Charypar, D., K.W. Axhausen and K. Nagel (2006) Implementing Activity-Based Models: accelerating the replanning process of agents using an evolution strategy 6th Swiss Transport Research Conference, Ascona.

Implementing Activity-Based Models - Accelerating the Replanning Process of Agents Using an Evolution Strategy

D. Charypar, K.W. Axhausen and K. Nagel

IVT	VSP
ETH	TU
Zurich	Berlin

STRC March 2006

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- •MATSIM-T
- •Goal
- •Planomat
- •Covariance Matrix Adaptation Evolution Strategy
- •Learning performance
- •Findings
- •Further Work

MATSIM-T Process Steps

•More intelligent replanning

•Faster replanning

Use sophisticated algorithm to modify / adapt plans

•Higher quality of resulting plans

•Less evaluations of scoring function needed

Candidate solutions

•Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

•Estimates multivariate normal distribution around current search point to maximize evolution progress

•Step-size adaptation based on object space path length and estimated length of a random walk

Properties of CMA-ES Optimizer

- •Suited for non-linear, non-convex search problems
- •Invariant to order preserving mappings of the objective function
- •Can handle discontinuous, noisy search landscapes
- •Able to cope with local optima
- •Adapts to ill-conditioned search spaces
- •Performs well on certain non-separable objective functions.
- •Insensitive to any linear transformation of search space

D. Charypar

- •10 generations / 100 evaluations of scoring function per agent sufficient
- •Separate rerouting seems unnecessary
- •Execution of randomly selected plans seems unnecessary
- •Performance of learning process using MATSIM-T is not limited by quality of individual optimization of plans

•Find optimal way of managing the replanning probability depending on state of the learning process

- •Use more available information from MATSIM-EXEC in the planomat (time-dependent travel times)
- Location choice
- •Mode choice
- •Activity choice
- •...

Literature

- Frick, M. A. (2004) Generating Synthetic Populations using IPF and Monte Carlo Techniques: Some New Results, Conference Paper, 4th Swiss Transport Research Conference, Monte Verita, Ascona, March 2004.
- Raney, B. (2005) Learning framework for large-scale multi-agent simulations, PhDthesis, ETH Zurich, Zurich.
- Cetin, N. (2005) Large scale parallel graph-based simulations, PhD-thesis, ETH Zurich, Zurich.
- Meister,K., M. Frick and K.W. Axhausen (2005) Generating daily activity schedules for households using Genetic Algorithms, Conference Paper, STRC, Monte Verità.
- Charypar, D. and K. Nagel (2005) Generating complete all-day activity plans with genetic algorithms, Transportation, 32 (4) 369–397.
- Balmer, M., K.W. Axhausen and K. Nagel (2005) An agent based demand modeling framework for large scale micro-simulations, paper submitted for the 85th annual meeting of the Transportation Research Board, TRB, Washington D.C., January 2006.
- Bernard, M. (2006) Correlation of link travel speed, Conference Paper, 6th Swiss Transport Research Conference, Monte Verita, Ascona, March 2006.

New optimization algorithm in planomat

•Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

Estimates multivariate normal distribution around current search point to maximize evolution progress
Stepsize adaptation based on estimated drift of a random walk

Contour plot of
$$f_{H_1}(x) = \frac{1}{2}(x_1^2 + 2x_2^2)$$

typical shape for ill-conditioned problems

CMA deforms the covariance matrix in the direction of good ste

D. Charypar