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State of Practice in Network Modeling

1 Most agencies use static assignment models often lacking formal

S a e o ac ce e o ode g

1.  Most agencies use static assignment models, often lacking formal 
equilibration, with very limited behavioral sensitivity to congestion-related 
phenomena (incl. reliability)

2.  Some agencies use traffic microsimulation models downstream from 
assignment  model output, primarily for local impact assessment

3. Time-dependent (dynamic) assignment models beginning to break out of3. Time dependent (dynamic) assignment models beginning to break out of 
University research into actual application– market still small, fragmented, with 
many competing claims and absence of standards:

existing static players adding dynamic simulation-based capabilities, 
INRO (DYNAMEQ) C li (T d) CUBE (V )e.g.  INRO (DYNAMEQ); Caliper (Transcad); CUBE (Voyager)

existing traffic microsimulation tools adding assignment (route choice)
capability, e.g. AIMSUN-NG; VISSIM/VISUM

standalone simulation-based DTA tools, e.g. DYNASMART-P 
(distributed by FHWA); VISTA (tie in w. PTV-VISSIM) 



State of Practice in Network Modeling (ctd.)

4.  Applications to date complementary, not substitutes, for static assignment; 
primary applications for operational planning purposes: work zones, evacuation,

g ( )

primary applications for operational planning purposes:  work zones, evacuation, 
ITS deployment, HOT lanes, network resilience, etc…   Still not introduced in core 
4-step process, nor integrated with activity-based models

5 E isting commercial soft are differs idel in capabilities reliabilit and5.  Existing commercial software differs widely in capabilities, reliability and 
features; not well tested.

6. Equilibration for dynamic models not well understood, and often not performedq y p

7. Dominant features, first introduced by DYNASMART-P in mid 90’s:

Micro assignment of travelers; ability to apply disaggregate demand modelsMicro-assignment of travelers; ability to apply disaggregate demand models
Meso-simulation for traffic flow propagation:  move individual entitities, but 

according to traffic flow relations among averages (macroscopic speed-density 
relations):  faster execution, easier calibration

Ability to load trip chains (only tool with this capability, essential to integrate 
with activity-based models)



APPLICATION TO BALTIMORE REGIONAL NETWORK

DTA Model Run
25,375 links

11,170 nodes

1,463 TAZs1,463 TAZs

1,901,000 vehicles    
generated for AM peak 
period (6-10 AM)



OD Estimation performance on selected links
Link 12893
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OD Estimation performance on selected links (ctd.)
Link 6098
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OD Estimation performance on selected links

Estimation performance for Link 13326
(I-95 NB @ MD Welcome Center 
North) 
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DISINTEGRATING DEMAND AND SUPPLY

THE KEY IS THE PLATFORM:
SIMULATION-BASED DTA

CRITICAL LINK 1: 
LOADING INDIVIDUAL TRIP CHAINS

CRITICAL LINK 2:
MODELING AND ASSIGNING
HETEROGENEOUS USERS 



A critical missing link: modeling activity/trip chains 
in network assignment models

Origin

Stop 1

final destination



Dynamic Micro-Assignment 
of Travel Demand with 
Activity/Trip Chains

based on work with Ahmed Abdelghany, 
PhD Dissertation at UT-AustinPhD Dissertation at UT Austin



Capabilities/Operational ModesCapabilities/Operational Modes



Stochastic Temporal-Spatial 
Micro Assignment of TravelMicro-Assignment of Travel 
Demand with Activity/Trip Chains



22-- Iterative Iterative 
simulationsimulationsimulation simulation 
assignment assignment 
model (UEmodel (UEmodel (UE model (UE 
procedure) procedure) 



Critical Link 2:

Modeling and assigning  
h theterogeneous users--

exercising user preferences for 
path-based attributesp



Essential Aspect of User Response Not Considered in 
Existing Network Modeling Methods

User Heterogeneity
Critical limitation of existing dynamic traffic assignment tools

g g

Each trip-maker chooses a path that minimizes the two major path travel 
criteria: travel time and out-of-pocket cost (path generalized cost).
Conventional traffic assignment models consider a homogeneous 
perception of tolls by assuming a constant VOT in the path choice model.
Empirical studies (e.g. Hensher, 2001; Brownstone and Small 2005; 
Cirillo et al. 2006) found that the VOT varies significantly across 
individualsindividuals.

Path A: 45 minutes + $2
High 

Home
OfficeVOT

L

Path B: 55 minutes + $0

Low 
VOT



Beyond Value of Time…
User Heterogeneity

Present in valuation of key attributes, and riskPresent in valuation of key attributes, and risk 
attitudes

Value of schedule delay (early vs. late, relative y ( y ,
to preferred arrival time), critical in departure 
time choice decisions.
Value of reliability.
Risk attitudes.

Causes significant challenge in integrating 
behavioral models in network 
simulation/assignment platforms



Dealing with Heterogeneity in Existing Network Models

1 Ignore: route choice main dimension captured; replace travel time by travel1.  Ignore:  route choice main dimension captured; replace travel time by travel 
cost in shortest path code, assuming constant VOT.

2. When multiple response classes recognized, discrete classes with specific 
coefficient values are used; number of classes can increase rapidly; not too 
common in practice.

3. Some recent developments with DYNASMART-P:3. Some recent developments with DYNASMART P:

Heterogeneous users with continuous coefficient values; made possible by 

Breakthrough in parametric approach to bi-criterion shortest pathBreakthrough in parametric approach to bi criterion shortest path 
calculation.

Include departure time and mode, in addition to route choice, in user 
responses, in equilibrium frameworkresponses, in equilibrium framework



Recent Methodological Development

Develop Multi-Criterion Simultaneous Route and 
D t Ti U E ilib i (MSRDUE) d lDeparture Time User Equilibrium (MSRDUE) models 
and algorithms

Address the heterogeneous user preference of path and/or dd ess t e ete oge eous use p e e e ce o pat a d/o
departure time choices in response to time-varying toll charges. 
Capture traffic flow dynamics and spatial and temporal vehicular 
interactions (simulation based approach)interactions (simulation-based approach). 
Adhere to the time-dependent generalization of Wardrop’s UE 
principle (gap function measures the deviation from equilibrium).
Be deployable on road traffic networks of practical sizes 
(vehicle-based implementation technique).



Problem Statement

Assumptions:
G(N, A), discretized planning horizon, and time-dependent link tolls.
Define schedule delay as the difference between actual and 
preferred arrival times (PAT).

Every trip-maker has his/her own PAT interval θ
Early schedule delay (ESD) and late schedule delay (LSD)
Value of ESD (VOESD β) and value of LSD (VOLSD λ)

Th i d t i t i d b t i k ith θ βThe experienced trip cost perceived by a trip-maker with θ, α, β,
and λ

)()(),,,( θλθβαλβαθ τττττ
odpodpodpodpodp LSDESDTTTCG ×+×+×+=

where

VOT α, VOESD β, and VOLSD λ are continuously distributed 

ppppp

},0max{)( midlb
odpESD τθθτ −= },0max{)( ubmid

odpLSD θτθτ −=
Path generalized cost Schedule delay cost

, β, y
across trip-makers with given probability density functions and 
feasible ranges.



Problem Statement (ctd.)

Departure time and path choice behavioral assumption: 
Each trip maker chooses the alternative that minimizes the experiencedEach trip-maker chooses the alternative that minimizes the experienced 
trip cost with respect to his/her PAT, VOT, VOESD, and VOLSD.
An alternative is a combination of arrival time interval and the 
corresponding least generalized cost path (that arrives the destination at 
that arrival time interval).

Multi-criterion simultaneous route and departure time UE (MSRDUE)
For each OD pair, cannot decrease the experienced trip cost (given user’s 
particular VOT, VOESD, VOLSD, and PAT interval) by unilaterally 
changing departure time and/or path. 

Each trip-maker is assigned to the alternative that has the least trip 
cost with respect to his/her own PAT VOT VOESD and VOLSDcost with respect to his/her own PAT, VOT, VOESD, and VOLSD. 

MSRDUE problem: 
Under a given time-dependent road pricing scenario, solve for the

departure time and path flow patterns satisfying the MSRDUE 
conditions.



Why is this problem difficult?y p
Relaxation of VOT from constant to continuous random 
variable

Find an equilibrium state resulting from the interactions of (possibly 
infinite) many classes of trips, each of which corresponds to a 
class-specific VOT.

Comp ting and storing s ch a grand path set is comp tationallComputing and storing such a grand path set is computationally 
intractable and memory intensive in (road) network applications of 
practical sizes 

Parametric Analysis Method (PAM) to find the set of extreme y ( )
efficient (or non-dominated) path trees

In the disutility minimization-based 
path choice modeling framework 
with convex disutility functions

Cost
Dominated paths

with convex disutility functions
All trips would choose only among 
the set of extreme efficient paths
Applications in static assignment

Non-extreme 
efficient paths

(Dial, 1996; Marcotte, 1997)

Time

Extreme efficient paths

(Henig, 1985)



Determine VOT, VOESD, and VOLSD breakpoints that define multi-

Sequential Parametric Analysis Method (SPAM)

user classes, and find the least trip cost (extreme non-dominated)
alternative for each user class

Repeat the two stages for each destination: d = 1 D

1

Stage 1: parametric analysis
f O

d D

Repeat the two stages for each destination: d = 1,...,D
..... .....

of VOT

minα maxα
1α 2α 3α

Tr(1) Tr(2) Tr(3)
St 2
parametric analysis

of VOESD
parametric analysis

of VOLSD
minβ minλ maxλ

Stage 2:

1β2β 1λ2λmaxβ
1β2β 1λ2λ

Repeat the second stage for each VOT subinterval: b=1,...,3



P t i A l i f VOT t 1 f th SPAM

Determine the breakpoints that partition the feasible VOT range and define the

Parametric Analysis of VOT – stage 1 of the SPAM

Determine the breakpoints that partition the feasible VOT range and define the 
master user classes, and find time-dependent least generalized cost path tree for 
each user class.

VOT

αmin αmax

Tree(1) Tree(2) Tree(3) Tree(4) Tree(5) Tree(6)

Time •Each tree consists of time-
dependent least generalized cost 
paths from all origin nodes to a 
d i i d f ll i ldestination node, for all arrival 
time intervals.
•To determine the subinterval of 
VOT, in which the current tree 

Cost

VO , w c t e cu e t t ee
Tr(α) is optimal.



Parametric Analysis of VOESD and VOLSD 
for a VOT subinterval – stage 2 of the SPAM

Given a time-dependent extreme efficient path tree Tr(b)
di t th VOT bi t l [ b 1 b) th t icorresponding to the VOT subinterval [α b-1, α b), the parametric 

analyses of VOESD and VOLSD are conducted in an expanded 
network.

Arrival Times PAT intervals

),( 1τd

)( τd

p1

))(,( 11 τδτ oo −

))(,( 22 τδτ oo −

),'( 1θd
ESD/LSD

),( 3τd

),( 2τd
p2

p3

))(,( 33 τδτ oo −

),'( 2θd

),'( 3θd

),( 4τd

p3

p4

))(,( 44 τδτ oo −
),'( 4θd

p5

))(,( 55 τδτ oo − ),( 5τd
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Parametric Analysis of VOESD and VOLSD 
for a VOT subinterval

A lAn example

1τ
Arrival Times

1θ
PAT

))(,( 11 τδτ oo − ESD
+

minβ

2τ 2θ))(,( 22 τδτ oo −

+p1

p2
λ

3τ

4τ

3θ

4θ

))(,( 33 τδτ oo −

))(( τδτo

current
PATp3

1β

maxβ 1λ

maxλ

4 4))(,( 44 τδτ oo −

5τ))(,( 55 τδτ oo − 5θ
LSD

+

p4

maxβ

+p5

minλ



Parametric Analysis of VOESD and VOLSD 

Output of the SPAM

y
for a VOT subinterval

Output of the SPAM
VOESD breakpoints that define the subintervals, and the least trip cost 
alternative for each subinterval. ∀b, ∀θ,

}|{)( min),(10max),(10 βββββββββθβ θθ =>>>>>== bMmbMb

VOLSD breakpoints that define the subintervals, and the least trip cost 
alternative for each subinterval. ∀b, ∀θ,

}......|,...,,{),( βββββββββθβ >>>>>b

),(,...,1   ,*)*,(  ,),[ ,,,
1 θτββ θθ bMmp mbb

mm =−

Multiple user classes: for each VOT subinterval b and PAT θ,

}......|,...,,{),( min),(10max),(10 λλλλλλλλλθλ θθ =>>>>>== bNnbNb
),(,...,1   ,*)*,(  ,),[ ,,,

1 θτλλ θθ bNnp nbb
nn =−

Multiple user classes: for each VOT subinterval b and PAT θ,

Simplified as u(b,θ, m, n)
The corresponding set of least trip cost alternatives

),(,...,1  ),,(,...,1  ),,,,( ),(),( θθθ θλθβ bNnbMmnmbu bb ==

The corresponding set of least trip cost alternatives

),,(),,(),,,( ,, θθ θθθ bodbodod nbaltmbaltnmbalt ∪=



Column Generation-based MSRDUE algorithm

Input
OD demand link tollsOD demand, link tolls,
VOT distribution, and
initial path assignment

Initialization
Sequential Parametric

Analysis Method (SPAM)Initialization
Traffic simulation to
evaluate initial path

assignment

Analysis Method (SPAM)
VOT, VOESD, VOLSD

breakpoints definig multi-user
classes and extreme efficient

alternatives for each class

Convergence
Checking?

Output path flows
and terminateYES

NO

Multi-class Path
Flow Updating

Scheme

Outer Loop:
Multi-class Dynamic

Network Loading
Traffic Simulation

Outer Loop:
Alternative Generation Inner Loop:

Equilibration

Convergence
Checking?

YES NO



Multi-Class Flow Updating and 
Convergence Checking

Multi-Class Alternative Flow Updating Scheme
Multiple user classes u(b θ m n) are naturally determined by the

Co e ge ce C ec g

Multiple user classes u(b,θ, m, n) are naturally determined by the 
SPAM.
Decomposes the problem into many (b,θ,m,n,o,d) sub-problems 
and solves each of them by adjusting OD flows between non-least y j g
trip cost alternatives and the least trip cost alternative.
Extension of the multi-class path flow updating scheme for the 
BDUE

Convergence Checking
Gap

∑ ∑∑ ∑ Δ×= ,, ),,,(),,,()( l
odp

l
odp

l nmbnmbrrGap ττ θθ

Average Gap
∈),,,( ),,,(),(nmbu o d nmbaltp odθ θτ

∑ ∑∑ ∑
∈

Δ×
)( )()(

,, ),,,(),,,(
)( nmbu o d nmbaltp

l
odp

l
odp nmbnmbr

θ θτ

ττ θθ

∑ ∑∑ ∑
∈
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,
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l
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od
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rAGap

θ θτ

τ
θ θτ

θ



Numerical Experiments and Results

Purpose

Numerical Experiments and Results

Examine the algorithmic convergence property and solution quality of the 
algorithm 
Investigate how the random parameters would affect departure time and 
path flow patterns (or toll road usage) under different dynamic pricingpath flow patterns (or toll road usage) under different dynamic pricing 
scenarios (i.e. to compare the random and constant parameter models).

Random parameters
VOT di t ib ti N($0 4/ i $0 2/ i ) [ min max] [0 01 3 0]VOT distribution: N($0.4/min, $0.2/min), [α min,α max] = [0.01, 3.0]

(Lam and Small, 2001; Brownstone and Small, 2005; Southern CA)
VOESD distribution: N($0.3/min, $0.15/min), [β min, β max] = [0.01, 2.0]
VOLSD di t ib ti N($1 8/ i $0 6/ i ) [λ min λ ma ] [0 25 4 0]VOLSD distribution: N($1.8/min, $0.6/min), [λ min, λ max] = [0.25, 4.0]

(economic judgments based on the results reported in Small (1982))

Arrival time and PAT intervals: 5 minutes.



Numerical Experiments and Results

E i t d t d th F t W th t k (TX)

Numerical Experiments and Results

Experiment conducted on the Fort Worth network (TX)
Select a critical OD pair that accounts for 25% of total demand.
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Numerical Experiments and Results

Experiment conducted on the Fort Worth network (TX)
Con ergence pattern and sol tion q alit in terms of A erageConvergence pattern and solution quality in terms of Average 
Gap.
Convergence pattern in terms of departure time distribution
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Numerical Experiments and Results

E i t d t d F t W th t k (TX)

Numerical Experiments and Results

Experiment conducted on Fort Worth network (TX)
Convergence pattern in terms of the number of schedule delay 
vehicles (i.e. early, late, and on-time vehicles) in the random 
parameter model
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Numerical Experiments and Results

E i t d t d th F t W th t k (TX)

Numerical Experiments and Results

Experiment conducted on the Fort Worth network (TX)
Compare the differences in departure time distribution and toll 
road usage between random and constant parameter models
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Numerical Experiments and Results

E i t d t d th F t W th t k (TX)

Numerical Experiments and Results

Experiment conducted on the Fort Worth network (TX)
Comparison of departure time distribution and toll road usage 
under different dynamic pricing scenarios
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Concluding RemarksConcluding Remarks

Integration of activity-based models and network models requires:
disaggregate micro-assignment platform; simulating traffic dynamics at mesodisaggregate micro-assignment platform; simulating traffic dynamics at meso
scale allows application  to large networks 
Retaining activity/trip chains as basic assignment entity; do not break into 
individual trips
Capturing user heterogeneity while retaining computational tractabilityCapturing user heterogeneity while retaining computational tractability
Integration is more than mere “juxtaposition”  or back and forth iteration between 
models designed for separate purposes

DTA software can readily integrate today with rich activity-basedDTA software can readily integrate today with rich activity based 
micro-level software through “vehicle” and “path” files
Equilibration with choice dimensions other than route choice, with 
general VOT distribution still in experimental software stage
Rapid development in new algorithms and intelligent 
implementations of equilibration algorithms designed to operate with 
particle-based micro-assignment models
E i t d t d fi d ilib i ( ifi dExperience to date:  procedures can find equilibrium (verified 
through gap function methods), but uniqueness not likely for the 
general case with heterogeneous users (known from static case)






