Designing Stated Choice Experiments:

State-of-the-Art

John Rose

The University of Sydney, Australia
Institute of Transport & Logistics Studies
johnr@itls.usyd.edu.au

Michiel Bliemer

The University of Sydney, Australia
Institute of Transport & Logistics Studies
michielb@itls.usyd.edu.au

Delft University of Technology, The Netherlands
Department of Transport & Planning
m.c.i.bliemer@tudelft.nl

ETH Zurich

5th December 2007

Contents

- Stated choice experiments
- Creating stated choice experiments
- Generating experimental designs
 - o Full factorial designs
 - o Orthogonal designs
 - o Efficient designs
 - o Other designs (constrained, pivot, covariates)
- How to generate designs?

What are Stated Choice experiments?

Card Number L02A

Paper and Pencil Surveys

CAPI Surveys

Internet Surveys

Your Trip:	CAR TOLL ROAD	CAR NO TOLL
Travel time to work	45 min.	70 min.
Time variability	±1 min.	±1 min.
Toll (one way)	\$6.00	free
Pay toll if you leave between these times (otherwise free)	6:30-9:00 am	-
Fuel cost (per day)	\$6.00	\$12.00
Parking cost (per day)	\$20.00	\$10.00

Your Trip:	BUSWAY	TRAIN		
Total time in the vehicle (one way)	30 min.	30 min.		
Time from home to your closest stop	Walk Car/Bus 25 min. 8 min.	Walk Car/Bus 5 min. 4 min.		
Time to your workplace from the closest stop	Walk Bus 25 min. 8 min.	Walk Bus 5 min. 4 min.		
Frequency of service	Every 25 min.	Every 5 min.		
Return fare (per day)	\$3.00	\$3.00		

What are Stated Choice experiments?

Paper and Pencil Surveys

CAPI Surveys

Internet Surveys

What are Stated Choice experiments?

Paper and Pencil Surveys

CAPI Surveys

Internet Surveys

Stated choice experiments

Stated choice experiments

	car	train
Travel time (mins)	20	30
Fuel costs / fare (\$)	5	4
	car	train
Travel time (mins)	25	25
Fuel costs / fare (\$)	6	5
	car	train
Travel time (mins)	25	30
Fuel costs / fare (\$)	5	3

Stated choice experiments

Questionnaire

	car	train
Travel time (mins)	20	30
Fuel costs / fare (\$)	5	4
	car	train
Travel time (mins)	25	25
Fuel costs / fare (\$)	6	5
	car	train
Travel time (mins)	25	30
Fuel costs / fare (\$)	5	3

Experimental design

С	ar	tra	nin
Time	Cost	Time	Cost

•••	 	

Creating stated choice experiments

Step 1: Specify model

- which alternatives?
- which attributes?
- generic or alternative-specific param
- which model type (MNL, NL, ML)?

$$U^{car} = \beta_0 + \beta_1 \cdot Time^{car} + \beta_2 \cdot Cost^{car}$$

$$U^{train} = \beta_3 \cdot Time^{train} + \beta_2 \cdot Cost^{train}$$

alternative-specific parameters

generic parameter

Creating stated choice experiments

- how many attribute levels?
- which attribute levels (level range)?
- how many choice situations?
- which attribute level combinations?

C	ar	tra	ain
Time	Cost	Time	Cost
20	3	15	2
25	1	20	4
30	5	25	4
25	3	40	2
30	1	35	4
20	5	30	2

Creating stated choice experiments

Step 3: Construct questionnaire

Experimental design

Given:

number of alternatives, attributes, attribute levels/range

There are $3 \times 3 \times 6 \times 2 = 108$ possible different choice situations.

Full factorial design Complete set of all 108 choice situations. (typically too many for a single respondent)

Fractional factorial design
Select e.g. 6 choice situations from these
possible 108 (gives 1,38·10¹² potential designs)

- orthogonal designs
- efficient designs
- other designs (constrained, pivot, ...)

С	ar	tra	ain		
Time	Cost	Time	Cost		
20	3	15	2		
25	1	20	4		
30	5	25	4		
25	3	40	2		
30	1	35	4		
20	5	30	2		

Full factorial designs

Advantages:

- Includes all possible combinations of attribute levels
- It can be used to estimate all main effects and interaction effects
- Orthogonal (no correlations between attribute levels)

Disadvantages:

- Too many questions for a single respondent
- May contain "useless" choice situations

1	20	1	15	2
2	20	1	15	4
3	20	1	20	2 4
4	20	1	20	4
5	20	1	25	2 4
6	20	1	25	4
7	20	1	30	2 4
8	20	1	30	4
9	20	1	35	2
10	20	1	35	4
11	20	1	40	2 4
12	20	1	40	4
13	20	3	15	2 4
14	20	3	15	4
15	20	3	20	2 4
16	20	3	20	
17	20	3	25	2 4
18	20	3	25	4
<u>.</u>	·			•
				•
	:	•		· ·
	· · ·			
		5		4
101	30 30	5	25	
		5	25 25	2 4
101	30	5	25	2 4
101 102	30 30	5	25 25 30 30	2 4 2 4
101 102 103 104 105	30 30 30	5	25 25 30 30 35	2 4 2 4 2
101 102 103 104	30 30 30 30	5	25 25 30 30 35 35	2 4 2 4 2 4
101 102 103 104 105 106 107	30 30 30 30 30	5 5 5 5 5 5	25 25 30 30 35 35 40	2 4 2 4 2 4 2
101 102 103 104 105 106	30 30 30 30 30 30	5	25 25 30 30 35 35	2 4 2 4 2 4

Orthogonal designs (traditional)

Advantages:

- Orthogonal (no correlations between attribute levels)
- Fractional factorial, so only a subset of choice situations

Disadvantages:

- There may still be too many questions for a single respondent (the number of choice situations cannot be freely chosen) This problem may be solved by *blocking*.
- It may not be possible to find an orthogonal design
- May contain "useless" choice situations

1	20	3	35	2
2	25	5	15	2
3	30	1	25	2
4	25	3	25	4
5	30 20	5	35	4 4 2
6	20	1	15	4
7	20	1	30	2
8	25 30	3	40	2
9	30	5	20	2 4 4
10	30	1 3	20	4
11	30 20	3	30	4
12	25 25	5	25 25 35 15 30 40 20 20 30 40 15	4
13	25	1	15	2
14	30	3 5	25	2 2 4
15	20		35	2
16	30 20 30	5	40	4
17 18	20	1	25 35 40 20	4
18	25	3 5	30	4
19 20 21 22 23 24 25 26 27 28 29 30 31	20 25 25 30 20		30 40 20	4
20	30	1	40	4 4
21	20	3	20	4
22	30	3	35	4
23	20	5 1	15	4
24	25	1	25	4
25	20 25 25 30	5 1	35 15 25 20 30	2 2
26	30		30	2
27	20 20	3	40 40	2 2 2
28	20	1	40	2
29	25	3	20	2
30	25 30 30	5	20 30 15	2 4
31	30	3	15	4
32	20	5	25	4
33 34	25 20	1 5	35	4 2
34	20		35 25 35	
35	25	1	35	2
36	30	3	15	2

Orthogonal designs (traditional)

Orthogonality may not be that important!

- orthogonality is usually lost in the data anyway, due to
 - missing blocks of observations
 - covariates (socio-economics, such as income or gender)
- orthogonality may not be important in estimating logit models, as it is the *differences* between the attribute levels that count
- non-orthogonal designs can yield more reliable parameter estimates

Optimal Orthogonal Choice Designs

- Optimal Orthogonal Designs (OOC) has been pioneered by Street (UTS)
- The aim of OOC designs is to:
 - Maintain orthogonality in the design
 - Within alternatives, not between alternatives
 - Maximise the differences in the attribute levels across alternatives
 - Force trade-offs between all attributes in every choice situation of the design

	А	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	P
1		Design charact		haracteristics		Levels										
2		S	8		A1	A2	A3		D-eff	=	100.00%					
3		J	2		2	2	2									
4																
5					Gen:	1	1	1			A1	A2	A3	B1	B2	B3
6		S	A1	A2	A3	B1	B2	B3		A1	1					
7		1	0	0	1	1	1	0		A2	0	1				
8		2	0	0	0	1	1	1		A3	0	0	1			
9		3	1	0	0	0	1	1		B1	-1	0	0	1		
10		4	1	0	1	0	1	0		82	0	-1	0	0	1	
11		5	0	1	1	1	0	0		B 3	0	0	-1	0	0	1
12		6	0	1	0	1	0	1								
13		7	1	1	0	0	0	1								
14		8	1	1	1	0	0	0								
15																

Optimal Orthogonal Choice Designs

- Optimal Orthogonal Designs (OOC) has been pioneered by Street (UTS)
- The aim of OOC designs is to:
 - Maintain orthogonality in the design
 - Within alternatives, not between alternatives
 - Maximise the differences in the attribute levels across alternatives
 - Force trade-offs between all attributes in every choice situation of the design

	Α	В	С	D	Е	F	G	Н		J	K	L	М	N	0	P
1		Desig	n characteristics			Levels										
2		S	8		A1	A2	A3		D-eff	=	100.00%					
3		J	2		2	2	2									
4																
5					Gen:	1	1	1			A1	A2	A3	B1	B2	B3
6		S	A1	A2	A3	B1	B2	B3		A1	1					
7		1	0	0	1	1	1	0		A2	0	1				
8		2	0	0	0	1	1	1		A3	0	0	1			
9		3	1	0	0	0	1	1		B1	-1	0	0	1		
10		4	1	0	1	0	1	0		B2	0	-1	0	0	1	
11		5	0	1	1	1	0	0		B 3	0	0	-1	0	0	1
12		6	0	1	0	1	0	1								
13		7	1	1	0	0	0	1								
14		8	1	1	1	0	0	0								
15																

Optimal Orthogonal Choice Designs

http://survey.itls.usyd.edu.au/dating/SurveyController.php

Advantages:

- Fractional factorial, so only a subset of choice situations
- More or less free choice in the number of choice situations (possibility to create smaller designs)
- Aim to avoid "useless" choice situations
- Improve the reliability of the parameter estimates

Disadvantages:

- In general not orthogonal (not that important)
- Prior parameter estimates (or prior distributions) are needed
- Needs more computation power

1	20	5	35	2
2	25	5	25	2
3	30	3	20	2
4	25	1	40	4
5	30	3	30	4
6	20	1	15	4

1	30	3	15	4
2	30	1	35	4
3	30	1	20	4
4	20	1	25	4
5	25	5	30	2
6	20	3	35	2
7	20	1	20	4
8	25	3	40	2
9	25	5	25	2
10	20	5	15	2
11	30	5	30	2
12	25	3	40	4

A design is more *efficient* if (with the same number of respondents) it generates data on which the model parameters can be estimated with a greater expected reliability (i.e. lower expected standard errors).

Efficiency can be determined using the true parameter values.

Problem: true parameter values are unknown.

Solution: use prior parameter values as an indication

Prior parameter values can be obtained from e.g. literature and pilot studies.

Note:

Using prior parameter values equal to zero (i.e. no information, not even the sign) has a close correspondence with using an orthogonal design.

Which choice situation will provide the most information?

$$U^{car} = 0.2 - 0.05 \cdot Time^{car} - 0.1 \cdot Cost^{car}$$

$$U^{train} = -0.04 \cdot Time^{train} - 0.1 \cdot Cost^{train}$$

	car	train	
Travel time (mins)	20	30	$U^{car} = -0.9 (77\%)$
Fuel costs / fare (\$)	3	6	$U^{train} = -2.1$ (23%)
	car	train	
Travel time (mins)	25	20	$U^{car} = -1.3 (50\%)$
Fuel costs / fare (\$)	5	3	$U^{train} = -1.3 (50\%)$
	car	train	
Travel time (mins)	30	25	$U^{car} = -1.2 (55\%)$
Fuel costs / fare (\$)	3	4	$U^{train} = -1.4 (45\%)$

 $\Omega_N(X,\tilde{\beta})=$ (asymptotic) variance-covariance matrix of the parameter estimates using experimental design X, prior parameters $\tilde{\beta}$, and a sample size of N respondents [Note: the standard errors are the roots of the diagonals]

D-error = det $(\Omega_N)^{1/K}$

A-error $\operatorname{tr}(\Omega_N)/K$

The lower the *D*-error, the higher the efficiency of the experimental design.

Aim: Determine experimental design X that generates the lowest D-error.

$$\Omega_N(X,\tilde{\beta}) = -\left[I_N(X,\tilde{\beta})\right]^{-1}$$

$$I_{N}(X,\beta) = \frac{\partial^{2} L_{N}(X,\beta)}{\partial \beta \partial \beta'}$$

Determined (a) using Monte Carlo simulation, or

(b) analytically

$$L_N(X, \beta)$$
 = Log-likelihood function

$$L_{N}(X,\beta) = \sum_{n} \sum_{s} \sum_{i} Y_{isn} \log P_{isn}$$

 $y_{isn} = 1$, if respondent n chooses alternative i in choice situation s = 0, otherwise

 P_{isn} = probability that respondent n chooses alternative i in choice situation s

MNL
$$P_{isn} = \frac{\exp(V_i(X_{sn}, \beta))}{\sum_{j} \exp(V_j(X_{sn}, \beta))}$$

NL
$$P_{isn} = \frac{\left(\sum_{j \in J_m} \exp(V_{jsn|m}(X, \beta))^{\lambda_m}}{\sum_{k} \left(\sum_{j \in J_k} \exp(V_{jsn|k}(X, \beta))\right)^{\lambda_{nk}}} \cdot \frac{\exp(V_{isn|m}(X, \beta))}{\sum_{j \in J_m} \exp(V_{isn|m}(X, \beta))}$$

ML
$$P_{isn} = \iiint_{\beta} \frac{\exp(V_{i}(X_{sn}, \beta))}{\sum_{j} \exp(V_{j}(X_{sn}, \beta))} g(\beta \mid \theta) d\beta$$

MNL

$$\frac{\partial^2 L(X,\beta)}{\partial \beta_{k_1}^* \partial \beta_{k_2}^*} = -\sum_n \sum_s \sum_i X_{ik_1sn}^* P_{isn} \left(X_{ik_2sn}^* - \sum_j X_{jk_2sn}^* P_{jsn} \right)$$

McFadden (1974)

$$\frac{\partial^2 L(X,\beta)}{\partial \beta_{i_1 k_1} \partial \beta_{k_2}^*} = -\sum_n \sum_s X_{i_1 k_1 sn} P_{i_1 sn} \left(X_{i_1 k_2 sn}^* - \sum_j X_{j k_2 sn}^* P_{j sn} \right)$$

$$\frac{\partial^{2} \mathcal{L}(X, \beta)}{\partial \beta_{i_{1}k_{1}} \partial \beta_{i_{2}k_{2}}} = \begin{cases} \sum_{n} \sum_{s} X_{i_{1}k_{1}sn} X_{i_{2}k_{2}sn} P_{i_{1}sn} P_{i_{2}sn} & \text{if } i_{1} \neq i_{2} \\ -\sum_{n} \sum_{s} X_{i_{1}k_{1}sn} X_{i_{2}k_{2}sn} P_{i_{1}sn} \left(1 - P_{i_{2}sn}\right) & \text{if } i_{1} = i_{2} \end{cases}$$

Bliemer and Rose (2005)

Note: y drops out

NL Bliemer, Rose and Hensher (2006)

$$\frac{\partial \mathcal{L}(X_{r}(\beta,\lambda))}{\partial \beta_{k_{1}}\partial \beta_{k_{2}}} = \sum_{n} \sum_{s=1}^{S} \left\{ \sum_{m=1}^{M} P_{ms} \left[(\lambda_{m} - 1) \left(\sum_{i \in J_{mk_{1}} S} X_{mik_{1}s} P_{is|m} X_{mik_{2}s} - \sum_{i \in J_{mk_{1}}} X_{mik_{1}s} P_{is|m} X_{mik_{2}s} - \sum_{i \in J_{mk_{1}}} P_{is|m} X_{mik_{2}s} \right] \right\}$$

$$- \left(\sum_{m=1}^{M} \lambda_{m} P_{ms} \left[\left(\lambda_{m} \sum_{i \in J_{mk_{2}}} P_{is|m} X_{mik_{2}s} - \sum_{n=1}^{M} \lambda_{n} P_{ns} \sum_{i \in J_{mk_{2}}} P_{is|n} X_{nik_{2}s} \right) \sum_{i \in J_{mk_{1}}} X_{mik_{1}s} P_{is|m} X_{mik_{2}s} - \sum_{i \in J_{mk_{1}}} X_{mik_{1}s} P_{is|m} X_{mik_{1}s} P_{is|m} X_{mik_{2}s} - \sum_{i \in J_{mk_{1}}} X_{mik_{1}s} P_{is|m} X_{mik_{2}s} - \sum_{i \in J_{mk_{1}}} X_{mik_{1}s} P_{is|m} X_{mik_{2}s} - \sum_{i \in J_{mk_{1}}} P_{is|n} X_{mik_{2}s} - \sum_{i \in J_{mk_{1}}} X_{mik_{2}s} - \sum_{i \in J_{mk_{1}}} X_{mik_{1}s} P_{is|m} X_{mik_{2}s} - \sum_{i \in J_{mk_{1}}} P_{is|m} X_{mik_{2}s} - \sum_{i \in J_{mk_{1}}} P_{is|n} X_{mik_{2}s} - \sum_{i \in J_{mk_{1}}} P_{is|m} X_{mik_{1}s} P_{is|m} X_{mik_{2}s} - \sum_{i \in J_{mk_{1}}} P_{is|m} X_{mik_{1}s} P$$

Note: y drops out

ML Bliemer and Rose (2006)

$$\frac{\partial^{2}L(X,(\mu,\sigma))}{\partial\mu_{k_{1}}\partial\mu_{k_{2}}} = \sum_{s} \sum_{j} \int_{\varphi} P_{js} \left(X_{jk_{1}s} - \sum_{i \in J_{k_{1}}} P_{is} X_{ik_{1}s} \right) \left(X_{jk_{2}s} - \sum_{i \in J_{k_{2}}} P_{is} X_{ik_{2}s} \right) - P_{js} \sum_{i \in J_{k_{1}}} X_{ik_{1}s} P_{js} \left(X_{ik_{2}s} - \sum_{h \in J_{k_{2}}} P_{hs} X_{hk_{2}s} \right) \varphi d\varphi$$

$$- \frac{\int_{\varphi} P_{js} \left(X_{jk_{1}s} - \sum_{i \in J_{k_{1}}} P_{is} X_{ik_{1}s} \right) \varphi d\varphi \cdot \int_{\varphi} P_{js} \left(X_{jk_{2}s} - \sum_{i \in J_{k_{2}}} P_{js} X_{ik_{2}s} \right) \varphi d\varphi}{\int_{\varphi} P_{js} \varphi d\varphi}$$

$$- \frac{\partial^{2}L(X,(\mu,\sigma))}{\partial\mu_{k_{1}}\partial\sigma_{k_{2}}} = \sum_{s} \sum_{j} \int_{\varphi} P_{js} \left(X_{jk_{1}s} - \sum_{i \in J_{k_{1}}} P_{is} X_{ik_{1}s} \right) \left(X_{jk_{2}s} - \sum_{i \in J_{k_{2}}} P_{is} X_{ik_{2}s} \right) - P_{js} \sum_{i \in J_{k_{1}}} X_{ik_{1}s} P_{js} \left(X_{ik_{2}s} - \sum_{h \in J_{k_{2}}} P_{hs} X_{hk_{2}s} \right) \varphi_{k_{2}} \varphi d\varphi$$

$$- \frac{\int_{\varphi} P_{js} \left(X_{jk_{1}s} - \sum_{i \in J_{k_{1}}} P_{is} X_{ik_{1}s} \right) \left(X_{jk_{2}s} - \sum_{i \in J_{k_{2}}} P_{is} X_{ik_{2}s} \right) - P_{js} \sum_{i \in J_{k_{2}}} P_{is} X_{ik_{2}s} \right) \varphi_{k_{2}} \varphi d\varphi}$$

$$- \frac{\partial^{2}L(X,(\mu,\sigma))}{\partial\sigma_{k_{1}}\partial\sigma_{k_{2}}} = \sum_{s} \sum_{j} \int_{\varphi} P_{js} \left(X_{jk_{1}s} - \sum_{i \in J_{k_{1}}} P_{is} X_{ik_{1}s} \right) \left(X_{jk_{2}s} - \sum_{i \in J_{k_{2}}} P_{is} X_{ik_{2}s} \right) - P_{js} \sum_{i \in J_{k_{1}}} X_{ik_{1}s} P_{is} \left(X_{ik_{2}s} - \sum_{h \in J_{k_{2}}} P_{hs} X_{hk_{2}s} \right) \varphi_{k_{1}} \varphi d\varphi$$

$$- \frac{\partial^{2}L(X,(\mu,\sigma))}{\partial\sigma_{k_{1}}\partial\sigma_{k_{2}}} = \sum_{s} \sum_{j} \int_{\varphi} P_{js} \left(X_{jk_{1}s} - \sum_{i \in J_{k_{1}}} P_{is} X_{ik_{1}s} \right) \left(X_{jk_{2}s} - \sum_{i \in J_{k_{2}}} P_{is} X_{ik_{2}s} \right) - P_{js} \sum_{i \in J_{k_{1}}} X_{ik_{1}s} P_{is} \left(X_{ik_{2}s} - \sum_{h \in J_{k_{2}}} P_{hs} X_{hk_{2}s} \right) \varphi_{k_{1}} \varphi d\varphi$$

$$- \frac{\partial^{2}L(X,(\mu,\sigma))}{\partial\sigma_{k_{1}}\partial\sigma_{k_{2}}} = \sum_{s} \sum_{j} \int_{\varphi} P_{js} \left(X_{jk_{1}s} - \sum_{i \in J_{k_{1}}} P_{is} X_{ik_{1}s} \right) \left(X_{jk_{2}s} - \sum_{i \in J_{k_{2}}} P_{is} X_{ik_{2}s} \right) - P_{js} \sum_{i \in J_{k_{2}}} X_{ik_{2}s} P_{is} X_{ik_{2}s} \right) \varphi_{k_{1}} \varphi d\varphi$$

$$- \frac{\partial^{2}L(X,(\mu,\sigma))}{\partial\sigma_{k_{1}}\partial\sigma_{k_{2}}} = \sum_{s} \sum_{j} \int_{\varphi} P_{js} \left(X_{jk_{1}s} - \sum_{j \in J_{k_{2}}} P_{js} X_{ik_{1}s} \right) \varphi_{k_{1}} \varphi_{k_{2}} \varphi d\varphi$$

$$- \frac{\partial^{2}L(X,(\mu,\sigma))}{\partial\sigma_{k_{1}}\partial\sigma_{k_{2}}} = \sum_{$$

Note: y drops out

Interesting observation:

If all respondents face the same choice situations, then

Hence, we can derive the asymptotic variance-covariance (AVC) matrix with *N* respondents from the AVC matrix from a single respondent.

Furthermore:

$$se_{N}(X, \tilde{\beta}) = \frac{1}{\sqrt{N}} se_{1}(X, \tilde{\beta})$$

Investing in more respondents

Investing in better design

What if the priors are unreliable?

$$U^{car} = \widetilde{\beta}_0 + \widetilde{\beta}_1 Time^{car} + \widetilde{\beta}_2 . Cost^{car}$$

$$U^{train} = \widetilde{\beta}_3 Time^{train} + \widetilde{\beta}_2 . Cost^{train}$$

What if the priors are unreliable?

Efficient designs:

Minimize *D*-error =
$$det(\Omega_N(X, \tilde{\beta}))^{1/K}$$

Bayesian efficient designs:

Minimize Expected *D*-error =
$$\iiint_{\tilde{\beta}} \det(\Omega_{N}(X, \tilde{\beta}))^{1/K} f(\tilde{\beta} \mid \omega) d\tilde{\beta}$$

This integral can be approximated by

- pseudo-Monte Carlo simulation
- Modified Latin Hybercube sampling
- quasi-Monte Carlo simulation (e.g., Halton, Sobol draws)
- Guassian quadrature

A Bayesian efficient design is a more "stable" design that will be relatively efficient over a range of prior parameter values.

Other designs

Constrained designs

Some attribute level combinations may not occur

Pivot designs

Attribute levels pivoted from a knowledge base, so the design is optimized for each individual or the whole population.

E.g. levels: [-50%, 0%, +50%]

Respondent 1: travel time = 60 min. levels = $\{30, 60, 90\}$

Respondent 2: travel time = 10 min. levels = $\{5, 10, 15\}$

Designs with covariates

Adding covariates (e.g. income, gender) to utility function changes the efficiency of the design. One can create designs optimal for each individual or the whole population.

How to generate designs?

Algorithms for finding efficient designs:

- Modified Federov algorithms
- RSC (relabeling, swapping, cycling) algorithms

•..

How to generate designs?

Modified Federov Algorithm (Cook and Nachtsheim, 1980)

How to generate designs?

RSC Algorithm (Huber and Zwerina, 1996)

MNL model:

$$V_{A} = \beta_{1}X_{A1} + \beta_{2}X_{A2} + \beta_{A1}X_{A3} + \beta_{A2}X_{A4}$$

$$V_{B} = \beta_{B0} + \beta_{1}X_{B1} + \beta_{2}X_{B2} + \beta_{B1}X_{B3} + \beta_{B2}X_{B4}$$

Priors:

$$\tilde{\beta}_{1} = 0.4 \qquad \qquad \tilde{\beta}_{2} = 0.3
\tilde{\beta}_{A1} = 0.3 \qquad \qquad \tilde{\beta}_{A2} = 0.6
\tilde{\beta}_{B0} = -1.2 \qquad \tilde{\beta}_{B1} = 0.4 \qquad \tilde{\beta}_{B2} = 0.7$$

Attribute levels:

$$X_{A1} = 2,4,6;$$
 $X_{A2} = 1,3,5;$ $X_{A3} = 2\frac{1}{2},3,3\frac{1}{2};$ $X_{A4} = 4,6,8;$ $X_{B1} = 2,4,6;$ $X_{B2} = 1,3,5;$ $X_{B3} = 2\frac{1}{2},4,5\frac{1}{2};$ $X_{B4} = 4,6,8.$

"Random" design

	G′	1 G2	A1	A2	G1	G2	B0	B1	B2
	1 4	3	2.5	4	6	3	1	4	8
	2 2	3	3	6	4	1	1	5.5	6
;	3 2	5	3.5	4	6	5	1	2.5	8
	4 4	1	2.5	8	2	3	1	4	4
:	5 6	1	2.5	8	2	3	1	5.5	6
	6	5	3.5	6	6	5	1	2.5	4
	7 2	5	2.5	4	4	5	1	5.5	8
	8 4	1	3.5	4	6	1	1	2.5	6
!	9 2	3	3	6	2	1	1	5.5	8
1	0 6	1	3	8	2	1	1	4	4
1	1 4	5	3.5	6	4	5	1	2.5	4
13	2 6	3	3	8	4	3	1	4	6

correlation matrix:

	G1	G2	A1	A2	G1	G2	B1	B2
G1	1.00							
G2	-0.38	1.00						
A1	0.00	0.38	1.00					
A2	0.63	-0.50	-0.25	1.00				
G1	-0.13	0.50	0.50	-0.75	1.00			
		0.75						
B1	-0.25	-0.25	-0.75	0.25	-0.63	-0.38	1.00	
B2	-0.63	0.25	-0.25	-0.63	0.25	0.00	0.38	1.00

D-error = 1.7470

Orthogonal design

	G1	G2	A1	A2	G1	G2	B0	B1	B2
1	4	1	3.5	6	2	3	1	4	4
2	2	1	3.5	8	6	5	1	4	8
3	2	3	3	4	6	1	1	5.5	4
4	2	3	3	6	2	3	1	2.5	4
5	4	3	3	6	2	3	1	5.5	8
6	6	1	2.5	4	4	5	1	5.5	6
7	6	5	3.5	8	4	1	1	5.5	6
8	6	1	2.5	8	4	1	1	2.5	6
9	4	5	2.5	8	6	5	1	4	4
10	6	5	3.5	4	4	5	1	2.5	6
11	4	3	3	4	6	1	1	2.5	8
12	2	5	2.5	6	2	3	1	4	8

correlation matrix:

	G1	G2	A1	A2	G1	G2	B1	B2
G1	1.00							
G2	0.00	1.00						
A1	0.00	0.00	1.00					
A2	0.00	0.00	0.00	1.00				
G1	0.00	0.00	0.00	0.00	1.00			
G2	0.00	0.00	0.00	0.00	0.00	1.00		
B1	0.00	0.00	0.00	0.00	0.00	0.00	1.00	
B2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00

D-error = 0.4251

Efficient design

	G1	G2	A1	A2	G1	G2	B0	B1	B2
1	4	3	3	4	6	3	1	4	6
2	2	3	3	6	4	3	1	5.5	6
3	6	1	2.5	8	2	5	1	4	8
4	4	1	3.5	4	4	5	1	2.5	4
5	4	5	3.5	6	4	1	1	5.5	6
6	6	5	2.5	4	2	1	1	2.5	8
7	6	3	3	6	4	3	1	4	4
8	2	5	2.5	6	6	1	1	5.5	4
9	2	5	3.5	8	6	1	1	2.5	8
10	4	1	3.5	8	2	5	1	5.5	6
11	2	1	2.5	8	6	5	1	2.5	4
12	6	3	3	4	2	3	1	4	8

correlation matrix:

	G1	G2	A1	A2	G1	G2	B1	B2
G1	1.00							
G2	-0.13	1.00						
A1	-0.13	0.00	1.00					
A2	-0.38	-0.25	0.00	1.00				
G1	-0.75	0.25	0.00	0.13	1.00			
G2	0.13	-1.00	0.00	0.25	-0.25	1.00		
B1	-0.13	0.13	0.13	0.13	-0.13	-0.13	1.00	
B2	0.38	0.25	0.00	0.00	-0.50	-0.25	-0.13	1.00

D-error = 0.1949

Orthogonal efficient design

	G1	G2	A1	A2	G1	G2	B0	B1	B2
1	4	5	3.5	8	6	1	1	4	8
2	4	3	3	4	6	5	1	2.5	4
3	2	5	3.5	6	2	3	1	4	4
4	6	1	3.5	8	4	5	1	2.5	6
5	4	1	2.5	6	2	3	1	4	8
6	6	5	2.5	4	4	1	1	2.5	6
7	6	1	3.5	4	4	1	1	5.5	6
8	6	5	2.5	8	4	5	1	5.5	6
9	2	3	3	4	6	5	1	5.5	8
10	2	3	3	6	2	3	1	2.5	8
11	4	3	3	6	2	3	1	5.5	4
12	2	1	2.5	8	6	1	1	4	4

correlation matrix:

	G1	G2	A1	A2	G1	G2	B1	B2
G1	1.00							
G2	0.00	1.00						
A1	0.00	0.00	1.00					
A2	0.00	0.00	0.00	1.00				
G1	0.00	0.00	0.00	0.00	1.00			
G2	0.00	0.00	0.00	0.00	0.00	1.00		
B1	0.00	0.00	0.00	0.00	0.00	0.00	1.00	
B2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.00

D-error = 0.2918

$$V_{A} = \beta_{1}X_{A1} + \beta_{2}X_{A2} + \beta_{A1}X_{A3} + \beta_{A2}X_{A4}$$

$$V_{B} = \beta_{B0} + \beta_{1}X_{B1} + \beta_{2}X_{B2} + \beta_{B1}X_{B3} + \beta_{B2}X_{B4}$$

Optimal Choice Probability Designs

- Optimal choice percentage designs are basically D-efficient designs that are made more efficient by assuming that one attribute has continuous attribute levels (e.g., price)
- Pre-determined attribute levels (e.g., {1,3,5}) put a constraint on the efficiency of a design; the efficiency could be improved if the attribute level is assumed continuous on a range (e.g., [1,5])

Optimal Choice Probability Designs (cont'd)

Which choice situation yields the lowest *D*-error?

Model:
$$U_A = \beta_1 A_1 + \beta_2 A_2$$
 Priors: $\beta_1 = 0.1$

$$H = R D + R D$$

$$U_B = \beta_1 B_1 + \beta_2 B_2 \qquad \beta_2 = 0.2$$

Priors:
$$\beta_1 = 0.1$$

$$\beta_2 = 0.2$$

$$P_A = 0.50, \quad P_B = 0.50$$

$$P_A = 0.01, \quad P_B = 0.99$$

$$P_A = 0.18, \quad P_B = 0.82$$

$$P_A = 0.40, \quad P_B = 0.60$$

Optimal Choice Probability Designs (cont'd)

 In case of a generic model with two alternatives, the following optimal choice probabilities hold:

Number of attributes	Optimal choice probabilties
2	0.82 / 0.18
3	0.77 / 0.23
4	0.74 / 0.26
5	0.72 / 0.28
6	0.70 / 0.30
7	0.68 / 0.32
8	0.67 / 0.33

These probabilities are sometimes called Magic P values

Source: Johnson et al. (2006)

- What are the optimal probabilities for 3 or more alternatives?
- What if the model is not generic?

Generating Optimal Choice Prob. Designs

- Step 2: Generate orthogonal designs for second alternative using a fold-over (reversing attribute levels)
- Step 3: Select attribute with continuous levels
- Step 4: Look up optimal choice probabilities from table
- Step 5: Change attribute levels of the continuous attribute such that in each choice situation these optimal choice probabilities are matched

Generating Optimal Choice Prob. Designs

	A1	B1	C1	D1	E1	A2	B2	C2	D2	E2	PA	PB
1	1	4	0	1	1	10	8	1	0	0	1.00	0.00
2	10	4	0	0	0	1	8	1	1	1	0.01	0.99
3	1	8	0	0	1	10	4	1	1	0	0.90	0.10
4	10	8	0	1	0	1	4	1	0	1	0.00	1.00
5	1	4	1	1	0	10	8	0	0	1	1.00	0.00
6	10	4	1	0	1	1	8	0	1	0	0.01	0.99
7	1	8	1	0	0	10	4	0	1	1	0.98	0.02
8	10	8	1	1	1	1	4	0	0	0	0.00	1.00

D-error = 3.5846

	A1	B1	C1	D1	E1	A2	B2	C2	D2	E2	PA	PB
1	10	4	0	1	1	8.876	8	1	0	0	0.72	0.28
2	4.209	4	0	0	0	1	8	1	1	1	0.28	0.72
3	3.124	8	0	0	1	10	4	1	1	0	0.72	0.28
4	1.542	8	0	1	0	1	4	1	0	1	0.28	0.72
5	10	4	1	1	0	6.209	8	0	0	1	0.72	0.28
6	3.542	4	1	0	1	1	8	0	1	0	0.28	0.72
7	5.791	8	1	0	0	10	4	0	1	1	0.72	0.28
8	1	8	1	1	1	1.124	4	0	0	0	0.28	0.72

D-error = 0.2969

lowest *D*-error with fixed levels: 0.3750

Questions?

