Preferred citation style

Axhausen, K.W. (2007) Social networks and travel: Frequencies, modes and distances, presentation at the Department of Industrial and Engineering Management, Ben Gurion University, Beer Sheva, May 2007.

Social networks and travel: Frequencies, modes and distances

KW Axhausen

IVT

ETH

Zürich

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

May 2007

Team

- S Schönfelder, ETH (trafico, Wien)
- RK Rai, IIT/ETH (UC Berkeley)
- VS Vaze, IIT/ETH (USF, Tampa)
- M Balmer, ETH
- T Ohnmacht, ETH (Uni Basel)
- A Frei, ETH
- J Larsen, Lancaster (Roskilde University)
- J Urry, Lancaster University

Scherer, 2004

Trends: Road travel time scaled Switzerland (1950 & 2000)

Trends: Swiss Suburbanisation since 1970

Research questions about "social networks"

- How many persons belong to them ?
- How disperse are the locations of the contacts of a person or firm ?
- How quickly has the dispersion changed?
- How quickly will it change in the future ?
- How and how often are people in contact?

Methodological questions

- How can we measure this dispersion?
- Do the measure relate to other concepts of interest?
- How can we explain the observed patterns?

Concepts

What are the challenges?

Personal world and social network geography:

- Measurement
- Measures

Mobility biographies:

- Retrieval and reconstruction
- Measures

Biography of a male architect, early-30ies

Measurement

Personal world as "mental map" and "activity repertoire":

- Sketching
- Think aloud protocols
- Spatial tasks

Personal worlds as "activity space" of visited locations:

- Diaries
- GPS/GSM tracing
- Data traces (payments of all kinds, CCTV, phone and pc use)

Measurement

Social network geographies:

- Name generators
- Traces of contacts (email, SMS, IM, internet chat, letters, phone records, etc.)
- Diary based prompting

Contacts and contact frequency – emails to kwa (Outlook)

Administrative data: Weekly meeting of service clubs

Example of a social network geography

Female, 28, 4 moves,

Measures

Requirements:

- Low dimensional (scalar)
- Describe size, orientation and spread
- Consistency with behavioural possibilities (theoretical intent)

Ease of calculation

How to measure?

Parametric:

95% confidence ellipse (form and type of distribution)

Semiparametric:

- Inclusion geometries (form of geometry)
- (Weighted) shortest path networks (structure of path)
- (Percentage) Minimum convex poligons (convexity)
- Kernel density estimator (form of estimator)
- Mean harmonic home ranges (form of estimator)

Non-parametric

Observed path geometries

Measures: Confidence ellipse

Measures: Inclusion geometries

Find:

```
min A_i(\beta_{i1} \dots \beta_{in})
```

s.t.

Area A_i covering p% of all observed points

with:

i : Type of geometry (Ellipse, bean, Cassini ...)

p: Predetermined share, e.g. 95%

Measures: Inclusion geometries

Rai et al., 2007

Items to capture the social network geographies

- Name generators
- Name interpreters
 - Type and length of contact
 - Frequency by mode of contact
 - Home location
 - Second homes
 - Detailed descriptions of face-to-face contacts

Items to characterise the mobility biography

- Home and second home locations
- Work and school locations
- Household composition
- Mobility tools
- Main mode (to work/school)
- (Major holidays)
- Personal income
- Household income

Response burden and response rate

Zürich experiment

Phase	Pretest Main study		Share [%]	Share of telephone contacts [%]
Sample	150	4'200	100%	_
Wrong address	0	56	1.3%	
Not reachable by phone	36	1'486	35.3%	
Telephone contact	113	2'714	64.6%	100%
Recruited	14	318	7.5%	11.7%
Face-to-face interviewed	13	305	7.3%	11.2%
Written form returned	13	294	7.0%	10.8%

Data available

- ifmo:
 - "Persons with whom you had contact"
 - (f-to-f frequency, location, mobility biography)
- DfT:
 - Family, non-local friends, most important persons
 - (location, frequency by mode, mobility biography)
- COST 355 (Zürich):
 - Important people, people with leisure contacts
 - (location, frequency by mode, mobility biography)

Contacts (COST 355 only)

Poisson regression of the number of social contacts

Variable	beta	significance
Intercept	17.921	.000
Female	359	.024
Technical college	-2.903	.000
University	2.523	.000
Age	010	.022
Age squared/100	.001	.005
-2L – test statistic	620.9	.000

Share of local contacts among all contacts

Current patterns: Distance to contacts (COST 355 only)

Distances and contact frequency

Contact frequency by mode (subsample)

Regression results

Parameter	Asynchronous	Phone	Face to face
Intercept	72.965	36.008	86.358
Female	3.452	6.254	16.197
Age	960	048	408
Age squared/100	.046	.001	.019
N.A. (education)	24.760	11.524	13.322
Compulsory education	28.878	-7.000	23.267
Apprenticeship	20.509	-2.343	21.021
High school diploma	47.046	12.792	37.586
Technical college	13.005	.989	7.203
Other type of contact	-25.119	-7.276	-10.352
Friend	19.537	9.675	-5.366
Partner	102.554	116.324	170.790
Family	-17.047	15.959	.854
No income given	22.176	9.424	-5.389
Under 2000 sFr/Month	4.700	-5.210	-3.807
2000-6000 sFr/month	16.306	10.128	4.595
Female * No income given	-10.784	12.189	-7.773
Female * under 2000 sFr/month	-10.340	9.419	-23.420
Female * 2000-6000 sFr/month	-19.475	-15.959	-35.384
Ln(Great circle distance)	-1.279	-2.506	-10.561

Market share by contact mode

Example geography of a 35 old female

Distribution of the social geographies (subsample)

Japan: 378; U.S.A: 9'629 [10³ km²]

Tobit results

Variable	Mean	St. dev	Beta	Standard- ised beta	Sign.
Data_ifmo [y/n]	0.26	0.43	2.309	0.184	0.048
Male [y/n]	0.57	0.50	2.293	0.212	0.021
Age [years]	44.72	18.92	-0.078	-0.277	0.002
University degree [y/n]	0.28	0.45	2.286	0.192	0.047
Car ownership [y/n]	0.52	0.50	3.842	0.358	0.000
Annual or monthly public transport ticket [y/n]	0.90	0.32	6.585	0.398	0.000
Number of relocations [n]	5.87	2.74	0.634	0.325	0.000
N Adjusted R ²	117 0.48				

Conclusions: Measurement

- Combined face-to-face interviews as a expensive but practicable survey method
- Size of social geographies can be explained to some extent with the biographies and the socio-demographic characteristics of the respondents

Literature

- Axhausen, K.W. (2000) Geographies of somewhere: A review of urban literature, *Urban Studies*, 37 (10) 1849-1864.
- Axhausen, K.W. (2007) Activity spaces, biographies, social networks and their welfare gains and externalities: Some hypotheses and empirical results, Mobilities, 2 (1) 15–36.
- Botte, M. (2003) Strukturen des Pendelns in der Schweiz, Diplomarbeit, Fakultät für Bauingenieurwesen, TU Dresden, August 2003.
- Carosio, A., C. Dolci and M. Scherer (2005) Erreichbarkeitsveränderungen in der Schweiz: Eine kartographische Darstellung, in K.W. Axhausen and L. Hurni (eds.) Zeitkarten Schweiz 1950-2000, Chapter 3, IVT and IKA, ETH Zürich, Zürich.
- FCC (2001) Long distance telecommunication industry, FCC, Washington, D.C.
- Frei, A. (2005) Was hätte man 1960 für einen Sharan bezahlt?, MSc thesis, IVT, ETH Zürich, Zürich.

Literature

- Larsen, J., J. Urry and K.W. Axhausen (2006) *Mobilities, Networks and Geographies*, Ashgate, Aldershot.
- Ohnmacht, T. und K. W. Axhausen (2005) Entwicklung des Forschungsdesign und der Erhebungsinstrumente für das Projekt Mobilitätsbiographien, Mobilitätswerkzeuge und soziale Netze, *Arbeitsberichte Verkehrs- und Raumplanung*, **298**, IVT, ETH Zürich, Zürich.
- Rai, R.K., M. Balmer, M. Rieser, V.S. Vaze, S. Schönfelder and K.W. Axhausen (Forthcoming) Capturing human activity spaces: New geometries, *Transportation Research Record*.
- Schönfelder, S. (2006) Urban rhythms: Modelling the rhythms of individual travel behaviour, PhD dissertation, ETH Zürich, Zürich.
- Schönfelder S. and Axhausen K. W. (2003) Activity spaces: Measures of social exclusion? *Transportation Policy*, 10 (4) 273-286.
- Vaze V.S., S. Schönfelder and K.W. Axhausen (2005) Optimization of continuous space representation for human activity spaces, *Arbeitsbericht Vekehrs- und Raumplanung*, 295, Institut für Verkehrsplanung and Transportsysteme (IVT), ETH Zürich, Zürich