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Static Traffic Assignment Problem

Given: A traffic network G = (N ,A) , N intersections, A roads, with

- flow capacity per road, ca > 0 ∀ a ∈ A,

- free travel time per road, ta > 0 ∀ a ∈ A.

A set of origin-destination pairs each one with given demand,
OD ⊂ N ×N , dk > 0 demand of OD-pair k.

Find: An assignment of drivers on the network following a defined
behavioral principle and satisfying the demands.

The current state of a traffic network is specified by flow pattern f ,
i.e. where cars are driving, and a travel time pattern t, i.e., how
long it takes to cross roads.
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Drivers Behaviors Principle

User Equilibrium (UE): (First Wardrop principle ’52)
At user equilibrium each driver selects the fastest route,
i.e. no faster alternative is available.
Drivers are selfish.

Social Optimum (SO): (Second Wardrop principle ’52)
At social optimum, the total travel time, i.e. the sum of
all drivers’ travel times, is minimized.
Central organization controls the traffic.
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Main Assumptions

Beckmann Model ’56

The travel time ta on a road a ∈ A is given by a continuous,
positive, and strictly increasing latency function that depends
only on the total flow on these road, fa, la(fa).

Flow capacity restrictions are considered indirectly on the latency
function.

Extended Beckmann Model ’61

Additional constraints are considered (e.g. flow capacity
constraints, technical constraints, ...),

Additional travel time’s penalty (delay) has to be considered.

[Charnes and Cooper ’61, Weigel and Cremeans ’72, Ahuja ’93]
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Latency Function - Travel Time

Example: US. Bureau of Public Roads function ’64, BPR,

la(fa) = ta

(
1 + α

(
fa
ca

)β )
, α, β > 0.
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Main Assumptions (2)

Nesterov & de Palma Model ’98

The travel time ta on a road a ∈ A is a variable, which has to
satisfy

if fa < ca ⇒ ta = ta,

if fa = ca ⇒ ta ≥ ta.

Flow capacity cannot be violated.

The Models 10



Beckmann Mathematical Model

f k := (f k
r )r∈Pk

∀ k ∈ OD flow paths vector

fa :=
∑

k∈OD
∑

r∈Pk
δr
af

k
r ∀ a ∈ A

Social Optimum

B-SO min
∑

a∈A fa · la(fa) total travel time

s.t.
∑

r∈Pk
f k
r = dk ∀ k ∈ OD demand is satisfied

f k
r ≥ 0 ∀ k ∈ OD,

∀ r ∈ Pk

Convex optimization problem.
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Beckmann Mathematical Model (2)

User Equilibrium

For each OD pair k, the flow f k is at user equilibrium if and only if

f k
s > 0 ⇒ ts(f ) = minr∈Pk

tr (f ),

f k
s = 0 ⇒ ts(f ) ≥ minr∈Pk

tr (f ),

where tr (f ) =
∑

a∈r la(fa), i.e. the travel time of route r .
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Beckmann Mathematical Model (3)

Optimality conditions of the following convex optimization problem

User Equilibrium

B-UE min
∑

a∈A
∫ fa
0 la(x)dx

s.t.
∑

r∈Pk
f k
r = dk ∀ k ∈ OD

f k
r ≥ 0 ∀ k ∈ OD, ∀ r ∈ Pk
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Optimality conditions of the following convex optimization problem
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Remark: Flow pattern f and travel time pattern t are in general
different at Social Optimum and at User Equilibrium.
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Extended Beckmann Model

User Equilibrium

Bext-UE min
∑

a∈A
∫ fa
0 la(x)dx

s.t. gi (f ) ≤ 0 ∀ i ∈ I additional
constraints∑

r∈Pk
f k
r = dk ∀ k ∈ OD

f k
r ≥ 0 ∀ k ∈ OD,

∀ r ∈ Pk

where I indices of arcs, nodes or OD pairs,
gi (f ) convex and continuous differential functions.
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Extended Beckmann Model (2)

User Equilibrium

The optimal conditions of Bext-UE correspond to User Equilibrium
with generalized travel times,

tr (f
∗, ζ∗) :=

∑
a∈r

la(f
∗
a ) +

∑
i∈I

ζ∗i

(∑
a∈r

∂gi (f
∗)

∂fa

)
∀ r ∈ Pk , ∀ k ∈ OD,

where f ∗ is an optimal solution of Bext-UE
ζ∗ are the Lagrange multipliers corresponding to the additional

constraints.

(f ∗, t∗) traffic assignment at User Equilibrium
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Nesterov & de Palma Mathematical Model

Notation: f k
a :=

∑
r∈Pk

δr
af

k
r ∀ a ∈ A

Social Optimum

NdP-SO min
∑

a∈A fa · ta

s.t.
∑

k∈OD f k
a ≤ ca ∀ a ∈ A capacity constraints∑

r∈Pk
f k
r = dk ∀ k ∈ OD

f k
r ≥ 0 ∀ k ∈ OD,

∀ r ∈ Pk

Minimum cost multicommodity flow problem !
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f k
r = dk ∀ k ∈ OD

f k
r ≥ 0 ∀ k ∈ OD,

∀ r ∈ Pk

λa “travel time penalty (delay) for getting one additional unit of flow

capacity”.
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Nesterov & de Palma Mathematical Model (2)

Social Optimum

NdP-SO min
∑

a∈A fa · ta

s.t.
∑

k∈OD f k
a ≤ ca ∀ a ∈ A ⇐= λ ≥ 0∑

r∈Pk
f k
r = dk ∀ k ∈ OD

f k
r ≥ 0 ∀ k ∈ OD,

∀ r ∈ Pk

NdP-SO = Bext-UE

la(fa) := ta ∀ a ∈ A tr (f
∗, λ∗) =

∑
a∈r (ta + λ∗a) ∀ r ∈ Pk , ∀ k ∈ OD.

(f ∗, t + λ∗) traffic assignment at User Equilibrium
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Nesterov & de Palma Mathematical Model (3)

Langrange dual problem

maxλ≥0 −〈λ, c〉+
∑

k∈OD min〈f k , t + λ〉 separable per
OD pair !∑

r∈Pk
f k
r = dk

f k
r ≥ 0 ∀ r ∈ Pk
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Remark

Nesterov & de Palma Model:
Let f ∗, λ∗ primal and dual optimal solutions. Then,

(f ∗, t) is a traffic assignment at Social Optimum,
(f ∗, t + λ∗) is a traffic assignment at User Equilibrium.

λ∗ can be used as an incentive for drivers to reach the Social
Optimum (new free travel times, toll).
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Flow Distribution - Numerical Results

Since the models base the travel times on different assumptions, a
direct comparison of the travel times is not suitable.

We focus on the flow distribution in both models,

Where does congestion occur at Social Optimum? At User
Equilibrium?

How many paths are used per OD pair?

How far away from the best possible use of the network is an
assignment at User Equilibrium (price of anarchy)?

Do both models detect Braess phenomena?

We present numerical results based on a small network and a large
network.
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Small Network - Sioux Falls
Sioux Falls: 24 nodes, 76 arcs and 528 OD pairs, solved with high

accuracy using standard commercial solvers.
∗provided by Dr. Hillel Bar-Gera at www.bgu.ac.il/∼bargera/tntp/
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Small Network - Sioux Falls (2)

User Equilibrium
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Small Network - Sioux Falls (3)

Remarks

set of congested roads in Nesterov & de Palma model includes
those of Beckmann model almost ( ∼ 85 %),

drivers are less spread out in Nesterov & de Palma model than in
Beckmann model,

latency function BPR low duplicates the Nesterov & de Palma
model best, it corresponds to BPR function with the standard
parameters α = 0.15 and β = 4.
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Small Scale Network - Sioux Falls (4)

Price of Anarchy [Koutsoupias and Papadimitriou ’99]

price of anarchy =
Total Travel Time at UE
Total Travel Time at SO

price of anarchy per OD pair =
Shortest Travel Time at UE
Shortest Travel Time at SO

Model Nesterov & BPR low BPR high
de Palma Beckmann Ext. Beck. Beckmann Ext. Beck.

price of
anarchy 1.38 1.03 1.003 1.05 1.03

average price
of anarchy 1.48 1.06 1.008 1.09 1.05

per OD pair

Flow Distribution - Numerical Results 25



Small Scale Network - Sioux Falls (4)

Price of Anarchy [Koutsoupias and Papadimitriou ’99]

price of anarchy =
Total Travel Time at UE
Total Travel Time at SO

price of anarchy per OD pair =
Shortest Travel Time at UE
Shortest Travel Time at SO

Model Nesterov & BPR low BPR high
de Palma Beckmann Ext. Beck. Beckmann Ext. Beck.

price of
anarchy 1.38 1.03 1.003 1.05 1.03

average price
of anarchy 1.48 1.06 1.008 1.09 1.05

per OD pair

Flow Distribution - Numerical Results 25



Price of Anarchy

Remarks:

Depending on the choice of the latency function, the price of
anarchy is bounded for the Beckmann model.

[Tardos and Roughgarden ’02, Correa, Schulz and Stier Moses ’03]
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Price of Anarchy

Remarks:

Depending on the choice of the latency function, the price of
anarchy is bounded for the Beckmann model.

[Tardos and Roughgarden ’02, Correa, Schulz and Stier Moses ’03]

No bound is possible for the price of anarchy for the Nesterov &
de Palma model.
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20.5
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free travel timeflow capacity
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−1 1 
1

arc index
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Total Travel Time at UE >= 2
Total Travel Time at SO = 3

2
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Braess Paradox

The Braess paradox is a situation in which the addition of more
resources, i.e. roads, increases the total travel time at User
Equilibrium.

Road Nesterov & Beckmann Extend Beckmann
de Palma BPR low BPR high BPR low BPR high

5→ 6 2.02 - - - -
6→ 5 2.02 - - - -
8→ 9 3.52 - 1.36 - -
9→ 8 3.52 - 1.36 - -
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Braess Paradox (2)

Nesterov & de Palma
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Braess Paradox (3)

Beckmann BPR high
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Large Network - Zurich Regional

Map of Roads Map of Zones

Zurich Regional∗: 784 zones, 7’009 nodes and 16’936 roads

OD-pairs Total Demand

12:00 - 13:00 369’449 176’222.85
17:00 - 18:00 443’622 252’871.96
18:00 - 19:00 439’660 175’669.58

∗provided by Prof. K.W. Axhausen, IVT ETH Zurich and M. Arendt, ARE Bern.
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Large Network - Zurich Regional (2)

Beckmann Model Commercial software
- successive shortest path assignment
- flow balance
stopping criteria : maximal relative paths travel time

difference 0.05

Nesterov & de Palma Model Primal dual subgradient techniques
[Nesterov 03/05]

- computation of subgradients ∼ shortest path
- easy projections

(minimizing quadratic functions over a box)

stopping criteria: relative gap 0.005
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Large Network - Zurich Regional (3)

User Equilibrium

Nesterov & de Palma model Beckmann model

17:00 - 18:00
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Large Network - Zurich Regional (4)

Nesterov & de Palma Beckmann

Number of Average Number of Average
Congested and Overflow (%) Congested and Overflow (%)

Overflow Overflow
Roads (%) Roads (%)

12:00 - 13:00 0.08 0.74 0.02 5.68

17:00 - 18:00 0.89 2.17 0.41 12.23
18:00 - 19:00 0.27 0.75 0.05 3.84

Set of congested roads and of roads with overflow in Nesterov &
de Palma model includes those of Beckmann model almost ( ∼
80 %)
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Large Network - Zurich Regional (5)

Nesterov & de Palma Beckmann

Average Maximal Average Maximal
Number of Relative Number of Relative
Paths Used Travel Time Paths Used Travel Time
per OD-pair Difference per OD-pair Difference

12:00 - 13:00 1.057 0.04 1.162 ≤ 0.05

17:00 - 18:00 2.138 0.15 1.329 ≤ 0.05
18:00 - 19:00 1.320 0.06 1.264 ≤ 0.05

For low demand, the drivers are less spread out in Nesterov & de
Palma model than in Beckmann model.

For high demand, the drivers are more spread out in Nesterov &
de Palma model than in Beckmann model (feasibility of the
instances?).
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Final Remarks

We compared a new approach with a well established model for
the traffic assignment problem,

defining new free travel times to reach Social Optimum is easier in
Nesterov & de Palma model (duality).

A direct comparison of the travel times is not suitable ⇒ focus
on flow distribution:

set of congested roads in Nesterov & de Palma model includes
those of Beckmann model,
for the small networks the drivers are less spread out in Nesterov
& de Palma model than in Beckmann model,
for the large networks with high total demand the drivers are more
spread out in the Nesterov & de Palma model than in the
Beckmann model (feasibility of these instances?).
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Final Remarks (2)

The Beckmann models detect Braess phenomena depending on
the latency function used.

At the moment our results do not enable us to say which better
model predicts real traffic flow.

A comparison with real traffic counters’ data must be done.

A comprehensive investigation of the extended Beckmann model,
using large scale instances, should also be done to clarify the
difference to the Nesterov & de Palma model.
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Final Remarks (2)

The Beckmann models detect Braess phenomena depending on
the latency function used.

At the moment our results do not enable us to say which better
model predicts real traffic flow.

A comparison with real traffic counters’ data must be done.

A comprehensive investigation of the extended Beckmann model,
using large scale instances, should also be done to clarify the
difference to the Nesterov & de Palma model.

Thank You!
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Outline

5 Backup
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Small Network - Sioux Falls
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Braess Paradox

Extended Beckmann BPR high
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Generation of Data - Zurich Regional

1 With VISUM assign the drivers in National model, save the load
of the roads.

2 With VISUM assign the drivers of Zurich Regional in national
model, save the load of the roads.

3 Update capacities: remove from arc’s capacity the load at UE for
the National model and add the load at UE for Zurich Regional
model.

4 Delete roads not in Zurich Regional model.
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Zurich Regional - cpu time

Visum : ∼ 30 minutes for each instance

instances 00-01 07-08 08-09 12-13 17-18 18-19

cpu time [min] 54 404 (7 h) 107 96 137 112

# iterations 202 202 202 202 202 202
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Large Network - Zurich Regional

User Equilibrium

Nesterov & de Palma model Beckmann model

12:00 - 13:00
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Large Network - Zurich Regional
Flow differences at User Equilibrium

12:00 - 13:00 17:00 - 18:00

Beckmann + Beckmann = Nesterov & de Palma Nesterov &  de Palma +
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