas output at trip-level
 a. Add distances and times between transit stops
 b. Add walking stages before and after transit stage
Definitions

“Trip” distance and time, includes stages on foot:
Waiting time at origin = 0.

“In vehicle” distance and time, includes transfers
Distance Estimates for Transit

Hypothesis: $dX > dX > dX$

Origin

Destination

Straight Line
Piecewise Linear
Actual
Ratio of Distance Estimates

<table>
<thead>
<tr>
<th>Distance band</th>
<th>Real/ piecewise linear</th>
<th>Real/ Straight line</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5 km</td>
<td>1.05</td>
<td>1.29</td>
<td>7363</td>
</tr>
<tr>
<td>5-10 km</td>
<td>1.06</td>
<td>1.38</td>
<td>3879</td>
</tr>
<tr>
<td>10-20 km</td>
<td>1.05</td>
<td>1.39</td>
<td>1984</td>
</tr>
<tr>
<td>20-30 km</td>
<td>1.07</td>
<td>1.37</td>
<td>1984</td>
</tr>
<tr>
<td>30 km plus</td>
<td>1.10</td>
<td>1.58</td>
<td>520</td>
</tr>
<tr>
<td>All</td>
<td>1.06</td>
<td>1.35</td>
<td>16614</td>
</tr>
</tbody>
</table>
Speed Calculation

• Space mean speed
 • Classify trips according to desired characteristics (e.g. by time period)
 • Sum distances of all trips in each class
 • Sum time of all trips in each class
 • Divide total distance by total time
• Error term is the square root of the proportional variance, times the mean
Results: General

- Direct trip has longer distance and duration than time-shortest trip: same speed
- Average trip speed is 13.3(0.3) km/h
- Average vehicle speed is 19.8(0.5) km/h
- Train is faster than bus/tram (17.8(0.8) vs. 11.6(0.3) km/h)
- Speed is invariant in time
 - Even if analyzed by mode
Trip Speed vs. “In Vehicle” Speed

Reisegeschwindigkeit
Fahrgeschwindigkeit

Anzahl Verbindungen in der Stichprobe

Mittleres V (Km/h)
Results: Community Type

- Speeds within/between major centers (ZH, WT) are close to average
 - Sample heavily weighted toward these trips

- Speeds from periphery into centers are faster than vice versa
 - Choice of connection is better

- Speeds between peripheral centers is fastest
Community Type and Transit Speed

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
<th>Alle</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>V1</td>
<td>12.6(0.4)</td>
<td>11.5(0.9)</td>
<td>11.7(0.8)</td>
<td></td>
<td>12.4(0.3)</td>
<td></td>
</tr>
<tr>
<td>V2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13.6(4.8)</td>
</tr>
<tr>
<td>V3</td>
<td></td>
<td>14.9(1.6)</td>
<td>18.1(2.3)</td>
<td>18.9(3.0)</td>
<td></td>
<td>16.8(1.2)</td>
<td></td>
</tr>
<tr>
<td>V4</td>
<td></td>
<td>14.8(1.1)</td>
<td>17.6(2.7)</td>
<td>13.4(1.3)</td>
<td></td>
<td>14.7(0.8)</td>
<td></td>
</tr>
<tr>
<td>V5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.4(1.6)</td>
</tr>
<tr>
<td>Alle</td>
<td></td>
<td>13.1(0.3)</td>
<td>11.4(2.6)</td>
<td>15.2(1.1)</td>
<td>13.1(0.7)</td>
<td>14.7(2.2)</td>
<td>13.3(0.3)</td>
</tr>
</tbody>
</table>

Empty Field = Sample Size smaller than 25 Trips
Results: Walk Stages

Access time/distance is statistically significantly shorter than egress

- Density of transit stops
- Shorter distance to departure station than arrival station
Summary and next Steps

- Transit is slower than automobile: this needn’t mean lower travel time
 - Average automobile link speed is 51.4 km/h
 - More calculation is necessary to compare apples with apples

- Calculate automobile speed from door to door using existing dataset

- Use new calibrated demand matrix for public transport for new sample selection and new calculation of transit speed
A1: Definition of Travel Period

<table>
<thead>
<tr>
<th>Time</th>
<th>Day</th>
<th>From (>=)</th>
<th>To (<)</th>
<th>From (>=)</th>
<th>To (<)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>Saturday</td>
<td>0.00-24.00 (Measurement time 06.00-21.00)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HVZ</td>
<td>Peak Period</td>
<td>6:30</td>
<td>8:30</td>
<td>16:30</td>
<td>18:30</td>
</tr>
<tr>
<td>NVZ</td>
<td>Shoulder Period</td>
<td>8:30</td>
<td>16:30</td>
<td>18:30</td>
<td>20:30</td>
</tr>
<tr>
<td>RVZ</td>
<td>Off-peak Period</td>
<td>0:00</td>
<td>6:30</td>
<td>20:30</td>
<td>24:00</td>
</tr>
</tbody>
</table>
A2: ARE community types (ARE, 2002)

V1: Major centers or centers near the major centers (Winterthur, Zurich)
V2: Inner/outer beltway of the agglomeration of the major centers
V3: Medium centers
V4: Inner/outer beltway of the further agglomeration
V5: Small centers, bedroom communities, industrial and tertiary communities, semi-agrarian communities, agrarian communities, tourism-centered communities
A3. Community Type and Transit Speed: Sample size

<table>
<thead>
<tr>
<th></th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
<th>V4</th>
<th>V5</th>
<th>Alle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Von</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V1</td>
<td>1291</td>
<td>3</td>
<td>101</td>
<td>216</td>
<td>19</td>
<td>1630</td>
</tr>
<tr>
<td>V2</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>V3</td>
<td>111</td>
<td>0</td>
<td>60</td>
<td>51</td>
<td>10</td>
<td>232</td>
</tr>
<tr>
<td>V4</td>
<td>225</td>
<td>2</td>
<td>51</td>
<td>114</td>
<td>10</td>
<td>402</td>
</tr>
<tr>
<td>V5</td>
<td>18</td>
<td>3</td>
<td>10</td>
<td>11</td>
<td>14</td>
<td>56</td>
</tr>
<tr>
<td>Alle</td>
<td>1630</td>
<td>11</td>
<td>232</td>
<td>402</td>
<td>56</td>
<td>2331</td>
</tr>
</tbody>
</table>