Axhausen, K.W. (2007) Capturing the geographies of social networks: Current measurement experiences, presentation at the Department for Geography, Hebrew University, Jerusalem, April 2007.

Capturing the geographies of social networks: Current measurement experiences

KW Axhausen

IVT ETH Zürich

April 2007

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- S Schönfelder, ETH (trafico, Wien)
- RK Rai, IIT/ETH (UC Berkeley)
- VS Vaze, IIT/ETH (USF, Tampa)
- M Balmer, ETH
- T Ohnmacht, ETH (Uni Basel)
- A Frei, ETH
- J Larsen, Lancaster (Roskilde University)
- J Urry, Lancaster University

Trends: Road travel time scaled Switzerland (1950 & 2000)

Trends: Swiss Suburbanisation since 1970

Research questions about "social network geography"

- How disperse are the locations of the contacts of a person or firm ?
- How quickly has the dispersion changed ?
- How quickly will it change in the future ?

- How can we measure this dispersion ?
- Do the measure relate to other concepts of interest ?

Personal world and social network geography:

- Measurement
- Measures

Mobility biographies:

- Retrieval and reconstruction
- Measures

Biography of a male architect, early-30ies

Personal world as "mental map" and "activity repertoire":

- Sketching
- Think aloud protocols
- Spatial tasks

Personal worlds as "activity space" of visited locations:

- Diaries
- GPS/GSM tracing
- Data traces (payments of all kinds, CCTV, phone and pc use)

Social network geographies:

- Name generators
- Traces of contacts (email, SMS, IM, internet chat, letters, phone records, etc.)
- Diary based prompting

Contacts and contact frequency - emails to kwa (Outlook)

Example of an activity space

Example of a social network geography

Requirements:

- Low dimensional (scalar)
- Describe size, orientation and spread
- Consistency with behavioural possibilities (theoretical intent)

• Ease of calculation

Parametric:

• 95% confidence ellipse (form and type of distribution)

Semiparametric:

- Inclusion geometries (form of geometry)
- (Weighted) shortest path networks (structure of path)
- (Percentage) Minimum convex poligons (convexity)
- Kernel density estimator (form of estimator)
- Mean harmonic home ranges (form of estimator)

Non-parametric

• Observed path geometries

Measures: Confidence ellipse

Find:

min
$$A_i(\beta_{i1} \dots \beta_{in})$$

s.t.

Area A_i covering p% of all observed points

with:

- i : Type of geometry (Ellipse, bean, Cassini ...)
- p : Predetermined share, e.g. 95%

Measures: Inclusion geometries

Rai et al., 2007

Measures: Minimum convex poligons (MCP)

Measures: Weighted shortest path network

Data source:

- Mobdrive: 6 week continuous travel diary
- Karlsruhe and Halle
- Fall 1999

Size of activity spaces: Shortest path network

* Observed O-D-relations, Mobidrive, Karlsruhe subsample

Pearson's correlation of the measures (Karlsruhe)

	SPN	SPN weigh- ted	95% Ellipse
Area of Kernel density >0	.775	.808	.394
Length of SPN (unweighted)		.928	.652
Length of SPN (weighted by number of journeys)			.594

Application: Social network geographies

Items to capture the social network geographies

- Name generators
- Name interpreters
 - Type and length of contact
 - Frequency by mode of contact
 - Home location
 - Second homes
 - Detailed descriptions of face-to-face contacts

Items to characterise the mobility biography

- Home and second home locations
- Work and school locations
- Household composition
- Mobility tools
- Main mode (to work/school)
- (Major holidays)
- Personal income
- Household income

Response burden and response rate

Phase	Pretest	Main study	Share [%]	Share of telephone contacts [%]
Sample	150	4'200	100%	
Wrong address	0	56	1.3%	
Not reachable by phone	36	1'486	35.3%	
Telephone contact	113	2'714	64.6%	100%
Recruited	14	318	7.5%	11.7%
Face-to-face interviewed	13	305	7.3%	11.2%
Written form returned	13	294	7.0%	10.8%

- ifmo:
 - "Persons with whom you had contact"
 - (f-to-f frequency, location, mobility biography)
- DfT:
 - Family, non-local friends, most important persons
 - (location, frequency by mode, mobility biography)
- COST 355:
 - Important people, people with leisure contacts
 - (location, frequency by mode, mobility biography)

Contacts (COST 355 only)

Poisson regression of the number of social contacts

		St.		Standard-	
Variable	Mean	dev	Beta	ised beta	Sign.
Constant	-	-	3.753	-	0.000
Age [years]	45.68	19.08	-0.051	-0.124	0.000
Age ² /1000 [years ² /1000]	2.44	0.09	0.401	0.102	0.000
Data_horizon [y/n]	0.19	0.39	-0.289	-0.015	0.000
Data_COST 355 [y/n]	0.57	0.50	-0.256	-0.016	0.000
Number of relocations [n]	5.82	2.74	0.037	0.013	0.000
University degree [y/n]	0.28	0.45	0.116	0.007	0.045
Ν	128				
Adjusted R ²	0.16				

Current patterns: Distance to contacts (COST 355 only)

Distance distribution (subsample COST 355; ifmo; Horizon)

Contact frequency by mode

Variable		Market shares of contact modes				
Category		Face-to- face	Phone	Email	SMS	
Age		004	.004	.006	007	
Sex: Male		127	-	.624	526	
Educ- atio	Compulsory school	251	.186	.306	481	
	Apprenticeship	171	.254	278	.086	
	Baccalaureat	Reference	Reference	Reference	Reference	
	Professional tertiary	384	.329	.106	092	
	University degree	628	.915	-	587	
Type of contact	Others and friends	.197	625	-2.126	459	
	Family and partner	-	402	-2.344	355	
	Work mates	.600	-1.055	-1.907	779	
Ln (distance)		108	-	.132	0.31	
Income		.028	048	.075	053	
Income * Male		.048	021	138	.106	
Adjusted R ² /Chi ²		10046	10235	13548	11690	
Ν		381	381	381	381	

Example geography of a 35 old female

Distribution of the social geographies (subsample)

Japan: 378; U.S.A: 9'629 [10³ km²]

Tobit results

Variable	Mean	St. dev	Beta	Standard- ised beta	Sign.
Data_ifmo [y/n]	0.26	0.43	2.309	0.184	0.048
Male [y/n]	0.57	0.50	2.293	0.212	0.021
Age [years]	44.72	18.92	-0.078	-0.277	0.002
University degree [y/n] Car ownership [y/n] Annual or monthly	0.28 0.52	0.45 0.50	2.286 3.842	0.192 0.358	0.047 0.000
public transport ticket [y/n]	0.90	0.32	6.585	0.398	0.000
Number of relocations [n]	5.87	2.74	0.634	0.325	0.000
N Adjusted R ²	117 0.48				

- Combined face-to-face interviews as a expensive but practicable survey method
- Size of social geographies can be explained to some extent with the biographies and the socio-demographics

Policy implication

The planning fetish "neighbourhood", "community"

Perry, 1929

Status: Weekly meeting of service clubs

The networked actors have chosen:

- To mix local and non-local contacts
- Maintain face-to-face contacts across the whole distance range
- Other modes of contact complement/substitute
- Maintenance of the personal social capital needs "leisure" travel
- Current levels of social capital are tied to current cost structures

Implications of the non-local-bias of the networks

- Stronger selectivity of social contacts
- Higher "productivity" of the social contacts maintained
- Less need to risk "investment" on new contacts

Implications of the non-local-bias of the networks

- Local social action is more difficult to maintain or initiate
- Shift from a municipal to a regional understanding of "place"
- Recruitment biases for local (regional) policy makers

Implications of the non-local-bias of the networks

- Defines relatively high levels of skills and income to be perceived as being able to "keep up with Joneses"
- Increased chances of involuntary segregation ("social exclusion")
- Less efficient local labour markets, more efficient regional labour markets

Likely lack of knowledge of immediate neighbours Likely perception of a lack of safety in the immediate environment Lack of a basis for confidence in the immediate environment

Local anomie should c.p. result in:

- Investment in personal safety (car ownership, "gating", "fortification")
- Reliance on market-produced third-party safety provision (policy, private security services)
- Reliance on market-produced third-party service provision (home care, longer opening hours of stores)

- Axhausen, K.W. (2000) Geographies of somewhere: A review of urban literature, *Urban Studies*, 37 (10) 1849-1864.
- Axhausen, K.W. (2007) Activity spaces, biographies, social networks and their welfare gains and externalities: Some hypotheses and empirical results, Mobilities, 2 (1) 15–36.
- Botte, M. (2003) Strukturen des Pendelns in der Schweiz, Diplomarbeit, Fakultät für Bauingenieurwesen, TU Dresden, August 2003.
- Carosio, A., C. Dolci and M. Scherer (2005) Erreichbarkeitsveränderungen in der Schweiz: Eine kartographische Darstellung, in K.W. Axhausen and L. Hurni (eds.) Zeitkarten Schweiz 1950-2000, Chapter 3, IVT and IKA, ETH Zürich, Zürich.
- FCC (2001) Long distance telecommunication industry, FCC, Washington, D.C.
- Frei, A. (2005) Was hätte man 1960 für einen Sharan bezahlt?, MSc thesis, IVT, ETH Zürich, Zürich.

- Larsen, J., J. Urry and K.W. Axhausen (2006) *Mobilities, Networks and Geographies*, Ashgate, Aldershot.
- Ohnmacht, T. und K. W. Axhausen (2005) Entwicklung des Forschungsdesign und der Erhebungsinstrumente f
 ür das Projekt Mobilit
 ätsbiographien, Mobilit
 ätswerkzeuge und soziale Netze, Arbeitsberichte Verkehrs- und Raumplanung, 298, IVT, ETH Z
 ürich, Z
 ürich.
- Rai, R.K., M. Balmer, M. Rieser, V.S. Vaze, S. Schönfelder and K.W. Axhausen (Forthcoming) Capturing human activity spaces: New geometries, *Transportation Research Record*.
- Schönfelder, S. (2006) Urban rhythms: Modelling the rhythms of individual travel behaviour, PhD dissertation, ETH Zürich, Zürich.
- Schönfelder S. and Axhausen K. W. (2003) Activity spaces: Measures of social exclusion? *Transportation Policy*, 10 (4) 273-286.
- Vaze V.S., S. Schönfelder and K.W. Axhausen (2005) Optimization of continuous space representation for human activity spaces, *Arbeitsbericht Vekehrs- und Raumplanung*, 295, Institut für Verkehrsplanung and Transportsysteme (IVT), ETH Zürich, Zürich