Preferred citation style

Hess, S. and K.W. Axhausen (2005) Distributional assumptions in the representation of random taste heterogeneity, 5th STRC, Ascona, March 2005.

Distributional assumptions in the representation of random taste heterogeneity

Stephane Hess Imperial College London & RAND Europe Kay Axhausen ETH Zurich

Imperial College London

Mixed Logit

• No a priori constraints on choice of $f(\beta|\Omega)$

$$P_{ni} = \int_{\beta} \left(\frac{e^{f(\beta, X_{ni})}}{\sum_{j=1}^{I} e^{f(\beta, X_{nj})}} f(\beta | \Omega) \right) d\beta$$

No closed form solution for choice probabilities
Need simulation in estimation and application

Issues for the a-priori distribution

- Generally no a priori knowledge about true distribution
- Limited set of distributions available in standard estimation packages
- Most researchers/practitioners use Normal
- Limited success with using alternative distributions

Current choices

- Normal
- Log rormal
- Triangular
- Sb

Effect of poor distributional assumptions

- Unbounded:
 - risk of wrong conclusions wrt existence of counter intuitively signed coefficients and related trade offs (e.g. VTTS)
 - risk especially great with symmetrical distributions
- Strictly bounded:
 - can prevent data or model specification issues to manifest themselves

Effect of poor distributional assumptions

- Symmetry
 - Over/underestimation of the tails of the distributions
 - Bias in the mean recovery with skewed underlying distributions
- Consideration of mass points

Framework

- Recovery of true distribution
 - Normal
 - Truncated Normal
 - Censored Normal
 - Normal with Mass
 - Lognormal
 - $-S_B$
- Four different settings per distribution (24 exp)
- 8,000 independent draws per experiment (ExpertFit used for analysis)

Distributions

- Unbounded (*Normal*, S_u, Cauchy, Error, Exp. Power, extreme value A&B, Laplace, Student's t, Logistic)
- Bounded on one side (*Log normal*, Chi2, Erlang, F, Gamma, Inverse Gaussion & Weibull, Log aplace, Log logistic, Pareta, Pearson V&VI, Random walk, Wald, Weibull)
- Bounded on both sides (*Triangular, Uniform, S_b*, Beta, Power function)

Comparison Criteria

- Equal chi quared test
- Recovery of true mean & variance
- Likelihood function of observed values
- Recovery of lower & upper octiles
- Difference in density functions, mean & max
- Weighted sum of differences across lower & upper octiles, quartiles and median

Equal probability chi-square test

Relative likelihood per observation

Recovery of mean

Recovery of variance

Weighted difference, 5 points

Conclusions

- Group of well performing distributions (Su, Sb, Beta, Gamma, Weibull)
- Normal not too bad, but a priori difficulties
- Software availability
- Still, what to do

In this case ?

Appendices

Density function maximum difference

Difference in lower octile

Difference in upper octile

Density function mean difference

