
0

Optimizing Number, Sequence and Type of Activities
in Agents' Schedules

Matthias Feil

MATSim User Meeting
Berlin

April 2009

1

Objectives of the presentation

• Short background on how the
presentation fits into the broader MATSim
environment

• Explanation of basic principles of the
implemented algorithms

• Clarification of the use of the parameters

2

Agenda

• Challenge and objective

• Optimization of agents’ schedules

– PlanomatX

– TimeModeChoicer

– Schedule Recycling

• Modification of the utility function

• “How do I use it?” and outlook

3

Agenda

• Challenge and objective

• Optimization of agents’ schedules

– PlanomatX

– TimeModeChoicer

– Schedule Recycling

• Modification of the utility function

• “How do I use it?” and outlook

4

The objective is to establish a REPLANNING module that optimizes the
number, type and order of the activities of a schedule

MATSim structure

Current situation Objective

� The structure of agents‘
schedules is determined
in the generation of the
initial demand, based
upon socio-economic
data (e.g., census,
microcensus)

� The REPLANNING step includes

– Optimization of timings
(Planomat)

– Mode Choice (Planomat)

– Secondary Location Choice

– Route Choice

� However, the structure of agents‘
schedules (number, type and order of
activities) is kept fixed throughout the
evolutionary learning process. This is
an artificial constraint

� Establish a
REPLANNING
module that
optimizes the
structure of agents‘
schedules, given the
generalized cost of
travelling (and
activity participation)
determined in the
previous EXEC step

5

Agenda

• Challenge and objective

• Optimization of agents’ schedules

– PlanomatX

– TimeModeChoicer

– Schedule Recycling

• Modification of the utility function

• “How do I use it?” and outlook

6

PlanomatX implements a Tabu Search heuristic and optimizes the number,
type and order of the activities of a schedule

High-level PlanomatX process flow

Rationale for employment of
Tabu Search heuristic

� GAs able to reliably find (nearly)
global optimum but known as
rather inefficient*

� Global optimum no ultimate
objective since people do not
globally optimize either

� Tabu Search expected to bring
gains in computational
performance: it quickly relaxes to
an „ok“ solution from which it
(slowly) directs towards global
optimum. „Ok“ solution may
suffice for MATSim application

* See e.g.,
Charypar, D. and K. Nagel (2005) Generating complete all-day activity plans with genetic algorithms, Transportation, 32 (4) 369-397
Meister, K., M. Frick and K.W. Axhausen (2005b) A GA-based household scheduler, Transportation, 32 (5) 473 – 494.

Drop tabu solutions from list N

Create list N of K neighbourhood

solutions by

� Changing the order of the

activities

� Adding/removing activities
� Changing the type of an activity

For x iterations

Optimize solution k

Select best solution in N as new
base solution and update tabu list

Optimal solution

For all solu-

tions k in N

A

B

7

The neighbourhood creation is the most critical step in Tabu Search –
PlanomatX implements three types of „moves“

A

Three ways to
alter a schedule
structure

H W S L H

H W S L H

� Arbitrary base solution

� Adding or removing activities

…

H W S L H

� Swapping the order of activities

S

H W S L H

� Changing the type of an activity

S�

L

� Trade-off of neighbourhood creation

– Create as few „waste“ solutions as possible, but

– Do not constrain the neighbourhood search such that good moves cannot be reached

PlanomatX neighbourhood creation

Standard
shares

� 60%

� 20%

� 20%

8

For each neighbourhood solution, activity timings as well as location,
route and mode choices are optimized

B

Newly implemented elements

Drop tabu solutions from list N

Create list N of K neighbourhood

solutions by
� Changing the order of the

activities

� Adding/removing activities

� Changing the type of an activity

For x iterations

Optimize solution k

Select best solution in N as new

base solution and update tabu list

Optimal solution

For all solu-

tions k in N

Conduct location choice

Conduct routing

Optimize activity timings and mode choice

Score the solution

PlanomatX process flow

� Each neighbourhood solution (= schedule structure) is optimized in itself

� This implies that, if a schedule structure‘s score is lower than that of another structure it can be entirely
dropped

Runtime shares

~10%

~80%

~10%

9

The optimization of activity timings and mode choice is time-
consuming, therefore a workaround has been implemented

B

Newly implemented elements

Drop tabu solutions from list N

Create list N of K neighbourhood

solutions by
� Changing the order of the

activities

� Adding/removing activities

� Changing the type of an activity

For x iterations

Optimize solution k

Select best solution in N as new

base solution and update tabu list

Optimal solution

For all solu-

tions k in N

Conduct location choice

Conduct routing

Optimize activity timings and mode choice

Score the solution

PlanomatX process flow

� About 35% of solutions can be retrieved from the storage

� The storage and retrieval of solutions reduces the overall runtime by about 30%

Check whether the solution has already
been scored. If yes, copy it from storage

Store the scored solution

Runtime shares

~15%

~60%

~25%

Σ -30%

10

Relaxation on a simple chessboard-like network with about 300 agents –
PlanomatX yields a higher average score than pure time optimization…

Optimization
of activity
planning

(PlanomatX)

Time optimi-
zation only

(Time-
Optimizer)

� Optimization with flexible activity chain yields higher score than just
optimizing the times of a fixed activity chain

~320

~350

11

… and the flexible number of activities can obviously be observed in
agents‘ schedules

Example initial plan Corresponding optimized plan

12

What works on the small scenario works on the large-scale
Zurich 10% scenario alike but is pretty time-consuming

* Without traffic assignment, 4 cores

Time
ModeChoicer

5 iter

PlanomatX
20 iter

Runtime
05h 09min / iter*

4.3 sec / agent

13

Agenda

• Challenge and objective

• Optimization of agents’ schedules

– PlanomatX

– TimeModeChoicer

– Schedule Recycling

• Modification of the utility function

• “How do I use it?” and outlook

14

The TimeModeChoicer helps reduce the runtime of the PlanomatX

Current situation Objective

� Optimization of activity
timings and mode
choice accounts for
significant part of overall
PlanomatX runtime

� Planomat module is
based upon a GA
known as rather
inefficient (see before)

� Optimize activity
timings and mode
choice more
efficiently

� Test whether Tabu
Search can reduce
runtime

15

The basic process flow of the TimeModeChoicer resembles the PlanomatX
flow but is simpler

Basic process flow of the TimeModeChoicer

� Standard settings are:

– Neighbourhood size = 10

– Maximum number of iterations = 30; stopp criterion = „no improvement over last 5 iterations“

– Offset = 30min

Select best solution

Create list N of K neighbourhood

solutions

While stop criterion

not met

Optimal solution

Increase time of act x by offset

Decrease time of act x by offset

Swap durations of act x and act y

„Rules

when

to use
what“

Details on next page

16

The TimeModeChoicer drops the tabu check (to save runtime) and rather
employs intelligent rules to prevent from cycling

Rules of neighbourhood creation

� Conduct a „complete“ neighbourhood search increasing the duration of every activity
by a given offset time while decreasing the duration of each other activitiy by that offset
time (number of neighbourhood solutions = (n-1)+(n-2)+…+2+1, where n is the length of
the activity chain)

� In addition to directed
neighbourhood search,
prevent algorithm from
getting stuck in local
optima by swapping act
durations when the act
duration to be decreased
would fall below minimum
time

1/3
Further increase act duration
that was increased in last move

Directed
neighbour-
hood
search

1/3

1/3

Further decrease act duration
that was decreased in last move

Increase/decrease other act
durations

1st

2nd on-
wards

Iteration

17

Introducing mode choice considerably enlarges the solution space
compared with a simple time optimization – Example

H W S W HS

Car PT Walk PT Car

0 1 2 1 0

H W S W HS

Car PT Walk PT Car

30min ~30min

Time
optimi-
zation
only

H W S W HS

Car Car Walk Car Car

H W S W HS

PT PT Walk PT PT

H W S W HS

PT Car Walk Car PT

Time
optimi-
zation
and mode
choice

� Test all
additional
mode alter-
natives and
select mode
combination
with highest
score

Subtour 0 affected Subtour 1 affected

� With e.g., 3 modes (car, pt, walk), there would be 32 = 9 possibilities

� However, walk is only tested for subtours of less than x meters of
distance. Assuming that both subtours exceed the walk distance
limit, the additional solution space would look like:

18

„Extended_1“

„Standard“

The mode choice can be chosen to be included at four different process
steps…

Newly implemented elements

Select best solution

Create list N of K neighbourhood

solutions

While stop criterion

not met

Optimal solution

Increase time of act x by offset

Decrease time of act x by offset

Swap durations of act x and act y

„Rules
when

to use

what“

Basic process flow of the TimeModeChoicer

� Mode choice can be optimized at various levels leading to different run times

� However, almost independently from the level, results are always the same

Optimize mode choice just for the

1 or 2 subtour(s) affected

Optimize mode choice for all
subtours

„Extended_2“

Optimize mode choice for

the 1 or 2 subtour(s)

affected

„Extended_3“

Optimize mode

choice for the

1 or 2

subtour(s)

affected

See next
page

19

… what has little effect on the results quality but heavy impact on the
runtimes (small test scenario with about 300 agents)

* Individual optimization of agents with PlanomatX18

5.5

Standard 1.5

Extended_1

5.7Extended_2

10.9Extended_3

192.5

197.9

195.9

198.9

Time / agent (sec) Score (after 10 iterations*)Mode choice

� 30 tabu search iterations

� Stop criterion at 5

� Neighbourhood size of 10

Further settings of
TimeModeChoicer

Time optimization
only: 0.9 sec

20

Agenda

• Challenge and objective

• Optimization of agents’ schedules

– PlanomatX

– TimeModeChoicer

– Schedule Recycling

• Modification of the utility function

• “How do I use it?” and outlook

21

Schedule recycling takes opportunity of many agents aiming for equal
schedule structures

Situation Objective

� PlanomatX takes way too
long to be applied to large
scale scenarios (4.3 sec /
agent;
>5h per iteration)

� Many agents features equal
schedule structures after the
optimization

� Further reduce the
runtime

� Re-use, or „recycle“,
optimized schedules
of agents for other
similar agents whose
schedules have not
been optimized yet

22

Schedule recycling implies to find correct spatial and socio-economic
relationships of individually optimized agents with non-optimized agents

Workflow of the Recycling Module

Define agent attributes to recycle with

� Hard attributes

– Always to be fulfilled (all prim acts in plan)

– Optional (e.g. license)

� Optional soft attributes (e.g. dist. home-work)

Find optimal distance metric for soft

attributes

Assign plans to non-optimized agents according to

distance metric

Number of agents

Optimize x agents (e.g. 10% of all agents)

Assign y agents and individually optimize those

agents that could not be assigned

Individually optimize those agents that could no be

assigned

17,375
Total
per iteration

100
1st individual
optimization
(x agents)

47
2nd individual
optimization

500
Metric detection
(y agents)

16,728Assignment

472
3rd individual
optimization

90

4

2

41

22

21

Time* (min)

* Zurich 10% scenario on satawal, 8 CPUs

First MATSim iteration only

23

The determination of the distance metric is at the core of the schedule
recycling

Definition of the distance metric

� „Reverse clustering“

1. Define a default metric vector (e.g. {1,1} for a set

of two attributes)

2. Take a subset of the non-optimized agents, assign

plans to these agents according to the metric

vector and calculate their score

3. Repeat step 2 for n iterations with different metric
vectors

4. Choose the metric vector for which the score

becomes maximum

Define agent attributes to recycle with

� Hard attributes

– Always to be fulfilled (all prim acts in plan)

– Optional (e.g. license)

� Optional soft attributes (e.g. dist. home-work)

Find optimal distance metric for soft

attributes

Assign plans to non-optimized agents according to

distance metric

Optimize x agents (e.g. 10% of all agents)

Assign y agents and individually optimize those

agents that could not be assigned

Individually optimize those agents that could no be

assigned

Workflow of the Recycling Module

24

Like PlanomatX, schedule recycling produces nice optimization graphs
(Zurich 10% scenario)…

* Without traffic assignment, 4 cores

Time
ModeChoicer

30 iter

PlanomatX
20 iter

Runtime
01h 58min / iter*

1.6 sec / agent

25

… which require more iterations to relax but at less runtime

0

50

100

150

200

250

300

350

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 37.5 40

Iteration

A
v
e
ra

g
e
 e

x
e
c
u

te
d

 s
c
o

re
PlanomatX

Schedule Recycling

Overall runtime

PlanomatX

Schedule Recycling ~51h

20 iterations 40 iterations

~112h

~100h

26

Agenda

• Challenge and objective

• Optimization of agents’ schedules

– PlanomatX

– TimeModeChoicer

– Schedule Recycling

• Modification of the utility function

• “How do I use it?” and outlook

27

MATSim‘s current utility function does not support the number of
activities in agents‘ schedules being a dimension of the learning process

Situation Objective

� Current utility function
features a log form for
the duration of activities

� Establish a utility
function that is able
to cope with the
number of activities
in a schedule being
a dimension of the
learning process

� The log form leads to unrealistic
results when we allow for changes
in the number of activities in the
schedule

– When the number of activities
in a schedule is a dimension of
the learning process the log
form leads to a lot of very short
acitivities due to the decreasing
marginal utility of the log-form

– Example: A schedule of two
30 minutes activities of a
certain type is always better
than a schedule of once
60 minutes of the same activity.

Complication

U

t

28

A first draft of a new scoring function has been established following Joh*
(Aurora Project)

0

20

40

60

80

100

120

Time
Hours

0 1 2 3 4 5 6 7 8 9 10 11 12

Utility

Home

Work

Leisure

Shopping

� Allows for control of number and type of activities in optimal daily plan

� Currently minimal duration of 1hour for all activity types**, however no activity-specific
minimal durations required any longer (hence no „too short“-penalty necessary)

Scoring function: first test settings

Virtual min home duration Virtual max home duration

* Chang-Hyeon Joh (2004) Measuring and Predicting Adaptation in Multidimensional Activity-Travel Patterns, Dissertation, Technical University of Eindhoven,
Eindhoven

** Can also be set individually for each activity

29

Agenda

• Challenge and objective

• Optimization of agents’ schedules

– PlanomatX

– TimeModeChoicer

– Schedule Recycling

• Modification of the utility function

• “How do I use it?” and outlook

30

PlanomatX config parameters

neighbourhood_size � 10 � Number of candidate solutions that are created per

iteration: „keep it rather low“

Parameter Standard setting Description

max_iterations � 20 � Number of iterations: „increase this if really good

results required“

weight_change_order* � 0.2 � Share of neighbourhood solutions that change the

order of activities of the base solution

weight_change_number* � 0.6 � Share of neighbourhood solutions that change the

number of activities of the base solution

weight_inc_number** � 0.5 � Share of neighbourhood solutions for which the

number of activities is increased

timer � TimeModeChoicer � Module used to optimize activity timings and mode

choice: „Planomat or TimeModeChoicer“

final_timer � none � Module used to refine activity timings at the end of

PlanomatX optimization: „normally not required but if

so take TimeOptimizerWIGIC“

LC_mode � reducedLC � Way of location choice: „reducedLC takes first

feasible solution, fullLC optimizes“

LC_set_size � 2 � Number of location choice alternatives if fullLC

chosen: „2 is probably enough, do not exceed 4“

* weight_change_type = 1 – weight_change_order – weight_change_number
** weight_dec_number = 1 – weight_inc_number

Primary parameter

31

TimeModeChoicer config parameters

neighbourhood_size � 10 � Number of candidate solutions that are created per

iteration: „keep it rather low“

Parameter Standard setting Description

max_iterations � 30 � Number of maximum iterations: „increase this if really

good results required“

stop_criterion � 5 � Stop of optimization if no improvement over last

<stop_criterion> iterations: „increase this if really
good results required“

offset � 1800 seconds � Duration by which an activity is increased/decreased

during a move: „chose something between 900 and

3600“

minimum_time � 3600 seconds � Minimum time of an activity: „Should be more than
900 seconds“

maximum_walking_distance � 2000 meters � Limits the solution space of the mode choice to speed

up the calculation

possible_modes � car, pt, walk � Available modes

mode_choice � standard � Defines the level of mode choice (see page 19)

Primary parameter

32

Schedule recycling config parameters

iterations � 20 � Size of choice set from which the parameter setting is

selected that generates the best score: „20 seems

very reasonable, no need to change“

Parameter Standard setting Description

noOfAgents � – � Number of agents that are assigned with one of the

plans of the test agents to evaluate the distance

metric: „set to about 30% of all agents but not more

than 500“

primActsDistance � yes � Distance between the agent‘s primary activities

noOfTestAgents � – � Number of agents that are optimized individually at

the beginning of each iteration: „set to about 20% of

all agents but not more than 100“

Soft coefficients

homeLocationDistance � no

sex � no

age � no

license � no

carAvailability � no

employed � no

� Currently, these parameters have neither an
effect on a schedule‘s utility nor do they limit the

choice of a schedule structure. In the long run,

this may though change and, therefore, these

parameters are ready to be considered.

Primary parameter

33

The presented algorithms have not been committed to the core yet but will
so soon

• Outlook:

– Full completion of algorithms and
commitment to the MATSim core

– Enhancement and empirical estimation
of the utility function

• Contact: mfeil@student.ethz.ch

34

BACKUP

35

Details of „change number“ sub-algorithm – increasing the number of
acts

Initial random allocation of act types to cycling
schedule positions Key features

� At initial step, each „gap“ is provided
with a list of randomly ordered act types

– First gap is provided with all
existing act types (read from config
file)

– All other gap lists reduced by act
type of act „behind“ the gap (avoids
creating equal new plans)

� Acts are inserted „cycling“ through the
schedule

� Maximum number of insertions is
smax = t + (t-1) * (n-2) , where t is the
number of act types existing and n the
number of acts of the plan

� If the number of allocated neighbour-
hood fields is higher than the number of
possible insertions smax, the algorithm
fills the remaining fields with the default
plan from the previous iteration

Schedule

Acts inserted

H

W

S

L

L

W

H

S

H

W

H

L

S

H

W

S

L

S

W

…
H W S L W L H

H W S L W L HL

H W S L W L HH

H W S L W L HW

H W S L W L HS

…
H W S L W L HS

H W S L W L HL

…

…

…

…
…

…

…

A

BACKUP

36

Details of „change order“ sub-algorithm

Two nested loops to select acts to be swapped Key features

* If they do not have the same type

…

…

…

…

…

…

� Two nested loops to select acts to
be swapped

– First and last act remain
unchanged

– Acts are swapped only if they
do not have the same type as
the swap would lead to the
same plan, otherwise

� Maximum number of swaps is
smax = (n-3)+(n-4)+ … + (n-(n-1)),
where n is the number of acts of the
plan

� If the number of allocated
neighbourhood fields is higher than
the number of possible swaps smax,
the algorithm fills the remaining
fields with the default plan from the
previous iteration

Schedule

Acts swapped*

…
…

…

A

BACKUP

