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Overview

•MATSIM-T

•Goal

•Planomat

•Covariance Matrix Adaptation Evolution Strategy

•Learning performance

•Findings

•Further Work
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MATSIM-T Process Steps

init-plans
xml

network
xml events.txt

MATSIM-POP
Frick, 2004

plans
xml

MATSIM-DATA

world
xml

network
xml

facilities
xml

matrix
xml

Matrix DB

Facilities DB

Network DB

World DB

MATSIM-EA
MATSIM-DB

Agent DB
(Raney, 2005)

MATSIM-EXEC
stochastic, queue based agent 
traffic simulation (Cetin, 2005)

MATSIM-STRATEGY
planomat (Meister,et al., 2005)

router (Raney, 2005)

MATSIM-STRATEGY
planomat (Meister,et al., 2005)

router (Raney, 2005)
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How to Get Final Daily Plans Faster

•More intelligent replanning

•Faster replanning
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Approach

Use sophisticated algorithm to modify / adapt plans

•Higher quality of resulting plans

•Less evaluations of scoring function needed
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How Planomat works

Plan

Sampling Scoring Selection

Candidate solutions

Plan

Plan

Plan

Plan

Plan

Plan

Merged plan

Scored plan

Scored plan

Scored plan

Scored plan

Scored plan

Scored plan



8

D
. C

ha
ry

pa
r

New optimization algorithm in planomat

•Covariance Matrix Adaptation Evolution Strategy
(CMA-ES)

•Estimates multivariate normal distribution around current 
search point to maximize evolution progress

•Step-size adaptation based on object space path length and 
estimated length of a random walk
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CMA-ES Example
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Properties of CMA-ES Optimizer

•Suited for non-linear, non-convex search problems

•Invariant to order preserving mappings of the objective 
function

•Can handle discontinuous, noisy search landscapes

•Able to cope with local optima

•Adapts to ill-conditioned search spaces

•Performs well on certain non-separable 
objective functions.

•Insensitive to any linear transformation of search space
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CMA-ES Example 2
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MATSIM-T Performance with Planomat-CMAES

Agent DB with 6 plans per agent, preplan=0.1, preroute=0.1, 
prandom=0.1, 100 CMA-generations
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MATSIM-T Performance with Planomat-CMAES

Comparison: Performance with 100 vs. 10 generations of 
CMA-ES evolution
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MATSIM-T Performance with Planomat-CMAES

Comparison: Agent DB with 6 plans per agent vs. Agent DB
with only 1 plan per agent
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MATSIM-T Performance with Planomat-CMAES

Comparison: only replan vs. replan + reroute + random
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Findings

•10 generations / 100 evaluations of scoring function per 
agent sufficient

•Separate rerouting seems unnecessary

•Execution of randomly selected plans seems unnecessary

•Performance of learning process using MATSIM-T is not 
limited by quality of individual optimization of plans
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Further Work

•Find optimal way of managing the replanning probability 
depending on state of the learning process

•Use more available information from MATSIM-EXEC in the 
planomat (time-dependent travel times)

•Location choice

•Mode choice

•Activity choice

•...
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New optimization algorithm in planomat

•Covariance Matrix Adaptation Evolution Strategy
(CMA-ES)
•Estimates multivariate normal distribution around 
current search point to maximize evolution progress
•Stepsize adaptation based on estimated drift of a random 
walk


