Patterns of daily movement: An agent-based model of Switzerland

KW Axhausen

August 2008
Why transport planning/traffic engineering?

• Provide forecasts of the changes in use and impact of transport system change (short term to long term)

• Assess the economic viability of those changes (social benefit or individual/firm benefit)

• Provide input into the political assessment of projects and service changes

• Optimise the operation of the systems (social costs)
A peak hour
Conceptual understanding

- Personal worlds of others
- Social capital: stock of joint abilities, shared histories and commitments
- Biography
- Personal world
- Projects
- Learning
- Household locations
- Social network geography
- Mobility tools
Time horizons of transport planning

<table>
<thead>
<tr>
<th>Time horizon</th>
<th>System</th>
<th>Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Long term</td>
<td>Slots</td>
<td>Home/work location</td>
</tr>
<tr>
<td></td>
<td>Regulation</td>
<td>Car ownership</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social networks</td>
</tr>
<tr>
<td>Medium term</td>
<td>Services offered</td>
<td>Season tickets</td>
</tr>
<tr>
<td></td>
<td>Prices</td>
<td>Projects</td>
</tr>
<tr>
<td></td>
<td>Awareness</td>
<td></td>
</tr>
<tr>
<td>Short term</td>
<td>Operation</td>
<td>Daily schedule</td>
</tr>
</tbody>
</table>
Generalized cost function of the schedule

Risk and comfort-adjusted weighted sum of times, expenditures and social content of activities and travel:

\[U_{plan} = \sum_{i=1}^{n} U_{act,i} + \sum_{i=2}^{n} U_{trav,i-1,i} \]

\[U_{act,i} = U_{dur,i} + U_{late.ar,i} \]
Choices currently modelled in MATSim-T

- Number and type of activities
- Sequence of activities

- Start and duration of activity
- Composition of the group undertaking the activity
- Expenditure division
- Location of the activity

- Connection between sequential locations

- Location of access and egress from the mean of transport
- Vehicle/means of transport
- Route/service
- Group travelling together
- Expenditure division
What does MATSim-T do?

Demand q are the i^{th} movements of person p from the current location at time t on route (connection) r to location j. The resulting generalised costs k are used to adjust the schedules and to change the capacities C and prices P of facilities f.
What does it return?

<person id="22018">
 <plan score="157.72" selected="yes">
 <act type="h" x="703600" y="236900" link="5757" end_time="07:35:04" />
 <leg num="0" mode="car" dep_time="07:35:04" trav_time="00:16:31">
 <route>1900 1899 1897</route>
 </leg>
 <act type="w" x="702500" y="236400" link="5749" dur="08:12:05" />
 <leg num="1" mode="car" dep_time="16:03:40" trav_time="01:10:22">
 <route>1899 1848 1925 1924 1923 1922 1068</route>
 </leg>
 <act type="l" x="681450" y="246550" link="2140" dur="01:20:00" />
 <leg num="2" mode="car" dep_time="" trav_time="00:34:35">
 <route>1067 1136 1137 1921 1922 1923 1925 1848 1899</route>
 </leg>
 <act type="h" x="703600" y="236900" link="5757" />
 </plan>
</person>
MATSIM-T: Steady-state version

- Scale:
 - 7.5 mio agents,
 - 2 mio homes
 - 1 mio facilities
 - 1 mio links and nodes

- Continuous time resolution: Seconds
- Spatial resolution: Address (individual facilities)
Example: 3% of Swiss population
Example: Computing times by step

<table>
<thead>
<tr>
<th>Operation</th>
<th>Unit</th>
<th>Units/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial demand</td>
<td></td>
<td>0.12h</td>
</tr>
<tr>
<td>Scheduling (fixed components)</td>
<td></td>
<td>14.40h</td>
</tr>
<tr>
<td>Scheduling (planomat)</td>
<td>Agent</td>
<td>100</td>
</tr>
<tr>
<td>Scheduling (routing)</td>
<td>Agent</td>
<td>1000</td>
</tr>
<tr>
<td>Time-step based traffic flow simulation</td>
<td>Agent</td>
<td>300</td>
</tr>
<tr>
<td>Learning</td>
<td>Agent</td>
<td>250’000</td>
</tr>
<tr>
<td>Total iteration (with I/O)</td>
<td></td>
<td>0.22h</td>
</tr>
<tr>
<td>Total run (with I/O) (100 iterations)</td>
<td></td>
<td>23h</td>
</tr>
</tbody>
</table>
Example: Score/generalised costs by iteration
Westumfahrung Zürich: Before
Validation of status-quo
Westumfahrung Zürich: After
Outlook: Exploit the existing (coming) data wealth

Adapted from Botte, 2003
Outlook: Integration of supply side actors

Adapted from Botte, 2003
Outlook: Joint choice and information flow
Outlook

- Stability of simulation with multiple actor types
- Path dependence
- Development of crisis
- Validation
- Computing times
Kay Axhausen, ETH
Michael Balmer, ETH
David Charypar, ETH
Yu Chen, TU Berlin
Francesco Ciari, ETH
Matthias Feil, ETH
Dominik Grether, TU Berlin
Jeremy Hackney, ETH
Andreas Horni, ETH
Johannes Illenberger, TU Berlin
Gregor Lämmel, TU Berlin
Fabrice Marchal, CRNS/LET
Konrad Meister, ETH
Kai Nagel, TU Berlin
Andreas Neumann, TU Berlin
Marcel Rieser, TU Berlin
Nadine Schüssler, ETH
David Strippgen, TU Berlin
Rashid Waraish, ETH
Christoph Zöllig, ETH