Preferred citation style

MATSim-T: An overview

KW Axhausen

April 2009
Structure

Software:

• Open-source project under GNU public licence

Coordination:

• Kai Nagel, TU Berlin
• Kay Axhausen, ETH Zürich
• Michael Balmer, ETH Zürich
• Marcel Rieser, TU Berlin
What does MATSim-T currently do?

Demand q are the i^{th} movements of person p from the current location at time t on route (connection) r to location j. The resulting generalised costs k are used to adjust the schedules and to change the capacities C and prices P of facilities f.

\[
q_i \equiv (t,r,j)_{i,n}
\]

\[
k(t,r,j)_{i,n}
\]

\[
\beta_{i,t,r,j,k}
\]
MATSim-T: Scale and approach

- Scale: 10^7 agents, 10^6 facilities, 10^6 links and nodes
- Continuous time resolution
- Trip-based resolution of movement

- Shared time-of-day dependent generalised costs of travel and activity participation
- Queuing for slots for movement and activities

- Best-response/choice models for schedules
 - Best-response models for schedule and route construction
 - Choice models for locations
Current configuration: Initial demand generation

- **Number and type of activities**
- **Sequence of activities**

 - (Rough) start and duration of activity
 - Composition of the group undertaking the activity
 - Expenditure division
 - **Location of the activity**

 - Connection between sequential locations

 - Location of access and egress from the mean of transport
 - **Vehicle/means of transport**
 - Route/service
 - Group travelling together
 - Expenditure division
Current configuration: (Iterative) activity scheduling

- Number and type of activities
- Sequence of activities
 - Start and duration of activity
 - Composition of the group undertaking the activity
 - Expenditure division
 - Location of the activity
- Connection between sequential locations
 - Location of access and egress from the mean of transport
 - Vehicle/means of transport
 - Route/service
 - Group travelling together
 - Expenditure division
End of 2009 configuration: (Iterative) activity scheduling

- Number and type of activities
- Sequence of activities
 - Start and duration of activity
 - Composition of the group undertaking the activity
 - Expenditure division
 - Location of the activity
- Connection between sequential locations
 - Location of access and egress from the mean of transport
 - Vehicle/means of transport
 - Route/service
 - Group (household members) travelling together
 - Expenditure division
Issues: Getting new users/scenarios started?

- Tools for migrating from existing transport models
- Tools to capture diverse land use/parcel information
- Translators/cleaners for navigation networks
- Population generator(s)
Issues: Numerical and conceptual questions

• Equilibrium or development paths?

• Nature of the equilibrium (“Schedule” inclusive of Wardrop?)
 • Number of iterations to equilibrium
 • Quality of the equilibrium
 • Uniqueness of equilibrium

• Scalability: 10^8 agents, 10^7 facilities, 10^7 links?
Issues: Utility function and parameter estimation

- Competition for slots on networks and in facilities
- Activity scheduling
- Parameter calibration

- Observed schedules and generalised costs

\[k(t, r, j)_{i,n} \]

\[q_i \equiv (t, r, j)_{i,n} \]

\[\beta_{i,t, r,j,k} \]
Issue: Endogenous supply generation

- Locating, sizing, and pricing of slots
- Competition for slots on networks and in facilities
- Mental map
- Activity scheduling (private, commercial)

- $k(t,r,j)_{i,n}$
- $C_f(t); P_f(t)$
- $q \equiv (t,r,j)_{i,n}$
- $k(t,r,j)_{i,n}$
Issues: Running MATSim

- Training for MATSim
- Integration of new actors

- Software engineering for loosely coupled developers
- Integration and quality control of new code
- Funding for system integration

- (Daily) coordination of the project as whole

- Maintaining scenarios (commercially)
More information

www.matsim.org