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Objectives of the presentation

• Short background on how the 
presentation fits into the broader MATSim 
environment

• Explanation of basic principles of the 
implemented algorithms 

• Clarification of the use of the parameters
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Agenda

• Challenge and objective

• Optimization of agents’ schedules

– PlanomatX

– TimeModeChoicer

– Schedule Recycling

• Modification of the utility function

• “How do I use it?” and outlook
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The objective is to establish a REPLANNING module that optimizes the 
number, type and order of the activities of a schedule

MATSim structure

Current situation Objective

� The structure of agents‘
schedules is determined 
in the generation of the 
initial demand, based 
upon socio-economic 
data (e.g., census, 
microcensus)

� The REPLANNING step includes 

– Optimization of timings 
(Planomat)

– Mode Choice (Planomat)

– Secondary Location Choice

– Route Choice 

� However, the structure of agents‘
schedules (number, type and order of 
activities) is kept fixed throughout the 
evolutionary learning process. This is 
an artificial constraint

� Establish a 
REPLANNING 
module that 
optimizes the 
structure of agents‘
schedules, given the 
generalized cost of 
travelling (and 
activity participation) 
determined in the 
previous EXEC step
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PlanomatX implements a Tabu Search heuristic and optimizes the number, 
type and order of the activities of a schedule

High-level PlanomatX process flow

Rationale for employment of 
Tabu Search heuristic

� GAs able to reliably find (nearly) 
global optimum but known as 
rather inefficient*

� Global optimum no ultimate 
objective since people do not 
globally optimize either

� Tabu Search expected to bring 
gains in computational 
performance: it quickly relaxes to 
an „ok“ solution from which it 
(slowly) directs towards global 
optimum. „Ok“ solution may 
suffice for MATSim application

* See e.g., 
Charypar, D. and K. Nagel (2005) Generating complete all-day activity plans with genetic algorithms, Transportation, 32 (4) 369-397
Meister, K., M. Frick and K.W. Axhausen (2005b) A GA-based household scheduler, Transportation, 32 (5) 473 – 494.

Drop tabu solutions from list N

Create list N of K neighbourhood 

solutions by 

� Changing the order of the 

activities

� Adding/removing activities
� Changing the type of an activity

For x iterations

Optimize solution k

Select best solution in N as new 
base solution and update tabu list

Optimal solution

For all solu-

tions k in N

A

B
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The neighbourhood creation is the most critical step in Tabu Search –
PlanomatX implements three types of „moves“

A

Three ways to 
alter a schedule 
structure

H W S L H

H W S L H

� Arbitrary base solution

� Adding or removing activities

…

H W S L H

� Swapping the order of activities

S

H W S L H

� Changing the type of an activity

S�

L

� Trade-off of neighbourhood creation

– Create as few „waste“ solutions as possible, but

– Do not constrain the neighbourhood search such that good moves cannot be reached

PlanomatX neighbourhood creation

Standard 
shares

� 60%

� 20%

� 20%
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For each neighbourhood solution, activity timings as well as location, 
route and mode choices are optimized

B

Newly implemented  elements

Drop tabu solutions from list N

Create list N of K neighbourhood 

solutions by 
� Changing the order of the 

activities

� Adding/removing activities

� Changing the type of an activity

For x iterations

Optimize solution k

Select best solution in N as new 

base solution and update tabu list

Optimal solution

For all solu-

tions k in N

Conduct location choice

Conduct routing

Optimize activity timings and mode choice

Score the solution

PlanomatX process flow

� Each neighbourhood solution (= schedule structure) is optimized in itself

� This implies that, if a schedule structure‘s score is lower than that of another structure it can be entirely 
dropped

Runtime shares

~10%

~80%

~10%
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The optimization of activity timings and mode choice is time-
consuming, therefore a workaround has been implemented

B

Newly implemented  elements

Drop tabu solutions from list N

Create list N of K neighbourhood 

solutions by 
� Changing the order of the 

activities

� Adding/removing activities

� Changing the type of an activity

For x iterations

Optimize solution k

Select best solution in N as new 

base solution and update tabu list

Optimal solution

For all solu-

tions k in N

Conduct location choice

Conduct routing

Optimize activity timings and mode choice

Score the solution

PlanomatX process flow

� About 35% of solutions can be retrieved from the storage

� The storage and retrieval of solutions reduces the overall runtime by about 30%

Check whether the solution has already 
been scored. If yes, copy it from storage

Store the scored solution

Runtime shares

~15%

~60%

~25%

Σ -30%
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Relaxation on a simple chessboard-like network with about 300 agents –
PlanomatX yields a higher average score than pure time optimization…

Optimization 
of activity 
planning 

(PlanomatX)

Time optimi-
zation only 

(Time-
Optimizer)

� Optimization with flexible activity chain yields higher score than just 
optimizing the times of a fixed activity chain

~320

~350
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… and the flexible number of activities can obviously be observed in 
agents‘ schedules

Example initial plan Corresponding optimized plan
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What works on the small scenario works on the large-scale 
Zurich 10% scenario alike but is pretty time-consuming

* Without traffic assignment, 4 cores

Time 
ModeChoicer

5 iter

PlanomatX
20 iter 

Runtime
05h 09min / iter*

4.3 sec / agent
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The TimeModeChoicer helps reduce the runtime of the PlanomatX

Current situation Objective

� Optimization of activity 
timings and mode 
choice accounts for 
significant part of overall 
PlanomatX runtime

� Planomat module is 
based upon a GA 
known as rather 
inefficient (see before)

� Optimize activity 
timings and mode 
choice more 
efficiently

� Test whether Tabu 
Search can reduce 
runtime
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The basic process flow of the TimeModeChoicer resembles the PlanomatX 
flow but is simpler

Basic process flow of the TimeModeChoicer

� Standard settings are:

– Neighbourhood size = 10

– Maximum number of iterations = 30; stopp criterion = „no improvement over last 5 iterations“

– Offset = 30min

Select best solution

Create list N of K neighbourhood 

solutions

While stop criterion 

not met

Optimal solution

Increase time of act x by offset

Decrease time of act x by offset

Swap durations of act x and act y

„Rules 

when 

to use 
what“

Details on next page
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The TimeModeChoicer drops the tabu check (to save runtime) and rather 
employs intelligent rules to prevent from cycling

Rules of neighbourhood creation

� Conduct a „complete“ neighbourhood search increasing the duration of every activity 
by a given offset time while decreasing the duration of each other activitiy by that offset 
time (number of neighbourhood solutions = (n-1)+(n-2)+…+2+1, where n is the length of 
the activity chain)

� In addition to directed 
neighbourhood search, 
prevent algorithm from 
getting stuck in local 
optima by swapping act 
durations when the act 
duration to be decreased 
would fall below minimum 
time

1/3
Further increase act duration 
that was increased in last move

Directed 
neighbour-
hood 
search

1/3

1/3

Further decrease act duration 
that was decreased in last move

Increase/decrease other act 
durations

1st

2nd on-
wards

Iteration
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Introducing mode choice considerably enlarges the solution space
compared with a simple time optimization – Example

H W S W HS

Car PT Walk PT Car

0 1 2 1 0

H W S W HS

Car PT Walk PT Car

30min ~30min

Time
optimi-
zation 
only

H W S W HS

Car Car Walk Car Car

H W S W HS

PT PT Walk PT PT

H W S W HS

PT Car Walk Car PT

Time 
optimi-
zation 
and mode 
choice

� Test all 
additional 
mode alter-
natives and 
select mode 
combination 
with highest 
score

Subtour 0 affected Subtour 1 affected

� With e.g., 3 modes (car, pt, walk), there would be 32 = 9 possibilities 

� However, walk is only tested for subtours of less than x meters of 
distance. Assuming that both subtours exceed the walk distance 
limit, the additional solution space would look like: 
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„Extended_1“

„Standard“

The mode choice can be chosen to be included at four different process 
steps…

Newly implemented elements

Select best solution

Create list N of K neighbourhood 

solutions

While stop criterion 

not met

Optimal solution

Increase time of act x by offset

Decrease time of act x by offset

Swap durations of act x and act y

„Rules 
when 

to use 

what“

Basic process flow of the TimeModeChoicer

� Mode choice can be optimized at various levels leading to different run times

� However, almost independently from the level, results are always the same

Optimize mode choice just for the 

1 or 2 subtour(s) affected

Optimize mode choice for all 
subtours

„Extended_2“

Optimize mode choice for 

the 1 or 2 subtour(s) 

affected

„Extended_3“

Optimize mode 

choice for the 

1 or 2 

subtour(s) 

affected

See next 
page
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… what has little effect on the results quality but heavy impact on the 
runtimes (small test scenario with about 300 agents)

* Individual optimization of agents with PlanomatX18

5.5

Standard 1.5

Extended_1

5.7Extended_2

10.9Extended_3

192.5

197.9

195.9

198.9

Time / agent (sec) Score (after 10 iterations*)Mode choice

� 30 tabu search iterations

� Stop criterion at 5

� Neighbourhood size of 10

Further settings of 
TimeModeChoicer

Time optimization 
only: 0.9 sec
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Schedule recycling takes opportunity of many agents aiming for equal 
schedule structures 

Situation Objective

� PlanomatX takes way too 
long to be applied to large 
scale scenarios (4.3 sec / 
agent;
>5h per iteration)

� Many agents features equal 
schedule structures after the 
optimization

� Further reduce the 
runtime

� Re-use, or „recycle“, 
optimized schedules 
of agents for other 
similar agents whose 
schedules have not 
been optimized yet
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Schedule recycling implies to find correct spatial and socio-economic 
relationships of individually optimized agents with non-optimized agents

Workflow of the Recycling Module

Define agent attributes to recycle with 

� Hard attributes 

– Always to be fulfilled (all prim acts in plan)

– Optional (e.g. license)

� Optional soft attributes (e.g. dist. home-work)

Find optimal distance metric for soft 

attributes

Assign plans to non-optimized agents according to 

distance metric

Number of agents

Optimize x agents (e.g. 10% of all agents)

Assign y agents and individually optimize those 

agents that could not be assigned

Individually optimize those agents that could no be 

assigned

17,375
Total 
per iteration

100
1st individual 
optimization
(x agents)

47
2nd individual
optimization

500
Metric detection
(y agents)

16,728Assignment

472
3rd individual 
optimization

90

4

2

41

22

21

Time* (min)

* Zurich 10% scenario on satawal, 8 CPUs

First MATSim iteration only
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The determination of the distance metric is at the core of the schedule 
recycling

Definition of the distance metric

� „Reverse clustering“

1. Define a default metric vector (e.g. {1,1} for a set 

of two attributes)

2. Take a subset of the non-optimized agents, assign 

plans to these agents according to the metric 

vector and calculate their score

3. Repeat step 2 for n iterations with different metric 
vectors

4. Choose the metric vector for which the score 

becomes maximum

Define agent attributes to recycle with 

� Hard attributes 

– Always to be fulfilled (all prim acts in plan)

– Optional (e.g. license)

� Optional soft attributes (e.g. dist. home-work)

Find optimal distance metric for soft 

attributes

Assign plans to non-optimized agents according to 

distance metric

Optimize x agents (e.g. 10% of all agents)

Assign y agents and individually optimize those 

agents that could not be assigned

Individually optimize those agents that could no be 

assigned

Workflow of the Recycling Module
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Like PlanomatX, schedule recycling produces nice optimization graphs 
(Zurich 10% scenario)…

* Without traffic assignment, 4 cores

Time 
ModeChoicer

30 iter

PlanomatX
20 iter 

Runtime
01h 58min / iter*

1.6 sec / agent



25

… which require more iterations to relax but at less runtime

0
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PlanomatX

Schedule Recycling

Overall runtime

PlanomatX

Schedule Recycling ~51h

20 iterations 40 iterations

~112h

~100h
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MATSim‘s current utility function does not support the number of 
activities in agents‘ schedules being a dimension of the learning process

Situation Objective

� Current utility function 
features a log form for 
the duration of activities

� Establish a utility 
function that is able 
to cope with the 
number of activities 
in a schedule being 
a dimension of the 
learning process 

� The log form leads to unrealistic 
results when we allow for changes 
in the number of activities in the 
schedule 

– When the number of activities 
in a schedule is a dimension of 
the learning process the log 
form leads to a lot of very short 
acitivities due to the decreasing 
marginal utility of the log-form

– Example: A schedule of two 
30 minutes activities of a 
certain type is always better 
than a schedule of once 
60 minutes of the same activity. 

Complication

U

t



28

A first draft of a new scoring function has been established following Joh* 
(Aurora Project)

0

20

40

60

80

100

120

Time
Hours

0 1 2 3 4 5 6 7 8 9 10 11 12

Utility

Home

Work

Leisure

Shopping

� Allows for control of number and type of activities in optimal daily plan

� Currently minimal duration of 1hour for all activity types**, however no activity-specific 
minimal durations required any longer (hence no „too short“-penalty necessary)

Scoring function: first test settings

Virtual min home duration Virtual max home duration

* Chang-Hyeon Joh (2004) Measuring and Predicting Adaptation in Multidimensional Activity-Travel Patterns, Dissertation, Technical University of Eindhoven, 
Eindhoven

** Can also be set individually for each activity
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PlanomatX config parameters 

neighbourhood_size � 10 � Number of candidate solutions that are created per 

iteration: „keep it rather low“

Parameter Standard setting Description

max_iterations � 20 � Number of iterations: „increase this if really good 

results required“

weight_change_order* � 0.2 � Share of neighbourhood solutions that change the 

order of activities of the base solution

weight_change_number* � 0.6 � Share of neighbourhood solutions that change the 

number of activities of the base solution

weight_inc_number** � 0.5 � Share of neighbourhood solutions for which the 

number of activities is increased

timer � TimeModeChoicer � Module used to optimize activity timings and mode 

choice: „Planomat or TimeModeChoicer“

final_timer � none � Module used to refine activity timings at the end of 

PlanomatX optimization: „normally not required but if  

so take TimeOptimizerWIGIC“

LC_mode � reducedLC � Way of location choice: „reducedLC takes first 

feasible solution, fullLC optimizes“

LC_set_size � 2 � Number of location choice alternatives if fullLC 

chosen: „2 is probably enough, do not exceed 4“

* weight_change_type = 1 – weight_change_order – weight_change_number
** weight_dec_number = 1 – weight_inc_number

Primary parameter
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TimeModeChoicer config parameters 

neighbourhood_size � 10 � Number of candidate solutions that are created per 

iteration: „keep it rather low“

Parameter Standard setting Description

max_iterations � 30 � Number of maximum iterations: „increase this if really 

good results required“

stop_criterion � 5 � Stop of optimization if no improvement over last 

<stop_criterion> iterations: „increase this if really 
good results required“

offset � 1800 seconds � Duration by which an activity is increased/decreased 

during a move: „chose something between 900 and 

3600“

minimum_time � 3600 seconds � Minimum time of an activity: „Should be more than 
900 seconds“

maximum_walking_distance � 2000 meters � Limits the solution space of the mode choice to speed 

up the calculation

possible_modes � car, pt, walk � Available modes

mode_choice � standard � Defines the level of mode choice (see page 19) 

Primary parameter
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Schedule recycling config parameters 

iterations � 20 � Size of choice set from which the parameter setting is 

selected that generates the best score: „20 seems 

very reasonable, no need to change“

Parameter Standard setting Description

noOfAgents � – � Number of agents that are assigned with one of the 

plans of the test agents to evaluate the distance 

metric: „set to about 30% of all agents but not more 

than 500“

primActsDistance � yes � Distance between the agent‘s primary activities

noOfTestAgents � – � Number of agents that are optimized individually at 

the beginning of each iteration: „set to about 20% of 

all agents but not more than 100“

Soft coefficients

homeLocationDistance � no

sex � no

age � no

license � no

carAvailability � no

employed � no

� Currently, these parameters have neither an 
effect on a schedule‘s utility nor do they limit the 

choice of a schedule structure. In the long run, 

this may though change and, therefore, these 

parameters are ready to be considered.

Primary parameter
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The presented algorithms have not been committed to the core yet but will 
so soon 

• Outlook:

– Full completion of algorithms and 
commitment to the MATSim core

– Enhancement and empirical estimation 
of the utility function

• Contact: mfeil@student.ethz.ch
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Details of „change number“ sub-algorithm – increasing the number of 
acts

Initial random allocation of act types to cycling 
schedule positions Key features

� At initial step, each „gap“ is provided 
with a list of randomly ordered act types

– First gap is provided with all 
existing act types (read from config 
file)

– All other gap lists reduced by act 
type of act „behind“ the gap (avoids 
creating equal new plans) 

� Acts are inserted „cycling“ through the 
schedule 

� Maximum number of insertions is 
smax = t + (t-1) * (n-2) , where t is the 
number of act types existing and n the 
number of acts of the plan

� If the number of allocated neighbour-
hood fields is higher than the number of 
possible insertions smax, the algorithm 
fills the remaining fields with the default 
plan from the previous iteration

Schedule

Acts inserted

H

W

S

L

L

W

H

S

H

W

H

L

S

H

W

S

L

S

W

…
H W S L W L H

H W S L W L HL

H W S L W L HH

H W S L W L HW

H W S L W L HS

…
H W S L W L HS

H W S L W L HL

…

…

…

…
…

…

…
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Details of „change order“ sub-algorithm

Two nested loops to select acts to be swapped Key features

* If they do not have the same type

…

…

…

…

…

…

� Two nested loops to select acts to 
be swapped

– First and last act remain 
unchanged

– Acts are swapped only if they 
do not have the same type as 
the swap would lead to the 
same plan, otherwise

� Maximum number of swaps is 
smax = (n-3)+(n-4)+ … + (n-(n-1)), 
where n is the number of acts of the 
plan

� If the number of allocated 
neighbourhood fields is higher than 
the number of possible swaps smax, 
the algorithm fills the remaining 
fields with the default plan from the 
previous iteration

Schedule

Acts swapped*

…
…

…

A

BACKUP


